Research Article
BibTex RIS Cite

Rapid Biosynthesis of Silver Nanoparticles by Celtis tournefortii LAM. Leaf Extract; Investigation of Antimicrobial and Anticancer Activities

Year 2022, , 72 - 84, 30.12.2022
https://doi.org/10.18016/ksutarimdoga.vi.1036488

Abstract

The usage of metallic nanoparticles are very common. Environmentally friendly approaches in obtaining nanoparticles attract a lot of attention because of their advantages. In this study, an easy and economical biosynthesis of silver nanoparticles (AgNPs) was made with the extract of Celtis tournefortii LAM. leaf. For the characterization of synthesized nanoparticles, Spectrophotometer (UV-vis), Transmission Electron Microscope (TEM), Field Emission Scan Electron Microscopy (FE-SEM), Atomic Power Microscopy (AFM), Electron Disperse X-ray (EDX) Fourier Transformation Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Thermogravimetric and Differential Thermal Analysis (TGA-DTA), Zeta Sizer and Zeta Potential Analysis data were used. As a result of the data analysis, it was determined that the AgNPs had a spherical appearance, an average size distribution of 4.8 nm, had a maximum absorbance at a wavelength of 482.13 nm, a crystal nanosize of 10.95 nm, and a surface charge of -21.6 mV. Inhibition activities of AgNPs on the growth of pathogenic strains were determined by the microdilution method. The results showed that the nanoparticles were effective even at low concentrations. The Minimum Inhibitory Concentration (MIC) value of the tested materials on the growth of the strains was found between 0.03-1.00 µg mL-1. Anticancer activity of AgNPs was investigated on CaCo-2, U118, Skov3 cancer cell lines and healthy cell line HDF by the MTT method.

References

  • Abu-Dief AM, Abdel-Rahman LH, Abd-El Sayed MA, Zikry MM, Nafady A 2020. Green Synthesis of AgNPs Utilizing Delonix Regia Extract as Anticancer and Antimicrobial Agents. ChemistrySelect 5(42): 13263–13268.
  • Ahmed KBA, Raman T, Veerappan A 2016. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater. Sci. Eng. C 68: 939–947.
  • Aina AD, Owolo O, Adeoye-Isijola M, Aina FO, Favour O, Adewumi AG 2018. Almond leaves for the one-pot Biofabrication of silver nanoparticles: Characterization and larvicidal application. Int. J. Sci. Res. Publ. 8(11): 703–711.
  • Aktepe N, Baran A, Atalar MN, Baran MF, Keskin C., Düz MZ, Yavuz, Ö, İrtegün Kandemir S, Kavak DE 2021a. Biosynthesis of Black Mulberry Leaf Extract and Silver Nanoparticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS J. Appl. Sci. 8 (8): 685–700.
  • Aktepe N, Keskin C., Baran A, Atalar MN, Baran MF, Akmeşe Ş 2021b. Biochemical components, enzyme inhibitory, antioxidant and antimicrobial activities in endemic plant Scilla mesopotamica speta. J. Food Process. Preserv. 45 (11):e15980.
  • Aktepe N, Baran A 2021a. Biosynthesis of AgNPs by extract from waste leaves of Citrullus lanatus sp . (watermelon); characterization , antibacterial and antifungal effects. Prog. Nutr. 23 (3): e2021243.
  • Aktepe N, Baran A 2021b. Fast and Low-Cost Biosynthesis of AgNPs with Almond Leaves : Medical Applications with Biocompatible Structures. Prog. Nutr. 23 (9): e2021271.
  • Atalar MN, Baran A, Baran MF, Keskin C, Aktepe N, Yavuz Ö, İrtegun Kandemir S 2021. Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. Part. Sci. Technol. 2021: 1–9.
  • Al-ogaidi I, Salman MI, Mohammad FI, Aguilar Z, Al- M, Hadi YA, Al-rhman RMA 2017. Antibacterial and Cytotoxicity of Silver Nanoparticles Synthesized in Green and Black Tea. World J. Exp. Biosci. 5(1): 39–45.
  • Alkhulaifi MM, Alshehri JH, Alwehaibi MA, Awad MA, Al-enazi NM, Aldosari NS, Hatamleh AA, Raouf NA 2020. Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties. Saudi J. Biol. Sci. 27(12): 3434–3441.
  • Arroyo G V., Madrid AT, Gavilanes AF, Naranjo B, Debut A, Arias MT, Angulo Y 2020. Green synthesis of silver nanoparticles for application in cosmetics. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 55(11): 1304–1320.
  • Baran MF, Acay H, Keskin C, Aygün H, Yildirim A 2019b. Synthesis and Determination Of Antimicrobial Properties Of TiO2NPs Using Nigella sativa L. Extract. EJONS Math. Eng. Nat. Med. Sci. 7: 69–75.
  • Baran MF 2018. Green Synthesis Of Silver Nanopartıcles (AgNPs) Usıng Pistacia terebinthus Leaf: Antimicrobial Effect And Characterization. EJONS Int. J. Math. Eng. Nat. Sci. 2 (2018): 67–75.
  • Baran MF. 2019a. Synthesis of silver nanoparticles (AgNP) with Prunus avium cherry leaf extract and investigation of its antimicrobial effect. Dicle Univ. J. Eng. 10(1): 221–227.
  • Baran MF 2019b Evaluation of Green Synthesis and Anti-Microbial Activities of AgNPs Using Leaf Extract of Hawthorn Plant. Res. Eval. Sci. Math. 3: 110–120.
  • Baran MF 2019c. Synthesıs , Characterization And Investigation of Antimicrobial Activity of Silver Nanoparticles From Cydonia oblonga Leaf. Applied Ecol. Env. Res. 17(2): 2583–2592.
  • Baran MF, Acay H, Keskin C. (2020). Determination of Antimicrobial and Toxic Metal Removal Activities of Plant‐Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Glob Chall. 4(5), 1900104.
  • Baran A, Baran MF, Keskin C, Kandemir SI, Valiyeva M, Mehraliyeva S, Khalilov R, Eftekhari A 2021.
  • Ecofriendly/Rapid Synthesis of Silver Nanoparticles Using Extract of Waste Parts of Artichoke (Cynara scolymus L.) and Evaluation of their Cytotoxic and Antibacterial Activities. J. Nanomater. 2021: 1–10
  • Das G, Shin H, Kumar A, Vishnuprasad CN 2021. Photo-mediated optimized synthesis of silver nanoparticles using the extracts of outer shell fibre of Cocos nucifera L . fruit and detection of its antioxidant , cytotoxicity and antibacterial potential. Saudi J. Biol. Sci. 28(1): 980–987.
  • Demir T, Akpınar Ö 2020. Biological Activities of Phytochemicals in Plants. Turkish JAF Sci.Tech. 8 (8): 1734-1746.
  • Demir T, Akpınar Ö, Kara H, Güngör H 2020. Cherry stem phenolic compounds: Optimization of extraction conditions and in vitro evaluations of antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and cytotoxic activities. J Food Process Preserv. 44 (10):e14804.
  • Emmanuel R, Palanisamy S, Chen S, Chelladurai K, Padmavathy S, Saravanan M, Prakash P, Ali MA, Al-hemaid, Fahad MA 2015. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater. Sci. Eng. C 56: 374–379.
  • Doğaroğlu ZG, Eren A, and Baran MF. 2019. Effects of ZnO Nanoparticles and Ethylenediamine- N,N′ - Disuccinic Acid on Seed Germination of Four Different Plants. Glob. challanges 1800111: 1–5.
  • Eren A, Baran MF 2019. Green Synthesis , Characterızatıon And Antimicrobial Activity Of Silver Nanoparticles ( AgNPs ) From Maize ( Zea mays L .). Applied Ecol. Env. Res. 17(2): 4097–4105.
  • Ferreyra Maillard APV, Dalmasso PR, López de Mishima BA, Hollmann A 2018. Interaction of green silver nanoparticles with model membranes: possible role in the antibacterial activity. Colloids Surfaces B Biointerfaces 171: 320–326.
  • Francis S, Joseph S, Koshy EP, Mathew B 2017. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ. Sci. Pollut. Res. 24: 17347–17357.
  • Gecibesler IH 2019. Antioxidant Activity and Phenolic Profile of Turkish Celtis tournefortii. Chem. Nat. Compd. 55(4): 738–742.
  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 11(1): 1–17.
  • Gomes, H. I. O., Martins, C. S. M., Prior, J. A. V. (2021). Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomater. 11(4), 964.
  • Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M 2016. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog. 101: 1–11.
  • Hatipoğlu, A. 2021. Green synthesis of silver nanoparticles using Abelmoschus esculentus leaf and antimicrobial effects on some food pathogens. ACU J. For. Fac. 2(2): 239–246.
  • Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H 2019. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158: 8–14.
  • Jebril S, Khanfir Ben Jenana R, Dridi C 2020. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys. 248: 122898.
  • Kawarty, A.M.A. ; Behçet, L., Çakılcıoglu, U. (2020). An ethnobotanical survey of medicinal plants in Ballakayati (Erbil, North Iraq). Turk J Botany 44(3), 345–357.
  • Keser S, Keser F, Kaygili O, Tekin S, Turkoglu I, Demir E, Turkoglu S, Karatepe M, Sandal S, Kirbag S 2017. Phytochemical Compounds and Biological Activities of Celtis tournefortii Fruits . Anal. Chem. Lett. 7(3): 344–355.
  • Keskin C, Atalar MN, Baran MF, Baran A 2021. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. J. Inst. Sci. Tech. 11(1): 365-375.
  • Khalil, I., Yehye, W. A., Etxeberria, A. E., Alhadi, A. A., Dezfooli, S. M., Julkapli, N. B. M., Basirun, W. J., Seyfoddin, A (2019). Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants, 9(1): 24.
  • Khan AU, Yuan Q, Khan ZUH, Ahmad A, Khan FU, Tahir K, Shakeel M, Ullah S 2018. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J. Photochem. Photobiol. B Biol. 183: 367–373.
  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B: Biointerfaces. 76(1): 50–56.
  • Kumar, R., Ghoshal, G. Jain A and GM 2017. Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its Antimicrobial and Catalytic Activities. J. Nanomed. Nanotechnol. 8(4): 1–8.
  • Kumar B, Smita K, Cumbal L, Debut A 2015. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci. 24(1): 45–50.
  • Kumar V, Gundampati RK, Singh DK, Bano D, Jagannadham M V., Hasan SH 2016. Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. J. Photochem. Photobiol. B Biol. 162: 374–385.
  • Kumar V, Singh S, Srivastava B, Bhadouria R 2019. Journal of Environmental Chemical Engineering Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant , anti- in fl ammatory , antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 7(3): 103094.
  • Luna C, Chávez VHG, Barriga-castro ED, Nú NO, Mendoza-reséndez R 2015. Biosynthesis of Silver Fine Particles and Particles Decorated with Nanoparticles Using the Extract of Illicium verum (Star Anise ) Seeds. Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. 141: 45–50.
  • Mohammadi F, Yousefi M, Ghahremanzadeh R 2019. Green Synthesis , Characterization and Antimicrobial Activity of Silver Nanoparticles (AgNPs) Using Leaves and Stems Extract of Some Plants. Adv. J. Chem. A 2(4): 266–275.
  • Mohmed A, Hassan S, Fouda A, Elgamal M, Salem S 2017. Extracellular Biosynthesis of Silver Nanoparticles Using Aspergillus sp. and Evaluation of their Antibacterial and Cytotoxicity. J. Appl. Life Sci. Int. 11(2): 1–12.
  • Morais M, Teixeira AL, Dias F, Machado V, Medeiros R, Prior JAV 2020. Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer. J. Med. Chem. 63(23): 14308–14335.
  • Narayan S, Dipak S 2015. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl. Nanosci. 5: 703–709.
  • Oliveira AC de J, Araújo AR de, Quelemes PV, Nadvorny D, Soares-Sobrinho JL, Leite JRS de A, da Silva-Filho EC, Silva DA da 2019. Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydr. Polym. 213: 176–183.
  • Othman AM, Elsayed MA, Elshafei AM, Hassan MM 2017. Journal of Genetic Engineering and Biotechnology Application of response surface methodology to optimize the extracellular fungal mediated nanosilver green synthesis. J. Genet. Eng. Biotechnol. 15(2): 497–504.
  • Pallela PNVK, Ummey S, Ruddaraju LK, Pammi SVN, Yoon SG 2018. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microb. Pathog. 124: 63–69.
  • Pandiyan N, Murugesan B, Arumugam M, Sonamuthu J, Samayanan S, Mahalingam S 2019. Ionic liquid-A greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it’s antibacterial and anticancer activities. J. Photochem. Photobiol. B Biol. 198: 111559.
  • Patil MP, Singh RD, Koli PB, Patil KT, Jagdale BS, Tipare AR, Kim G-D 2018. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 121: 184–189.
  • Patra JK, Das G, Baek KH 2016. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J. Photochem. Photobiol. B Biol. 161: 200–210.
  • Pugazhendhi S, Palanisamy PK, Jayavel R 2018. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Opt. Mater. (Amst). 79: 457–463.
  • Rani P, Kumar V, Pal P, Singh A, Zhang W 2020. Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ. Int. 143: 105924.
  • Rauf A, Ahmad T, Khan A, Maryam, Uddin G, Ahmad B, Mabkhot YN, Bawazeer S, Riaz N, Malikovna BK 2021. Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif. Cells, Nanomedicine Biotechnol. 49(1): 194–203.
  • Remya RR, Rajasree SRR, Aranganathan L, Suman TY 2015. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol. Reports 8: 110–115.
  • Rolim WR, Pelegrino MT, de Araújo Lima B, Ferraz LS, Costa FN, Bernardes JS, Rodigues T, Brocchi M, Seabra AB seabra 2019. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463: 66–74.
  • Sarkar MK, Vadivel V, Charan Raja MR, Mahapatra SK 2018. Potential anti-proliferative activity of AgNPs synthesized using M. longifolia in 4T1 cell line through ROS generation and cell membrane damage. J. Photochem. Photobiol. B Biol. 186: 160–168.
  • Satpathy S, Patra A, Ahirwar B, Delwar Hussain M 2018. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artif. Cells, Nanomedicine Biotechnol. 46(3): 71–85.
  • Shao Y, Wu C, Wu T, Yuan C, Chen S, Ding T, Ye X, Hu Y 2018. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int. J. Biol. Macromol. 111: 1281–1292.
  • Singh A, Sharma B, Deswal R 2018. Green silver nanoparticles from novel Brassicaceae cultivars with enhanced antimicrobial potential than earlier reported Brassicaceae members. J. Trace Elem. Med. Biol. 47: 1–11.
  • Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR 2015. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 151: 939–944.
  • Thomas B, Vithiya BSM, Prasad TAA, Mohamed SB, Magdalane CM, Kaviyarasu K, Maaza M 2018. Antioxidant and Photocatalytic Activity of Aqueous Leaf Extract Mediated Green Synthesis of Silver Nanoparticles Using Passiflora edulis f. flavicarpa. J. Nanosci. Nanotechnol. 19(5): 2640–2648.
  • Ural E 2001.Endemic and medicinal plants in Gap region, Turkey Environment Foundation, 143, 63–64. Vastrad J 2016. Green Synthesis and Characterization of Silver Nanoparticles Using Leaf Extract of Tridax procumbens. Asian J. Pharm. Res. 7(2): 44–48.
  • Velmurugan P, Anbalagan K, Manosathyadevan M, Lee KJ, Cho, MinJung-Hee Park, Sae-Gang Oh K-SB, Oh B-T, Lee SM 2014. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst. Eng. 37(10): 1935–1943.
  • Wongpreecha J, Polpanich D, Suteewong T, Kaewsaneha C, Tangboriboonrat P 2018. One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity. Carbohydr. Polym. 199: 641–648.
  • Yıldırım I, Uğur Y, Kutlu T 2017. Investigation of Antioxidant Activity and Phytochemical Compositions of Celtis tournefortii. Free Radicals Antioxidants 7(2): 160–165.
  • Zein R, Alghoraibi I, Soukkarieh C, Salman A, Alahmad A 2020. In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus camaldulensis leaves. Heliyon 6(8): e04594.

Celtis tournefortii LAM. Yaprak Özütüyle Gümüş Nanopartiküllerin Hızlı Biyosentezi; Antimikrobiyal ve Antikanser Aktivitelerinin İncelenmesi

Year 2022, , 72 - 84, 30.12.2022
https://doi.org/10.18016/ksutarimdoga.vi.1036488

Abstract

Metalik nanopartiküllerin kullanım alanları çok yaygındır. Nanopartiküllerin elde edilmesinde çevre dostu yaklaşımlar getirdiği avantajlar ile oldukça fazla ilgi görmektedir. Bu çalışmada, Celtis tournefortii LAM yaprağı özütü ile gümüş nanopartiküllerin (AgNP'ler) kolay ve ekonomik bir biyosentezi yapıldı. Sentez ile elde edilen nanopartiküllerin karakterizasyonu için Spektrofotometre (UV-vis), Geçirmeli Elektron Mikroskopu (TEM), Alan Emisyon Taramalı Elektron Mikroskobu (FE-SEM), Atomik Güç Mikroskopisi (AFM), Enerji Dağılımlı X-Ray Floresans Spektrometre Cihazı (EDX), Fourier dönüşüm kızılötesi spektroskopisi (FT-IR), X-ışını difraksiyon (XRD), termogravimetrik ve diferansiyel termal analizi (TGA-DTA), Zetasizer ve zeta potansiyeli analiz verileri kullanıldı. Analiz verileri sonucunda AgNP'lerin küresel bir görünüme sahip olduğu, ortalama boyut dağılımının 4.8 nm olduğu, 482.13 nm dalga boyunda maksimum absorbansa, 10.95 nm kristal nano boyutuna ve -21.6 mV yüzey yüküne sahip olduğu belirlendi. AgNP’lerin patojen suşların üremesi üzerindeki inhibisyon aktiviteleri mikrodilusyon yöntemi ile belirlendi. Elde edilen sonuçlar nanopartiküllerin düşük konsantrasyonlarda bile etkili olduklarını gösterdi. Test edilen materyallerin suşların büyümesi üzerindeki Minimum İnhibitör Konsantrasyon (MIC) değeri 0.03-1.00 µg mL-1 arasında bulundu. AgNP'lerin antikanser aktivitesi, MTT yöntemi ile CaCo2, U118, Skov3 kanser hücre hatları ve sağlıklı hücre hattı HDF üzerinde araştırıldı.

References

  • Abu-Dief AM, Abdel-Rahman LH, Abd-El Sayed MA, Zikry MM, Nafady A 2020. Green Synthesis of AgNPs Utilizing Delonix Regia Extract as Anticancer and Antimicrobial Agents. ChemistrySelect 5(42): 13263–13268.
  • Ahmed KBA, Raman T, Veerappan A 2016. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater. Sci. Eng. C 68: 939–947.
  • Aina AD, Owolo O, Adeoye-Isijola M, Aina FO, Favour O, Adewumi AG 2018. Almond leaves for the one-pot Biofabrication of silver nanoparticles: Characterization and larvicidal application. Int. J. Sci. Res. Publ. 8(11): 703–711.
  • Aktepe N, Baran A, Atalar MN, Baran MF, Keskin C., Düz MZ, Yavuz, Ö, İrtegün Kandemir S, Kavak DE 2021a. Biosynthesis of Black Mulberry Leaf Extract and Silver Nanoparticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS J. Appl. Sci. 8 (8): 685–700.
  • Aktepe N, Keskin C., Baran A, Atalar MN, Baran MF, Akmeşe Ş 2021b. Biochemical components, enzyme inhibitory, antioxidant and antimicrobial activities in endemic plant Scilla mesopotamica speta. J. Food Process. Preserv. 45 (11):e15980.
  • Aktepe N, Baran A 2021a. Biosynthesis of AgNPs by extract from waste leaves of Citrullus lanatus sp . (watermelon); characterization , antibacterial and antifungal effects. Prog. Nutr. 23 (3): e2021243.
  • Aktepe N, Baran A 2021b. Fast and Low-Cost Biosynthesis of AgNPs with Almond Leaves : Medical Applications with Biocompatible Structures. Prog. Nutr. 23 (9): e2021271.
  • Atalar MN, Baran A, Baran MF, Keskin C, Aktepe N, Yavuz Ö, İrtegun Kandemir S 2021. Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. Part. Sci. Technol. 2021: 1–9.
  • Al-ogaidi I, Salman MI, Mohammad FI, Aguilar Z, Al- M, Hadi YA, Al-rhman RMA 2017. Antibacterial and Cytotoxicity of Silver Nanoparticles Synthesized in Green and Black Tea. World J. Exp. Biosci. 5(1): 39–45.
  • Alkhulaifi MM, Alshehri JH, Alwehaibi MA, Awad MA, Al-enazi NM, Aldosari NS, Hatamleh AA, Raouf NA 2020. Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties. Saudi J. Biol. Sci. 27(12): 3434–3441.
  • Arroyo G V., Madrid AT, Gavilanes AF, Naranjo B, Debut A, Arias MT, Angulo Y 2020. Green synthesis of silver nanoparticles for application in cosmetics. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 55(11): 1304–1320.
  • Baran MF, Acay H, Keskin C, Aygün H, Yildirim A 2019b. Synthesis and Determination Of Antimicrobial Properties Of TiO2NPs Using Nigella sativa L. Extract. EJONS Math. Eng. Nat. Med. Sci. 7: 69–75.
  • Baran MF 2018. Green Synthesis Of Silver Nanopartıcles (AgNPs) Usıng Pistacia terebinthus Leaf: Antimicrobial Effect And Characterization. EJONS Int. J. Math. Eng. Nat. Sci. 2 (2018): 67–75.
  • Baran MF. 2019a. Synthesis of silver nanoparticles (AgNP) with Prunus avium cherry leaf extract and investigation of its antimicrobial effect. Dicle Univ. J. Eng. 10(1): 221–227.
  • Baran MF 2019b Evaluation of Green Synthesis and Anti-Microbial Activities of AgNPs Using Leaf Extract of Hawthorn Plant. Res. Eval. Sci. Math. 3: 110–120.
  • Baran MF 2019c. Synthesıs , Characterization And Investigation of Antimicrobial Activity of Silver Nanoparticles From Cydonia oblonga Leaf. Applied Ecol. Env. Res. 17(2): 2583–2592.
  • Baran MF, Acay H, Keskin C. (2020). Determination of Antimicrobial and Toxic Metal Removal Activities of Plant‐Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Glob Chall. 4(5), 1900104.
  • Baran A, Baran MF, Keskin C, Kandemir SI, Valiyeva M, Mehraliyeva S, Khalilov R, Eftekhari A 2021.
  • Ecofriendly/Rapid Synthesis of Silver Nanoparticles Using Extract of Waste Parts of Artichoke (Cynara scolymus L.) and Evaluation of their Cytotoxic and Antibacterial Activities. J. Nanomater. 2021: 1–10
  • Das G, Shin H, Kumar A, Vishnuprasad CN 2021. Photo-mediated optimized synthesis of silver nanoparticles using the extracts of outer shell fibre of Cocos nucifera L . fruit and detection of its antioxidant , cytotoxicity and antibacterial potential. Saudi J. Biol. Sci. 28(1): 980–987.
  • Demir T, Akpınar Ö 2020. Biological Activities of Phytochemicals in Plants. Turkish JAF Sci.Tech. 8 (8): 1734-1746.
  • Demir T, Akpınar Ö, Kara H, Güngör H 2020. Cherry stem phenolic compounds: Optimization of extraction conditions and in vitro evaluations of antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and cytotoxic activities. J Food Process Preserv. 44 (10):e14804.
  • Emmanuel R, Palanisamy S, Chen S, Chelladurai K, Padmavathy S, Saravanan M, Prakash P, Ali MA, Al-hemaid, Fahad MA 2015. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater. Sci. Eng. C 56: 374–379.
  • Doğaroğlu ZG, Eren A, and Baran MF. 2019. Effects of ZnO Nanoparticles and Ethylenediamine- N,N′ - Disuccinic Acid on Seed Germination of Four Different Plants. Glob. challanges 1800111: 1–5.
  • Eren A, Baran MF 2019. Green Synthesis , Characterızatıon And Antimicrobial Activity Of Silver Nanoparticles ( AgNPs ) From Maize ( Zea mays L .). Applied Ecol. Env. Res. 17(2): 4097–4105.
  • Ferreyra Maillard APV, Dalmasso PR, López de Mishima BA, Hollmann A 2018. Interaction of green silver nanoparticles with model membranes: possible role in the antibacterial activity. Colloids Surfaces B Biointerfaces 171: 320–326.
  • Francis S, Joseph S, Koshy EP, Mathew B 2017. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ. Sci. Pollut. Res. 24: 17347–17357.
  • Gecibesler IH 2019. Antioxidant Activity and Phenolic Profile of Turkish Celtis tournefortii. Chem. Nat. Compd. 55(4): 738–742.
  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 11(1): 1–17.
  • Gomes, H. I. O., Martins, C. S. M., Prior, J. A. V. (2021). Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomater. 11(4), 964.
  • Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M 2016. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog. 101: 1–11.
  • Hatipoğlu, A. 2021. Green synthesis of silver nanoparticles using Abelmoschus esculentus leaf and antimicrobial effects on some food pathogens. ACU J. For. Fac. 2(2): 239–246.
  • Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H 2019. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158: 8–14.
  • Jebril S, Khanfir Ben Jenana R, Dridi C 2020. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys. 248: 122898.
  • Kawarty, A.M.A. ; Behçet, L., Çakılcıoglu, U. (2020). An ethnobotanical survey of medicinal plants in Ballakayati (Erbil, North Iraq). Turk J Botany 44(3), 345–357.
  • Keser S, Keser F, Kaygili O, Tekin S, Turkoglu I, Demir E, Turkoglu S, Karatepe M, Sandal S, Kirbag S 2017. Phytochemical Compounds and Biological Activities of Celtis tournefortii Fruits . Anal. Chem. Lett. 7(3): 344–355.
  • Keskin C, Atalar MN, Baran MF, Baran A 2021. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. J. Inst. Sci. Tech. 11(1): 365-375.
  • Khalil, I., Yehye, W. A., Etxeberria, A. E., Alhadi, A. A., Dezfooli, S. M., Julkapli, N. B. M., Basirun, W. J., Seyfoddin, A (2019). Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants, 9(1): 24.
  • Khan AU, Yuan Q, Khan ZUH, Ahmad A, Khan FU, Tahir K, Shakeel M, Ullah S 2018. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J. Photochem. Photobiol. B Biol. 183: 367–373.
  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B: Biointerfaces. 76(1): 50–56.
  • Kumar, R., Ghoshal, G. Jain A and GM 2017. Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its Antimicrobial and Catalytic Activities. J. Nanomed. Nanotechnol. 8(4): 1–8.
  • Kumar B, Smita K, Cumbal L, Debut A 2015. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci. 24(1): 45–50.
  • Kumar V, Gundampati RK, Singh DK, Bano D, Jagannadham M V., Hasan SH 2016. Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. J. Photochem. Photobiol. B Biol. 162: 374–385.
  • Kumar V, Singh S, Srivastava B, Bhadouria R 2019. Journal of Environmental Chemical Engineering Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant , anti- in fl ammatory , antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 7(3): 103094.
  • Luna C, Chávez VHG, Barriga-castro ED, Nú NO, Mendoza-reséndez R 2015. Biosynthesis of Silver Fine Particles and Particles Decorated with Nanoparticles Using the Extract of Illicium verum (Star Anise ) Seeds. Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. 141: 45–50.
  • Mohammadi F, Yousefi M, Ghahremanzadeh R 2019. Green Synthesis , Characterization and Antimicrobial Activity of Silver Nanoparticles (AgNPs) Using Leaves and Stems Extract of Some Plants. Adv. J. Chem. A 2(4): 266–275.
  • Mohmed A, Hassan S, Fouda A, Elgamal M, Salem S 2017. Extracellular Biosynthesis of Silver Nanoparticles Using Aspergillus sp. and Evaluation of their Antibacterial and Cytotoxicity. J. Appl. Life Sci. Int. 11(2): 1–12.
  • Morais M, Teixeira AL, Dias F, Machado V, Medeiros R, Prior JAV 2020. Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer. J. Med. Chem. 63(23): 14308–14335.
  • Narayan S, Dipak S 2015. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl. Nanosci. 5: 703–709.
  • Oliveira AC de J, Araújo AR de, Quelemes PV, Nadvorny D, Soares-Sobrinho JL, Leite JRS de A, da Silva-Filho EC, Silva DA da 2019. Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydr. Polym. 213: 176–183.
  • Othman AM, Elsayed MA, Elshafei AM, Hassan MM 2017. Journal of Genetic Engineering and Biotechnology Application of response surface methodology to optimize the extracellular fungal mediated nanosilver green synthesis. J. Genet. Eng. Biotechnol. 15(2): 497–504.
  • Pallela PNVK, Ummey S, Ruddaraju LK, Pammi SVN, Yoon SG 2018. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microb. Pathog. 124: 63–69.
  • Pandiyan N, Murugesan B, Arumugam M, Sonamuthu J, Samayanan S, Mahalingam S 2019. Ionic liquid-A greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it’s antibacterial and anticancer activities. J. Photochem. Photobiol. B Biol. 198: 111559.
  • Patil MP, Singh RD, Koli PB, Patil KT, Jagdale BS, Tipare AR, Kim G-D 2018. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 121: 184–189.
  • Patra JK, Das G, Baek KH 2016. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J. Photochem. Photobiol. B Biol. 161: 200–210.
  • Pugazhendhi S, Palanisamy PK, Jayavel R 2018. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Opt. Mater. (Amst). 79: 457–463.
  • Rani P, Kumar V, Pal P, Singh A, Zhang W 2020. Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ. Int. 143: 105924.
  • Rauf A, Ahmad T, Khan A, Maryam, Uddin G, Ahmad B, Mabkhot YN, Bawazeer S, Riaz N, Malikovna BK 2021. Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif. Cells, Nanomedicine Biotechnol. 49(1): 194–203.
  • Remya RR, Rajasree SRR, Aranganathan L, Suman TY 2015. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol. Reports 8: 110–115.
  • Rolim WR, Pelegrino MT, de Araújo Lima B, Ferraz LS, Costa FN, Bernardes JS, Rodigues T, Brocchi M, Seabra AB seabra 2019. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463: 66–74.
  • Sarkar MK, Vadivel V, Charan Raja MR, Mahapatra SK 2018. Potential anti-proliferative activity of AgNPs synthesized using M. longifolia in 4T1 cell line through ROS generation and cell membrane damage. J. Photochem. Photobiol. B Biol. 186: 160–168.
  • Satpathy S, Patra A, Ahirwar B, Delwar Hussain M 2018. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artif. Cells, Nanomedicine Biotechnol. 46(3): 71–85.
  • Shao Y, Wu C, Wu T, Yuan C, Chen S, Ding T, Ye X, Hu Y 2018. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int. J. Biol. Macromol. 111: 1281–1292.
  • Singh A, Sharma B, Deswal R 2018. Green silver nanoparticles from novel Brassicaceae cultivars with enhanced antimicrobial potential than earlier reported Brassicaceae members. J. Trace Elem. Med. Biol. 47: 1–11.
  • Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR 2015. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 151: 939–944.
  • Thomas B, Vithiya BSM, Prasad TAA, Mohamed SB, Magdalane CM, Kaviyarasu K, Maaza M 2018. Antioxidant and Photocatalytic Activity of Aqueous Leaf Extract Mediated Green Synthesis of Silver Nanoparticles Using Passiflora edulis f. flavicarpa. J. Nanosci. Nanotechnol. 19(5): 2640–2648.
  • Ural E 2001.Endemic and medicinal plants in Gap region, Turkey Environment Foundation, 143, 63–64. Vastrad J 2016. Green Synthesis and Characterization of Silver Nanoparticles Using Leaf Extract of Tridax procumbens. Asian J. Pharm. Res. 7(2): 44–48.
  • Velmurugan P, Anbalagan K, Manosathyadevan M, Lee KJ, Cho, MinJung-Hee Park, Sae-Gang Oh K-SB, Oh B-T, Lee SM 2014. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst. Eng. 37(10): 1935–1943.
  • Wongpreecha J, Polpanich D, Suteewong T, Kaewsaneha C, Tangboriboonrat P 2018. One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity. Carbohydr. Polym. 199: 641–648.
  • Yıldırım I, Uğur Y, Kutlu T 2017. Investigation of Antioxidant Activity and Phytochemical Compositions of Celtis tournefortii. Free Radicals Antioxidants 7(2): 160–165.
  • Zein R, Alghoraibi I, Soukkarieh C, Salman A, Alahmad A 2020. In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus camaldulensis leaves. Heliyon 6(8): e04594.
There are 71 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Ayşe Baran 0000-0002-2317-0489

Cumali Keskin 0000-0003-3758-0654

Sevgi İrtegün Kandemir 0000-0001-6160-5626

Publication Date December 30, 2022
Submission Date December 14, 2021
Acceptance Date February 18, 2022
Published in Issue Year 2022

Cite

APA Baran, A., Keskin, C., & İrtegün Kandemir, S. (2022). Rapid Biosynthesis of Silver Nanoparticles by Celtis tournefortii LAM. Leaf Extract; Investigation of Antimicrobial and Anticancer Activities. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(Ek Sayı 1), 72-84. https://doi.org/10.18016/ksutarimdoga.vi.1036488

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149