Research Article
BibTex RIS Cite

Diklofenak Sodyumun Zebra Balığı (Danio rerio) Larvaları Üzerindeki Teratojenik ve Gelişimsel Toksisitesinin Değerlendirilmesi

Year 2023, , 183 - 191, 28.02.2023
https://doi.org/10.18016/ksutarimdoga.vi.1028753

Abstract

Bu çalışmada tıpta ve veteriner hekimlikte ağrı ve iltihabı kontrol etmek için kullanılan diklofenak sodyumun (DKFS) zebra balığı embriyoları ve larvaları üzerindeki etkileri değerlendirilmiştir. Embriyolar 96 saat süreyle 0.21-5.33 mg L-1 DKFS'ye maruz bırakılmış ve bu bireylerin hayatta kalma oranları, kalp atım sayıları, kuluçkadan çıkma oranları ve vücut malformasyonları belirlenmiştir. LC50, EC50 ve teratojenik indeks (TI) değerleri sırasıyla 1.55 ve 0.81, 1.91 olarak hesaplanmıştır. DKFS, hesaplanan TI değerine göre zebra balığı embriyoları için teratojendir. 0.47 mg L-1 ve daha yüksek konsantrasyonlarda DKFS zebra balıklarında, perikardiyal ödem, yolk kesesi ödemi, kuyruk malformasyonu ve omurga eğriliğine neden olmuştur. En sık rastlanan malformasyonlar perikardiyal ve yolk kesesi ödemi olarak belirlenmiştir. 0.7 mg L-1 ve daha yüksek konsantrasyonlarda zebra balıkları larvalarının boy uzunluklarında ve dakikadaki kalp atım sayılarında önemli oranda inhibisyona neden olmuştur. 2.37 mg L-1 ve daha yüksek konsantrasyonlarda DKFS’nin ise zebra balıklarının kuluçkadan çıkma oranlarını %50’nin altına düşürdüğünü göstermiştir. Bu sonuçlar, DKFS'nin zebra balığı gelişimi üzerinde olumsuz etkilere neden olduğunu ve sucul ortama girmesi durumunda su ekosistemini olumsuz etkileyebileceğini göstermektedir.

References

  • Aksakal, F.I. & Çiltaş, A. (2018). Developmental Toxicity of Penconazole in Zebrafish (Danio rerio) Embryos. Chemosphere, 200, 8-15. https://doi.org/10.1016/j.chemosphere.2018.02.094
  • Capriello, T., Visone, I.M., Motta, C.M., Ferrandino, I. (2021). Adverse Effects of E150d on Zebrafish Development. Food and Chemical Toxicology, 147, 111877. https://doi.org/10.1016/j.fct.2020.111877
  • Chen, B., Gao, Z.Q., Liu, Y., Zheng, Y.M., Han, Y., Zhang, J.P. & Hu, C.Q. (2017). Embryo and Developmental Toxicity of Cefazolin Sodium Impurities in Zebrafish. Frontiers in Pharmocology, 8, 403. https://doi.org/10.3389/ fphar.2017.00403
  • Cook, L.W., Paradise, C.J., Lom, B. (2005). The Pesticide Malathion Reduces Survival and Growth in Developing Zebrafish. Environmental Toxicology and Chemistry, 24(7), 1745-1750. https://doi.org/10.1897/04-331R.1
  • Daou, C., Hamade, A., Mouchtari, E.M., Rafqah, S., Piram, A., Chung, P.W.W. & Najjar, F. (2020). Zebrafish Toxicity Assessment of The Photocatalysis-Biodegradation of Diclofenac Using Composites of TiO2 and Activated Carbon From Argania spinosa Tree Nutshells and Pseudomonas aeruginosa. Environmental Science and Pollution Research. 27, 17258–17267. https://doi.org/ 10.1007/s11356-020-08276-4
  • Escapa, C., Torres, T., Neuparth, T., Coimbra, R.N., García, A.I., Santos, M.M.,& Otero, M. 2018. Zebrafish Embryo Bioassays for a Comprehensive Evaluation of Microalgae Efficiency in the Removal of Diclofenac from Water. Science of The Total Environment, 640 (641), 1024-1033. https://doi.org/10.1016/j.scitotenv.2018.05.353
  • Felice, B.D., Copia, L. & Guida, M. (2012). Gene Expression Profiling in Zebrafish Embryos Exposed to Diclofenac, an Environmental Toxicant. Moleculer Biology Reports, 39, 2119–2128. https://DOI 10.1007/s11033-011-0959-z
  • Fu, Q., Fedrizzi, D., Kosfeld, V., Schlechtriem, C., Ganz, V., Derrer, S., Rentsch, D.,& Hollender, J., (2020). Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. Environmental Science Technology. 54, 4400−4408. https://doi.org/ 10.1021/acs.est.9b07127
  • González, E.D., Gómez-Oliván, L.M., Islas-Flores, H.,& Galar-Martínez, M. (2021). Developmental Effects of Amoxicillin at Environmentally Relevant Concentration Using Zebrafish Embryotoxicity Test (ZET). Water Air Soil Pollution, 232, 196. https://doi.org/10.1007/s11270-021-05148-6
  • Guiloski, I.C., Ribas, J.L.C., Pereira, L.S., Neves, A.P.A. & Assis, H.C.S.A. (2015). Effects of Trophic Exposure to Dexamethasone and Diclofenac in freshwater fish. Ecotoxicology and Environmental Safety, 114, 204-211. https://doi.org/ 10.1016/j.ecoenv.2014.11.020
  • Horie, Y., Yamagishi, T., Yagi, A., Shintaku, Y., Iguchi, T. & Tatarazako, N. (2018). The Non‐Steroidal Anti‐Inflammatory Drug Diclofenac Sodium Induces Abnormal Embryogenesis and Delayed Lethal Effects in Early Life Stage Zebrafish (Danio rerio). Journal of Applied Toxicology, 39, 622–629. https://doi.org/ 10.1002/jat.3752
  • Jia, M., Teng, M., Tian, S., Yan, J., Meng, Z., Yan, S., Li, R., Zhou, Z.,& Zhu, W. (2020). Developmental Toxicity and Neurotoxicity of Penconazole Enantiomers Exposure on Zebrafish (Danio rerio). Environmental Pollution, 267, 115450. https://doi.org/10.1016/j.envpol.2020.115450
  • Johnson, A., Carew, E.,& Sloman, K.A. (2007). The Effects of Copper on The Morphological and Functional Development of Zebrafish Embryos. Aquatic Toxicology, 84, 431–438. https://doi.org/ 10.1016/j.aquatox.2007.07.003
  • Kelly, P.J.M., Zhang, C.X., Danberyy, T.L., Flood, A., Delan, J.W., Brannen, K.C.,& Augustine-Rauch, K.A. (2010). Morphological Score Assignment Guidelines for The Dechorionated Zebrafish Teratogenicity Assay. Birth Defects Research (Part B), 89, 382–395. https://doi.org/10.1002/bdrb.20260
  • Khan, K., Benfenati, E. & Roy, K. (2019). Consensus Qsar Modeling of Toxicity of Pharmaceuticals To Different Aquatic Organisms: Ranking And Prioritization of The Drug Bank Database Compounds. Ecotoxicology and Environmental Safety, 168, 287-297. https://doi.org/10.1016/ j.ecoenv.2018.10.060
  • Koba, O., Grabicova, K., Cerveny, D., Turek, J., Kolarova, J., Randak, T., Zlabek, V. & Grabic, R. (2018). Transport of Pharmaceuticals and Their Metabolites Between Water and Sediments as a Further Potential Exposure for Aquatic Organisms. Journal of Hazardous Materials, 342, 401–407. https://doi.org/10.1016/j.jhazmat. 2017. 08.039
  • Lee, J., Ji, K., Kho, Y.L.,, Kim, P. & Choi, K. (2011). Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicology and Environmental Safety, 74, 1216-1225. https://doi.org/10.1016/j.ecoenv.2011.03.014
  • Lin, T., Chen, Y.,& Chen, W. (2013). Impact of Toxicological Properties of Sulfonamideson the Growth of Zebrafish Embryos in the Water. Environmental Toxicology and Pharmacology, 3, 1068–1076. https://doi.org/10.1016/j.etap.2013.09.009
  • Mirzaee, S.A., Noorimotlagh, Z., Ahmadi, M., Rahim, F., Martinez, S.S., Nourmohammadi, A. & Jaafarzadeh, N. (2021). The Possible Oxidative Stress and DNA Damage Induced in Diclofenac-Exposed Non-target Organisms in The Aquatic Environment: A Systematic Review. Ecological Indicators, 131, 108172. https://doi.org/ 10.1016/j.ecolind.2021.108172
  • Mu, X., Chai, T., Wang, K., Zhu, L., Huang, Y., Shen, G., Li, Y., Li, X. & Wang, C. (2016). The Developmental Effect of Difenoconazole on Zebrafish Embryos: A mechanism research. Environmental Pollution, 212, 18-26. https://doi.org/10.1016/j.envpol.2016.01.035
  • Nguyen, T.H., Nguyen, P.D., Leclercq, J.Q., Muller, M., Huong, D.T.L., Pham, H.T.,& Kestemont, P. (2021). Developmental Toxicity of Clerodendrum cyrtophyllum Turcz Ethanol Extract in Zebrafish embryo. Journal of Ethnopharmacology, 267, 113538. https://doi.org/10.1016/j.jep.2020.113538
  • OECD 236, Guidelines for the testing of Chemicals, Fish Embryo Acute Toxicity (FET) Test, 2013.
  • Pohl, J., Ahrens, L., Carlsson, G., Golovko, O., Norrgren, L., Weiss, J.,& Örn, S. (2019). Embryotoxicity of ozonated diclofenac, carbamazepine, and oxazepam in zebrafish (Danio rerio). Chemosphere, 225, 191-199. https://doi.org/ 10.1016/j.chemosphere.2019.03.034
  • Santos, E.H.Q., Martínez, M.G., Medina, S.G., P´erez, E.G., Viveros, S.C., Lara, K.R., Oliv, L.M.G. & Flores, H.I. (2021). Geno-Cytotoxicity and Congenital Malformations Produced by Relevant Environmental Concentrations of Aluminum, Diclofenac and Their Mixture on Cyprinus carpio. An Interactions Study. Environmental Toxicology and Pharmacology, 82, 103555. https://doi.org/ 10.1016/j.etap.2020.103555
  • Seçer, B., Doğan, M.,Sungur, S. & Çiçek, E. (2022). Yapraklı Barajı (Burdur/Gölhisar) Alburnus carianorum (Teleostei: Cyprinidae) Populasyonuna ait Yaş, Büyüme ve Ölüm Parametreleri. KSÜ Tarım ve Doğa Dergisi, 25 (3), 533-538. https://doi.org/10.18016/ksutarimdoga.vi.879677
  • Selderslaghs, I.W.T., Rompay, A.R.V., Coen, W., Selderslaghs, I.W.T., Rompay, A.R.V. & Coen, W. (2009). Development of a Screening Assay to Identify teratogenic and Embryo Toxic Chemicals Using the Zebrafish Embryo. Reproductive Toxicology, 28, 308-320. https://doi.org/10.1016/ j.reprotox.2009.05.004
  • Shen, R., Yu, Y., Lan, R., Yu, R., Yuan, Z. & Xia, Z. (2019). The Cardiovascular Toxicity Induced By High Doses of Gatifloxacin and Ciprofloxacin in Zebrafish. Environmental Pollution, 254, 112861. https://doi.org/10.1016/j.envpol.2019.07.029
  • Sipes, N.S., Padilla, S. & Knudsen, T.B., (2011). Zebrafish—As an Integrative Model for Twenty-First Century Toxicity Testing. Birth Defects Resarch (Part C), 93, 256-267. https://doi.org/ 10.1002/bdrc.20214 Stepanova, S., Praskova, E., Chromcova, L., Plhalova L, Prokes, M., Blahova, J. & Svobodova, Z. (2013). The effects of diclofenac on early life stages of common carp (Cyprinus carpio). Environmental Toxicology and Pharmacology, 35(3), 454-460. https://doi.org/10.1016/j.etap.2012.09.011
  • Sun, L., Xin, L., Peng, Z., Jin, R., Jin, Y., Qian, H. & Fu, Z. (2013). Toxicity and Enantiospecific Differences of Two β-Blockers, Propranolol and Metoprolol, in The Embryos and Larvae of Zebrafish (Danio rerio). Environmental Toxicology, 29, 1367-1378. https://doi.org/10.1002/tox.21867
  • Teixidó, E., Piqué, E., Gómez-Catalán, J. & Llobet, J.M. (2013). Assessment of Developmental Delay in The Zebrafish Embryo Teratogenicity Assay. Toxicology in Vitro, 27, 469-478. https://doi.org/ 10.1016/j.tiv.2012.07.010
  • Tenorio-Chávez, P., Cerro-López, M., Castro-Pastrana, L.I., Ramírez-Rodrigues, M.M., Orozco-Hernández, J.M. & Gómez-Oliván, L.M. (2020). Effects of Effluent from a Hospital in Mexico on The Embryonic Development of Zebrafish, Danio rerio. Science of the Total Environment, 727, 138716. https://doi.org/10.1016/j.scitotenv.2020.138716
  • Wang, H., Che, B., Duan, A., Mao, J., Dahlgren, R.A., Zhang, M., Zhang, H., Zeng, A.,& Wang, X. (2014). Toxicity Evaluation of β-diketone Antibiotics on The Development of Embryo-Larval Zebrafish (Danio rerio). Environmental Toxicology, 29, 1134–1146. https://doi.org/10.1002/tox.21843
  • Xia, L., Zheng, & L., Zhou, J.L. (2017). Effects of Ibuprofen, Diclofenac and Paracetamol on Hatch and Motor Behavior in Developing Zebrafish (Danio rerio). Chemosphere, 182, 416-425 https://doi.org/10.1016/j.chemosphere.2017.05.054
  • Yang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F. & Jiang, G. (2018). Developmental Toxicity of Synthetic Phenolic Antioxidants to The Early Lifestage of Zebrafish. Science of The Total Environment, 643, 559-568. https://doi.org/ 10.1016/j.scitotenv.2018.06.213
  • Yin, X., Huili, H., Zhang, Y., Dahlgren, R.A., Zhang, H., Shi, M., Gao, M. & Wang, X. (2014). Toxicological Assessment of Trace β-Diketone Antibiotic Mixtures on Zebrafish (Danio rerio) by Proteomic Analysis. Plos One, 9(7), 102731. https://doi.org/10.1371/journal.pone.0102731
  • Zhang, C., Zhang, J., Zhu, L., Du, Z., Wang, J., Wang, J., Li, B. & Yang, Y. (2020). Fluoxastrobin-Induced Effects on Acute Toxicity, Development Toxicity, Oxidative Stress, and DNA Damage in Danio rerio Embryos. Science of the Total Environment, 715, 137069. https://doi.org/10.1016/j.scitotenv.2020. 137069.

Evaluation of Teratogenic and Developmental Toxicity of Diclofenac Sodium on Zebrafish (Danio rerio) Larvae

Year 2023, , 183 - 191, 28.02.2023
https://doi.org/10.18016/ksutarimdoga.vi.1028753

Abstract

In this study, the effects of diclofenac sodium (DKFS), used in medicine and veterinary medicine to control pain and inflammation, on zebrafish embryos and larvae were evaluated. Embryos were exposed to 0.21-5.33 mg L-1 DCFS for 96 hours and the survival rates, heart rate, hatching rates and body malformations of these individuals were determined. LC50, EC50 and teratogenic index (TI) values were calculated as 1.55 and 0.81, 1.91, respectively. DKFS is teratogenic for zebrafish embryos based on the calculated TI value. DKFS at concentrations of 0.47 mg L-1 and higher caused pericardial edema, yolk sac edema, tail malformation and spinal curvature in zebrafish. The most common malformations were determined as pericardial and yolk sac edema. At concentrations of 0.7 mg L-1 and higher, it caused significant inhibition in the length and heart rate of zebrafish larvae. It has been shown that DKFS at concentrations of 2.37 mg L-1 and higher reduced the hatching rate of zebrafish below 50%. These results show that DKFS causes adverse effects on zebrafish development and may adversely affect the aquatic ecosystem if it enters the aquatic environment.

References

  • Aksakal, F.I. & Çiltaş, A. (2018). Developmental Toxicity of Penconazole in Zebrafish (Danio rerio) Embryos. Chemosphere, 200, 8-15. https://doi.org/10.1016/j.chemosphere.2018.02.094
  • Capriello, T., Visone, I.M., Motta, C.M., Ferrandino, I. (2021). Adverse Effects of E150d on Zebrafish Development. Food and Chemical Toxicology, 147, 111877. https://doi.org/10.1016/j.fct.2020.111877
  • Chen, B., Gao, Z.Q., Liu, Y., Zheng, Y.M., Han, Y., Zhang, J.P. & Hu, C.Q. (2017). Embryo and Developmental Toxicity of Cefazolin Sodium Impurities in Zebrafish. Frontiers in Pharmocology, 8, 403. https://doi.org/10.3389/ fphar.2017.00403
  • Cook, L.W., Paradise, C.J., Lom, B. (2005). The Pesticide Malathion Reduces Survival and Growth in Developing Zebrafish. Environmental Toxicology and Chemistry, 24(7), 1745-1750. https://doi.org/10.1897/04-331R.1
  • Daou, C., Hamade, A., Mouchtari, E.M., Rafqah, S., Piram, A., Chung, P.W.W. & Najjar, F. (2020). Zebrafish Toxicity Assessment of The Photocatalysis-Biodegradation of Diclofenac Using Composites of TiO2 and Activated Carbon From Argania spinosa Tree Nutshells and Pseudomonas aeruginosa. Environmental Science and Pollution Research. 27, 17258–17267. https://doi.org/ 10.1007/s11356-020-08276-4
  • Escapa, C., Torres, T., Neuparth, T., Coimbra, R.N., García, A.I., Santos, M.M.,& Otero, M. 2018. Zebrafish Embryo Bioassays for a Comprehensive Evaluation of Microalgae Efficiency in the Removal of Diclofenac from Water. Science of The Total Environment, 640 (641), 1024-1033. https://doi.org/10.1016/j.scitotenv.2018.05.353
  • Felice, B.D., Copia, L. & Guida, M. (2012). Gene Expression Profiling in Zebrafish Embryos Exposed to Diclofenac, an Environmental Toxicant. Moleculer Biology Reports, 39, 2119–2128. https://DOI 10.1007/s11033-011-0959-z
  • Fu, Q., Fedrizzi, D., Kosfeld, V., Schlechtriem, C., Ganz, V., Derrer, S., Rentsch, D.,& Hollender, J., (2020). Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. Environmental Science Technology. 54, 4400−4408. https://doi.org/ 10.1021/acs.est.9b07127
  • González, E.D., Gómez-Oliván, L.M., Islas-Flores, H.,& Galar-Martínez, M. (2021). Developmental Effects of Amoxicillin at Environmentally Relevant Concentration Using Zebrafish Embryotoxicity Test (ZET). Water Air Soil Pollution, 232, 196. https://doi.org/10.1007/s11270-021-05148-6
  • Guiloski, I.C., Ribas, J.L.C., Pereira, L.S., Neves, A.P.A. & Assis, H.C.S.A. (2015). Effects of Trophic Exposure to Dexamethasone and Diclofenac in freshwater fish. Ecotoxicology and Environmental Safety, 114, 204-211. https://doi.org/ 10.1016/j.ecoenv.2014.11.020
  • Horie, Y., Yamagishi, T., Yagi, A., Shintaku, Y., Iguchi, T. & Tatarazako, N. (2018). The Non‐Steroidal Anti‐Inflammatory Drug Diclofenac Sodium Induces Abnormal Embryogenesis and Delayed Lethal Effects in Early Life Stage Zebrafish (Danio rerio). Journal of Applied Toxicology, 39, 622–629. https://doi.org/ 10.1002/jat.3752
  • Jia, M., Teng, M., Tian, S., Yan, J., Meng, Z., Yan, S., Li, R., Zhou, Z.,& Zhu, W. (2020). Developmental Toxicity and Neurotoxicity of Penconazole Enantiomers Exposure on Zebrafish (Danio rerio). Environmental Pollution, 267, 115450. https://doi.org/10.1016/j.envpol.2020.115450
  • Johnson, A., Carew, E.,& Sloman, K.A. (2007). The Effects of Copper on The Morphological and Functional Development of Zebrafish Embryos. Aquatic Toxicology, 84, 431–438. https://doi.org/ 10.1016/j.aquatox.2007.07.003
  • Kelly, P.J.M., Zhang, C.X., Danberyy, T.L., Flood, A., Delan, J.W., Brannen, K.C.,& Augustine-Rauch, K.A. (2010). Morphological Score Assignment Guidelines for The Dechorionated Zebrafish Teratogenicity Assay. Birth Defects Research (Part B), 89, 382–395. https://doi.org/10.1002/bdrb.20260
  • Khan, K., Benfenati, E. & Roy, K. (2019). Consensus Qsar Modeling of Toxicity of Pharmaceuticals To Different Aquatic Organisms: Ranking And Prioritization of The Drug Bank Database Compounds. Ecotoxicology and Environmental Safety, 168, 287-297. https://doi.org/10.1016/ j.ecoenv.2018.10.060
  • Koba, O., Grabicova, K., Cerveny, D., Turek, J., Kolarova, J., Randak, T., Zlabek, V. & Grabic, R. (2018). Transport of Pharmaceuticals and Their Metabolites Between Water and Sediments as a Further Potential Exposure for Aquatic Organisms. Journal of Hazardous Materials, 342, 401–407. https://doi.org/10.1016/j.jhazmat. 2017. 08.039
  • Lee, J., Ji, K., Kho, Y.L.,, Kim, P. & Choi, K. (2011). Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicology and Environmental Safety, 74, 1216-1225. https://doi.org/10.1016/j.ecoenv.2011.03.014
  • Lin, T., Chen, Y.,& Chen, W. (2013). Impact of Toxicological Properties of Sulfonamideson the Growth of Zebrafish Embryos in the Water. Environmental Toxicology and Pharmacology, 3, 1068–1076. https://doi.org/10.1016/j.etap.2013.09.009
  • Mirzaee, S.A., Noorimotlagh, Z., Ahmadi, M., Rahim, F., Martinez, S.S., Nourmohammadi, A. & Jaafarzadeh, N. (2021). The Possible Oxidative Stress and DNA Damage Induced in Diclofenac-Exposed Non-target Organisms in The Aquatic Environment: A Systematic Review. Ecological Indicators, 131, 108172. https://doi.org/ 10.1016/j.ecolind.2021.108172
  • Mu, X., Chai, T., Wang, K., Zhu, L., Huang, Y., Shen, G., Li, Y., Li, X. & Wang, C. (2016). The Developmental Effect of Difenoconazole on Zebrafish Embryos: A mechanism research. Environmental Pollution, 212, 18-26. https://doi.org/10.1016/j.envpol.2016.01.035
  • Nguyen, T.H., Nguyen, P.D., Leclercq, J.Q., Muller, M., Huong, D.T.L., Pham, H.T.,& Kestemont, P. (2021). Developmental Toxicity of Clerodendrum cyrtophyllum Turcz Ethanol Extract in Zebrafish embryo. Journal of Ethnopharmacology, 267, 113538. https://doi.org/10.1016/j.jep.2020.113538
  • OECD 236, Guidelines for the testing of Chemicals, Fish Embryo Acute Toxicity (FET) Test, 2013.
  • Pohl, J., Ahrens, L., Carlsson, G., Golovko, O., Norrgren, L., Weiss, J.,& Örn, S. (2019). Embryotoxicity of ozonated diclofenac, carbamazepine, and oxazepam in zebrafish (Danio rerio). Chemosphere, 225, 191-199. https://doi.org/ 10.1016/j.chemosphere.2019.03.034
  • Santos, E.H.Q., Martínez, M.G., Medina, S.G., P´erez, E.G., Viveros, S.C., Lara, K.R., Oliv, L.M.G. & Flores, H.I. (2021). Geno-Cytotoxicity and Congenital Malformations Produced by Relevant Environmental Concentrations of Aluminum, Diclofenac and Their Mixture on Cyprinus carpio. An Interactions Study. Environmental Toxicology and Pharmacology, 82, 103555. https://doi.org/ 10.1016/j.etap.2020.103555
  • Seçer, B., Doğan, M.,Sungur, S. & Çiçek, E. (2022). Yapraklı Barajı (Burdur/Gölhisar) Alburnus carianorum (Teleostei: Cyprinidae) Populasyonuna ait Yaş, Büyüme ve Ölüm Parametreleri. KSÜ Tarım ve Doğa Dergisi, 25 (3), 533-538. https://doi.org/10.18016/ksutarimdoga.vi.879677
  • Selderslaghs, I.W.T., Rompay, A.R.V., Coen, W., Selderslaghs, I.W.T., Rompay, A.R.V. & Coen, W. (2009). Development of a Screening Assay to Identify teratogenic and Embryo Toxic Chemicals Using the Zebrafish Embryo. Reproductive Toxicology, 28, 308-320. https://doi.org/10.1016/ j.reprotox.2009.05.004
  • Shen, R., Yu, Y., Lan, R., Yu, R., Yuan, Z. & Xia, Z. (2019). The Cardiovascular Toxicity Induced By High Doses of Gatifloxacin and Ciprofloxacin in Zebrafish. Environmental Pollution, 254, 112861. https://doi.org/10.1016/j.envpol.2019.07.029
  • Sipes, N.S., Padilla, S. & Knudsen, T.B., (2011). Zebrafish—As an Integrative Model for Twenty-First Century Toxicity Testing. Birth Defects Resarch (Part C), 93, 256-267. https://doi.org/ 10.1002/bdrc.20214 Stepanova, S., Praskova, E., Chromcova, L., Plhalova L, Prokes, M., Blahova, J. & Svobodova, Z. (2013). The effects of diclofenac on early life stages of common carp (Cyprinus carpio). Environmental Toxicology and Pharmacology, 35(3), 454-460. https://doi.org/10.1016/j.etap.2012.09.011
  • Sun, L., Xin, L., Peng, Z., Jin, R., Jin, Y., Qian, H. & Fu, Z. (2013). Toxicity and Enantiospecific Differences of Two β-Blockers, Propranolol and Metoprolol, in The Embryos and Larvae of Zebrafish (Danio rerio). Environmental Toxicology, 29, 1367-1378. https://doi.org/10.1002/tox.21867
  • Teixidó, E., Piqué, E., Gómez-Catalán, J. & Llobet, J.M. (2013). Assessment of Developmental Delay in The Zebrafish Embryo Teratogenicity Assay. Toxicology in Vitro, 27, 469-478. https://doi.org/ 10.1016/j.tiv.2012.07.010
  • Tenorio-Chávez, P., Cerro-López, M., Castro-Pastrana, L.I., Ramírez-Rodrigues, M.M., Orozco-Hernández, J.M. & Gómez-Oliván, L.M. (2020). Effects of Effluent from a Hospital in Mexico on The Embryonic Development of Zebrafish, Danio rerio. Science of the Total Environment, 727, 138716. https://doi.org/10.1016/j.scitotenv.2020.138716
  • Wang, H., Che, B., Duan, A., Mao, J., Dahlgren, R.A., Zhang, M., Zhang, H., Zeng, A.,& Wang, X. (2014). Toxicity Evaluation of β-diketone Antibiotics on The Development of Embryo-Larval Zebrafish (Danio rerio). Environmental Toxicology, 29, 1134–1146. https://doi.org/10.1002/tox.21843
  • Xia, L., Zheng, & L., Zhou, J.L. (2017). Effects of Ibuprofen, Diclofenac and Paracetamol on Hatch and Motor Behavior in Developing Zebrafish (Danio rerio). Chemosphere, 182, 416-425 https://doi.org/10.1016/j.chemosphere.2017.05.054
  • Yang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F. & Jiang, G. (2018). Developmental Toxicity of Synthetic Phenolic Antioxidants to The Early Lifestage of Zebrafish. Science of The Total Environment, 643, 559-568. https://doi.org/ 10.1016/j.scitotenv.2018.06.213
  • Yin, X., Huili, H., Zhang, Y., Dahlgren, R.A., Zhang, H., Shi, M., Gao, M. & Wang, X. (2014). Toxicological Assessment of Trace β-Diketone Antibiotic Mixtures on Zebrafish (Danio rerio) by Proteomic Analysis. Plos One, 9(7), 102731. https://doi.org/10.1371/journal.pone.0102731
  • Zhang, C., Zhang, J., Zhu, L., Du, Z., Wang, J., Wang, J., Li, B. & Yang, Y. (2020). Fluoxastrobin-Induced Effects on Acute Toxicity, Development Toxicity, Oxidative Stress, and DNA Damage in Danio rerio Embryos. Science of the Total Environment, 715, 137069. https://doi.org/10.1016/j.scitotenv.2020. 137069.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section RESEARCH ARTICLE
Authors

Duygu Özhan Turhan 0000-0002-7111-4289

Publication Date February 28, 2023
Submission Date November 26, 2021
Acceptance Date January 1, 2022
Published in Issue Year 2023

Cite

APA Özhan Turhan, D. (2023). Diklofenak Sodyumun Zebra Balığı (Danio rerio) Larvaları Üzerindeki Teratojenik ve Gelişimsel Toksisitesinin Değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(1), 183-191. https://doi.org/10.18016/ksutarimdoga.vi.1028753

Cited By

Dropsy Syndrome (Tummy Cavity Oedema, Assist)
Eurasian Journal of Biological and Chemical Sciences
https://doi.org/10.46239/ejbcs.1400135

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149