Research Article
BibTex RIS Cite

Çapakçur Havzasında (Bingöl Türkiye) Toprak Kayıplarının RUSLE Metodu ile Tahmini ve Sediment Verimi ile Karşılaştırılması

Year 2022, , 523 - 537, 30.12.2022
https://doi.org/10.18016/ksutarimdoga.vi.1059631

Abstract

Bu çalışmada yüksek erozyon riski bulunan Çapakçur havzasında toplam ve net erozyonun belirlenmesi amaçlanmıştır. Bu doğrultuda Çapakçur havzasında yıllık toprak kaybı, RUSLE modeli kullanılarak tahmin edilmiştir. Net erozyon ise Çapakçur çayının 2019 yılı boyunca aylık debi ve sediment konsantrasyonlarının belirlenmesi ile doğrudan ölçülmüştür. Çapakçur havzasında meydana gelen toprak kaybı 96916.20 ton yıl-1 olarak tahmin edilmiş ve Çapakçur çayından taşınan toprak miktarı ise 68656.09 ton yıl-1 olarak gerçekleşmiştir. Havzada, sediment iletim oranı (SDR) 0.78 olarak hesaplanmıştır. Bu oran Türkiye ortalamasının (0.23) oldukça üstündedir. Havzadaki eğim uzunluğu ve derecesinin yüksek, yağış ve vejetasyon kapalılık oranının düşük olması SDR’nin yüksek olmasının ana nedenidir. Yüksek SDR nedeniyle havzanın verimli olan üst toprak katmanı Murat Nehrine taşınmaktadır. Bu durum hem toprakların verimsizleşmesine hem de kısıtlı olan tatlı su kaynaklarının kirlenmesine neden olmaktadır. Havzada bitki örtüsü ve amenajman, uygulamalarının iyileştirilmesi için ağaçlandırma ve teras, tel kafes ve oyuntularda taş duvar gibi toprak koruma uygulamalarının arttırılması gerekmektedir.

Supporting Institution

Bingöl Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

Pikom.Bitki.2018.001

References

  • Alencar PHL, Paton EN, de Araujo JC 2021. Entropy-Based Temporal Downscaling of Precipitation as Tool for Sediment Delivery Ratio Assessment. Entrophy, 2021(23): 1615-1633. doi.org/10.3390/ e23121615.
  • Ali KF, De Boer DH 2010. Spatially distributed Erosion and Sediment Yield Modeling in the Upper Indus River Basin. Water Resources Research, 46: 1-16.
  • Alkharabsheh MM, Alexandridis TK, Bilas G, Misopolinos, N, Silleos N 2013. Impact of Land Cover Change on Soil Erosion Hazard in Northern Jordan Using Remote Sensing and GIS. Procedia Environmental Sciences 19: 912-921. doi.org/10.1016/j.proenv.2013.06.101
  • Amezketa E 1999. Soil Aggregate Stability: A Review. Journal of Sustainable Agriculture, 14(2-3): 83-151. doi.org/10.1300/J064v14n02_08
  • Angima SD, Stott DE, O’Neill MK, Ong CK, Weesies GA 2003. Soil Erosion Predicting Using RUSLE for Central Kenyan Higkland Conditions. Agriculture, Ecosystems & Environment. 97: 295-308.
  • Anonymous 2015. Çapakçur Microcatchment Rehabilitation Plan.
  • Baartman JE, Temme AJ, Veldkamp T, Jetten VG, Schoorl JM 2013. Exploring the Role of Rainfall Variability and Extreme Events in Long-Term Landscape Development. Catena 109: 25-38. doi.org/10.1016/j.catena.2013.05.003.
  • Berta A, Elias E, Soromessa T, Legese G 2020. Land use/Land Cover Change Effect on Soil Erosion and Sediment Delivery in the Winike Watershed, Omo Gibe Basin, Ethiopia. Sci Total Environment, 728:138776. doi.org/10.1016/j.scitotenv.2020.138776.
  • Boardman J 2006. Soil Erosion Science: Reflections On The Limitations of Current Approaches. Catena 68(2-3): 73-86. doi.org/10.1016/ j.catena.2006.03.007
  • Boyce R 1972. Sediment Routing With Sediment-Delivery Ratios. In Present and Prospective Technology For Predicting Sediment Yields and Sources Proceedings of The Sediment Yield Workshop USDA Sedimentation Laboratory Oxford Mississippi 61-65.
  • Carter MR, Gregorich EG, 2007. Soil Sampling and Methods of Analysis. CRC press.
  • ÇEM 2015. Murat River Rehabilitation Project Çapakçur Microcatchment Plan General Directorate of Combating Desertification and Erosion. Ministry press 66-248.
  • De Vente J, Poesen J 2005. Predicting Soil Erosion and Sediment Yield at the Basin Scale: Scale İssues and Semi-Quantitative Models. Earth-Science Reviews 71(1-2): 95-125. doi.org/10.1016/ j.earscirev.2005.02.002
  • Demir Y, Ersoy Mirici M 2020. Effect of Land Use and Topographic Factors on Soil Organic Carbon Content and Mapping of Organic Carbon Distribution Using Regression Kriging Method. Carpathian Journal of Earth and Environmental Sciences 15(2): 311-322. doi.org/10.26471/ cjees/2020/015/131
  • Dexter AR 1988. Advances İn Characterization of Soil Structure. Soil and Tillage Research 11(3-4): 199-238. doi.org/10.1016/0167-1987(88)90002-5
  • Diodato N, Borrelli P, Fiener P, Bellocchi G, Romano N 2017. Discovering Historical Rainfall Erosivity With A Parsimonious Approach: A Case Study İn Western Germany. J. Hydrology 544: 1–9. doi.org/10.1016/j.jhydrol.2016.11.023
  • Doğan DA, Demir Y 2016. Temporal Changes and Evaluation of Quantity Suspense Sediment Transport at Murat River in Palu Precipitation Basin. Iğdır University Journal of the Institute of Science and Technology, 6(2): 61-68.
  • Dong YF, Wu YQ, Zhang TY, Yang W, Liu BY 2013. The sediment delivery ratio in a small catchment in the black soil region of northeast China. International Journal of Sediment Research. 2013: 111-117. doi.org/10.1016/S1001-6279(13)60023-2.
  • Dutta S 2016. Soil erosion, sediment yield and sedimentation of reservoir: a review. Modeling Earth System and Environment. 123(2016): 1-18. doi.org/10.1007/s40808-016-0182-y.
  • Edwards K 1987. Runoff and Soil Loss Studies İn New South Wales. A National Soil Conservation Program Project. 268-274.
  • Erpul G, Şahin S, İnce K, Küçümen A, Akdağ MA, Demirtaş İ, Çetin E 2018. Turkey Water Erosion Atlas. Publications of the General Directorate of Combating Desertification and Erosion. 1-132.
  • Farhan Y, Nawaiseh S 2015. Spatial Assessment of Soil Erosion Risk Using RUSLE and GIS Techniques. Environment Earth Science 2015(74): 4649-4669. doi.org/10.1007/s12665-015-4430-7
  • Fayas CM, Abeysingha NS, Nirmanee KGS, Samaratunga D, Mallawatantri A 2019. Soil Loss Estimation Using Rusle Model to Prioritize Erosion Control İn KELANI River Basin İn Sri Lanka. International Soil and Water Conservation Research 7(2): 130-137. doi.org/10.1016/ j.iswcr. 2019.01.003
  • Fistikoglu O, Harmancioglu NB 2002. Integration of GIS With USLE İn Assessment of Soil Erosion. Water Resources Management 16: 447-467. doi.org/10.1023/A:1022282125760
  • Foster GR 1982. Modeling The Erosion Process. Hydrologic Modeling of Small Watersheds. ASAE Monograph No. 5, American Society of Agricultural Engineers, St. Joseph, Michigan 297-380.
  • Fraser AI, Harrod TR, Haygarth PM, 1999. The Effect of Rainfall İntensity On Soil Erosion and Particulate Phosphorus Transfer From Arable Soils. Water Science and Technology 39(12): 41-45. doi.org/10.1016/S0273-1223(99)00316-9
  • Fu G, Chen S, McCool DK 2006. Modeling the İmpacts of no-Till Practice On Soil Erosion and Sediment Yield With RUSLE, SEDD, and Arcview GIS. Soil and Tillage Research 85(1-2): 38-49. doi.org/10.1016/j.still.2004.11.009
  • Gee GW, Or D 2002. 2.4 Particle Size Analysis. Methods of Soil Analysis 4(598): 255-293.
  • Ghosal K, Bhattacharya, SD 2020. A Review of RUSLE Model. Journal of The Indian Society of Remote Sensing. 48(4): 689-707. doi.org/10.1007/ s12524-019-01097-0.
  • Haan CT, Barfield BJ, Hayes JC 1994. Design Hydrology and Sedimentology For Small Catchments. Academic Press An Imprint of Elseiver New York 38-101.
  • Jain MK, Kothyari UC 2000. Estimation of Soil Erosion and Sediment Yield Using GIS. Hydrological Sciences Journal 45(5): 771–786. doi.org/10.1080/02626660009492376
  • Jha MK, Paudel RC 2010. Erosion Predictions By Empirical Models İn A Mountainous Watershed İn Nepal. Journal of Spatial Hydrology 10(1): 89-102.
  • Joshi BR, Yadav SM. 2021. Effect on Sediment Delivery Ratio by Changes in Land Use Land Cover and Construction of Hydraulic Structures at Sub Basin Scale. Journal of Applied Water Engineering and Research. 10(1): 1-12. doi.org/10.1080/23249676.2021.1932617.
  • Katebikord A, Darvishan, AK, Alavi SJ 2017. Changeability of Soil Erosion Variables in Small Field Plots From Different Rainfall Durations With Constant İntensity. Journal of African Earth Sciences 129: 751-758. doi.org/10.1016/j.jafrearsci.2017.02.026.
  • Kayet N, Pathak K, Chakrabarty A, Sahoo S 2018. Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research, 6(1), 31–42.
  • Kemper WD, Rosenau RC 1986. Agregate Stability and Size Distiribution. Eds: Klute, A. Methods of Soil Analysis. Partı-Physical and Mineralocigal Methods 2nd ed. SSSA Book Series No:5 SSA and ASA Madison, Wisconsin, 4225-442.
  • Khare D, Mondal A, Kundu S, Mishra PK 2017. Climate Change İmpact on Soil Erosion in the Mandakini River Basin, North India. Applied Water Science 7(5): 2373-2383. doi.org/10.1007/s13201-016-0419-y
  • Kijowska SM, Bucała HA, Demczuk P 2018. Long‐Term İmpact of Land Use Changes On Soil Erosion İn An Agricultural Catchment (İn The Western Polish Carpathians). Land Degradation & Development 29(6): 1871-1884. doi.org/10.1002/ldr.2936
  • Klute A, Dirksen C 1986. Hydraulic Conductivity and Diffusivity: Laboratory Methods. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5: 687-734.
  • Kouli M, Soupios P, Vallianatos F 2009. Soil Erosion Prediction Using The Revised Universal Soil Loss Equation (RUSLE) İn A GIS Framework Chania Northwestern Crete Greece. Environmental Geology 57(3): 483-497. doi.org/10.1007/s00254-008-1318-9
  • Le Bissonnais YL 1996. Aggregate Stability and Assessment of Soil Crustability and Erodibility: I. Theory and Methodology. European Journal of Soil Science 47(4): 425-437. doi.org/10.1111/j.1365-2389.1996.tb01843.x
  • Li ZY, Fang HY 2016. Impacts of Climate Change On Water Erosion: A Review. Earth Science Review 163: 94–117. doi.org/10.1016/j.earscirev.2016.10.004
  • Liu M, Han G Li, X, Zhang S, Zhou W, Zhang Q 2020. Effects of Soil Properties on K Factor in the Granite and Limestone Regions of China. International Journal of Environmental Research and Public Health 17(3): 801. doi.org/10.3390/ijerph17030801.
  • Llena M, Batalla R, Smith M, Vericat D 2021. Do Badlands (always) Control Sediment Yield? Evidence From A Small Intermittent Catchment. Catena 198021: 105015-105030.
  • Lu H., Moran, C J., Prosser, I P., 2006. Modelling Sediment Delivery Ratio Over the Murray Darling Basin. Environmental Modeling & Software, 21(2006): 1297-1308.
  • Mallants D, Mohanty BP, Jacques D, Feyen J 1996. Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Science 161 (1): 167-181
  • Meral A, Demir Y, Yüksel A, Kılıç Ö, Doğan E, Eroğlu E. 2021. Peyzaj Karakterleri Bazlı Entegre Havza Yönetim Modellerinin Kurgulanması. TÜBİTAK 1002 Hızlı Destek Projesi Sonuç Raporu, Proje No: 120O150.
  • Meral A, Yüksel A, Demir Y, Basaran N, Doğan TG, Kaya S, Eroğlu E 2019. Soil stabilization and landscape rehabilitation studies in erosion areas: Capakcur microcatchment example. Fresenius Environmental Bulletin 7: 5518-5529.
  • Meral A. 2021. Peyzaj Karakterleri Çalışmalarının Entegre Havza Yönetim Modellerinde değerlendirilmesi; Bingöl Çapakçur, Yeşilköy, Yamaç Mikrohavzaları Örneği. Doktora Tezi, Düzce Üniversitesi, Lisansüstü Eğitim Enstitüsü.
  • Meral R, Dogan DA, Cemek B 2018. Analyses of Turbidity and Acoustic Backscatter Signal With Artificial Neural Network For Estimation of Suspended Sediment Concentration. Applied Ecology and Environmental Research 16(1): 697-708. doi.org/10.15666/aeer/1601_697708
  • Mermer H 1996. Araştırma Havzaları Kılavuzu Elektrik İşleri Etüt İdaresi Yayınları, Yayın: 96- 2. (In Turkish)
  • Mohamadi MA, Kavian A 2015. Effects of Rainfall Patterns On Runoff and Soil Erosion İn Field Plots. International Soil and Water Conservation Research 3(4): 273-281. doi.org/10.1016/j.iswer.2015.10.001
  • Moore ID, Burch GJ 1986. Modelling Erosion and Deposition: Topographic Effects. Transactions of the ASAE 29(6): 1624-1630.
  • Nearing MA 2001. Potential changes in rainfall erosivity in the US with climate change during the 21st century. Journal of Soil and Water Conservation 56(3): 229-232.
  • Oldeman L, Hakkeling R, Sombroek W 1990. World Map of The Status of Soil Degradation, An Explanatory Note. International Soil Reference and Information Center, Wageningen, The Netherlands and The United Nations Environmental Program, Nairobi, Kenya.
  • Onori F, De Bonis P, Grauso S 2006. Soil Erosion Prediction At The Basin Scale Using The Revised Universal Soil Loss Equation (RUSLE) İn A Catchment of Sicily (Southern Italy). Environmental Geology 50(8): 1129-1140. doi.org/10.1007/s00254-006-0286-1
  • Ouyang D, Bartholic J 1997. Predicting sediment delivery ratio in Saginaw Bay watershed. In Proceedings of the 22nd National Association of Environmental Professionals Conference. 659-671.
  • Pan J, Wen Y 2014. Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Natural Hazards 71(3): 2187-2205. doi.org/10.1007/s11069-013-1006-2
  • Panagos P, Borrelli P, Meusburger K, Alewell C, Lugato E, Montanarella L 2015. Estimating The Soil Erosion Cover-Management Factor at The European Scale. Land Use Policy 48: 38-50. doi.org/10.1016/j.landusepol.2015.05.021
  • Pınar MÖ, Şahin S, Madenoğlu S, Erpul G 2020. Determining Severe Erosion Affected Areas and Estimation Reservoir Sediment Load in Derinöz Dam Basin. Water Resources 5(2): 16-23.
  • Prasannakumar V, Vijith H, Abinod S, Geetha NJGF 2012. Estimation of Soil Erosion Risk Within A Small Mountainous Sub-Watershed İn Kerala, India, Using Revised Universal Soil Loss Equation (RUSLE) and Geo-İnformation Technology. Geoscience Frontiers 3(2): 209-215. doi.org/10.1016/j.gsf.2011.11.003
  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook 703: 25-28.
  • Renard KG, Laflen JM, Foster GR, McCool DK 1994. The Revised Universal Soil Loss Equation. Soil Erosion Research Methods 2: 105-124.
  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD 2013. Application of The Revised Universal Soil Loss Equation Model On Landslide Prevention. An example from N. Euboea (Evia) Island, Greece. Environmental Earth Sciences 70(7): 3255-3266. doi.org/10.1007/s12665-013-2390-3
  • Santos JCND, Andrade EMD, Medeiros PHA, Palácio HADQ, Araújo NJRD 2017. Sediment Delivery Ratio İn A Small Semi-Arid Watershed Under Conditions of Low Connectivity. Revista Ciência Agronômica 48(1): 49-58. doi.org/10.5935/1806-6690.20170006
  • Saygın SD, Ozcan AU, Basaran M, Timur OB, Dolarslan M, Yılman FE, Erpul G 2014. The Combined RUSLE/SDR Approach İntegrated With GIS and Geostatistics to Estimate Annual Sediment Flux Rates İn The Semi-Arid Catchment Turkey. Environmental Earth Sciences 71(4): 1605-1618. doi.org/10.1007/s12665-013-2565-y
  • Shainberg I, Warrington D, Laflen JM 1992. Soil Dispersibility, Rain Properties, and Slope İnteraction İn Rill Formation and Erosion. Soil Science Society of America Journal 56(1): 278-283. doi.org/10.2136/sssaj1992.03615995005600010044x
  • Sharma A, Tiwari KN, Bhadoria PBS 2011. Effect of Land Use Land Cover Change on Soil Erosion Potential in an Agricultural Watershed. Environmental Monitoring and Assessment 173(1-4): 789-801. doi.org/10.1007/s10661-010-1423-6.
  • Shit P, Nandi A, Bhunia G 2015. Soil Erosion Risk Mapping Using RUSLE model on Jhargam Sub-Division at West Bengal in India. Modeling Earth System and Environment, 2015: 1-28. doi 10.1007/s40808-015-0032-3
  • Singh G, Panda RK 2017. Grid-Cell Based Assessment of Soil Erosion Potential for İdentification of Critical Erosion Prone Areas Using USLE, GIS and Remote Sensing: A Case Study in The Kapgari Watershed India. International Soil and Water Conservation Research 5(3): 202-211. doi.org/10.1016/j.iswcr.2017.05.006
  • Thomas J, Joseph S, Thrivikramji KP 2018. Estimation of Soil Erosion İn A Rain Shadow River Basin İn The Southern Western Ghats, India Using RUSLE and Transport Limited Sediment Delivery Function. International Soil and Water Conservation Research, 6(2): 111-122. doi.org/10.1016/j.iswcr.2017.12.001
  • Toy TJ, Foster GR 1998. In JR Galetevic (Ed.), Guidelines For The Revised Universal Soil Loss Equation (Rusle) Version 1.06 On Mined Lands, Construction Sites, and Reclaimed Lands. Suite 3320: 80202-5733.
  • Toy TJ, Foster GR, Renard KG 1998. RUSLE For Mining, Construction and Reclamation Lands. Journal of Soil and Water Conservation 54(2): 462-467.
  • URL 1. https://land.copernicus.eu/pan-european/ corine-land-cover/ clc2018. (Access on: 16.05.2021.)
  • Verstraeten G, Poesen J 2001. Factors Controlling Sediment Yield From Small İntensively Cultivated Catchments İn A Temperate Humid Climate. Geomorphology 40(1-2): 123-144. doi.org/10.1016/S0169-555X(01)00040-X
  • Vigiak O, Borselli L, Newham LTH, McInnes J, Roberts, AM 2012. Comparison of Conceptual Landscape Metrics to Define Hillslope-Scale Sediment Deliver Ratio. Geomorphology, 138(2012): 74-88.
  • Walkley A, Black IA 1934. An Examination of The Degtjareff Method For Determining Soil Organic Matter, and A Proposed Modification of The Chromic Acid Titration Method. Soil science 37(1): 29-38.
  • Walling DE. 1994. Measuring Sediment Yield From River Basins. Soil Erosion Research Methods, Routledge. 39-80.
  • Warrick AW 2003. Soil Water Dynamics. Oxford University Press. ISBN: 0-19-512605-X, 125-416.
  • Wijitkosum S 2012. Impacts of Land Use Changes On Soil Erosion in Pa Deng Sub-District, Adjacent Area of Kaeng Krachan National Park, Thailand. Soil and Water Research 7(1): 10-17. doi.org/10.17221/32/2011-SWR
  • Williams JR, 1977. Sediment Delivery Ratios Determined With Sediment and Runoff Models. IAHS Publication 122, 168-179.
  • Wischmeier WH, Smith DD 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (No. 537). Department of Agriculture, Science and Education Administration.
  • Wubie MA, Assen M 2020. Effects of Land Cover Changes and Slope Gradient on Soil Quality İn The Gumara Watershed, Lake Tana basin of North–West Ethiopia. Modeling Earth Systems and Environment 6(1): 85-97. doi.org/10.1007/s40808-019-00660-5
  • Zaimes G, Kayiaoglu K, Kozanidis A 2017. Land-Use/Vegetation Cover and Soil Erosion İmpacts On Soil Properties of Hilly Slopes İn Drama Prefecture of Northern Greece. Kastamonu Unıversıty Journal of Forestry Faculty 17(3): 427-433. doi.org/10.17475/kastorman.300074
  • Zar HJ 1996. Biostatistical Analysis. 3rd Edition Prentice Hall, New Jersey: 662 p.

Estimation of Soil Losses in Çapakcur Watershed (Bingol, Turkey) Using RUSLE Method and Comparison of Predicted Soil Losses with Sediment Yield

Year 2022, , 523 - 537, 30.12.2022
https://doi.org/10.18016/ksutarimdoga.vi.1059631

Abstract

The present study aimed to determine the total and net erosion in the Capakcur watershed, which has a high erosion risk. Accordingly, annual soil loss in the Capakcur watershed was estimated using RUSLE method. Net erosion was determined directly by measuring the monthly flow rate and sediment concentrations of the Capakcur stream, which originated from the Capakcur watershed and flowed into the Murat River throughout 2019. Estimated soil loss in the Capakcur watershed was 96916.20 ton yr-1, and the amount of soil transported from the Capakcur stream was 68656.09 ton yr-1. Sediment delivery ratio (SDR) was calculated as 0.78. This ratio was well above the average SDR of Turkey (0.23). Topographic factors such as slope length and degree, rainfall, and low vegetation cover ratio in the watershed are the main causes of the high SDR. Due to the high SDR, the fertile surface soil layers of lands in the basin are carried to the streams. This causes both decrease in fertility in soils and pollution of the limited freshwater resources. In order to improve vegetation and management practices in the watershed, soil protection practices such as afforestation and terraces, wire cages and stone walls in gullies should be increased.

Project Number

Pikom.Bitki.2018.001

References

  • Alencar PHL, Paton EN, de Araujo JC 2021. Entropy-Based Temporal Downscaling of Precipitation as Tool for Sediment Delivery Ratio Assessment. Entrophy, 2021(23): 1615-1633. doi.org/10.3390/ e23121615.
  • Ali KF, De Boer DH 2010. Spatially distributed Erosion and Sediment Yield Modeling in the Upper Indus River Basin. Water Resources Research, 46: 1-16.
  • Alkharabsheh MM, Alexandridis TK, Bilas G, Misopolinos, N, Silleos N 2013. Impact of Land Cover Change on Soil Erosion Hazard in Northern Jordan Using Remote Sensing and GIS. Procedia Environmental Sciences 19: 912-921. doi.org/10.1016/j.proenv.2013.06.101
  • Amezketa E 1999. Soil Aggregate Stability: A Review. Journal of Sustainable Agriculture, 14(2-3): 83-151. doi.org/10.1300/J064v14n02_08
  • Angima SD, Stott DE, O’Neill MK, Ong CK, Weesies GA 2003. Soil Erosion Predicting Using RUSLE for Central Kenyan Higkland Conditions. Agriculture, Ecosystems & Environment. 97: 295-308.
  • Anonymous 2015. Çapakçur Microcatchment Rehabilitation Plan.
  • Baartman JE, Temme AJ, Veldkamp T, Jetten VG, Schoorl JM 2013. Exploring the Role of Rainfall Variability and Extreme Events in Long-Term Landscape Development. Catena 109: 25-38. doi.org/10.1016/j.catena.2013.05.003.
  • Berta A, Elias E, Soromessa T, Legese G 2020. Land use/Land Cover Change Effect on Soil Erosion and Sediment Delivery in the Winike Watershed, Omo Gibe Basin, Ethiopia. Sci Total Environment, 728:138776. doi.org/10.1016/j.scitotenv.2020.138776.
  • Boardman J 2006. Soil Erosion Science: Reflections On The Limitations of Current Approaches. Catena 68(2-3): 73-86. doi.org/10.1016/ j.catena.2006.03.007
  • Boyce R 1972. Sediment Routing With Sediment-Delivery Ratios. In Present and Prospective Technology For Predicting Sediment Yields and Sources Proceedings of The Sediment Yield Workshop USDA Sedimentation Laboratory Oxford Mississippi 61-65.
  • Carter MR, Gregorich EG, 2007. Soil Sampling and Methods of Analysis. CRC press.
  • ÇEM 2015. Murat River Rehabilitation Project Çapakçur Microcatchment Plan General Directorate of Combating Desertification and Erosion. Ministry press 66-248.
  • De Vente J, Poesen J 2005. Predicting Soil Erosion and Sediment Yield at the Basin Scale: Scale İssues and Semi-Quantitative Models. Earth-Science Reviews 71(1-2): 95-125. doi.org/10.1016/ j.earscirev.2005.02.002
  • Demir Y, Ersoy Mirici M 2020. Effect of Land Use and Topographic Factors on Soil Organic Carbon Content and Mapping of Organic Carbon Distribution Using Regression Kriging Method. Carpathian Journal of Earth and Environmental Sciences 15(2): 311-322. doi.org/10.26471/ cjees/2020/015/131
  • Dexter AR 1988. Advances İn Characterization of Soil Structure. Soil and Tillage Research 11(3-4): 199-238. doi.org/10.1016/0167-1987(88)90002-5
  • Diodato N, Borrelli P, Fiener P, Bellocchi G, Romano N 2017. Discovering Historical Rainfall Erosivity With A Parsimonious Approach: A Case Study İn Western Germany. J. Hydrology 544: 1–9. doi.org/10.1016/j.jhydrol.2016.11.023
  • Doğan DA, Demir Y 2016. Temporal Changes and Evaluation of Quantity Suspense Sediment Transport at Murat River in Palu Precipitation Basin. Iğdır University Journal of the Institute of Science and Technology, 6(2): 61-68.
  • Dong YF, Wu YQ, Zhang TY, Yang W, Liu BY 2013. The sediment delivery ratio in a small catchment in the black soil region of northeast China. International Journal of Sediment Research. 2013: 111-117. doi.org/10.1016/S1001-6279(13)60023-2.
  • Dutta S 2016. Soil erosion, sediment yield and sedimentation of reservoir: a review. Modeling Earth System and Environment. 123(2016): 1-18. doi.org/10.1007/s40808-016-0182-y.
  • Edwards K 1987. Runoff and Soil Loss Studies İn New South Wales. A National Soil Conservation Program Project. 268-274.
  • Erpul G, Şahin S, İnce K, Küçümen A, Akdağ MA, Demirtaş İ, Çetin E 2018. Turkey Water Erosion Atlas. Publications of the General Directorate of Combating Desertification and Erosion. 1-132.
  • Farhan Y, Nawaiseh S 2015. Spatial Assessment of Soil Erosion Risk Using RUSLE and GIS Techniques. Environment Earth Science 2015(74): 4649-4669. doi.org/10.1007/s12665-015-4430-7
  • Fayas CM, Abeysingha NS, Nirmanee KGS, Samaratunga D, Mallawatantri A 2019. Soil Loss Estimation Using Rusle Model to Prioritize Erosion Control İn KELANI River Basin İn Sri Lanka. International Soil and Water Conservation Research 7(2): 130-137. doi.org/10.1016/ j.iswcr. 2019.01.003
  • Fistikoglu O, Harmancioglu NB 2002. Integration of GIS With USLE İn Assessment of Soil Erosion. Water Resources Management 16: 447-467. doi.org/10.1023/A:1022282125760
  • Foster GR 1982. Modeling The Erosion Process. Hydrologic Modeling of Small Watersheds. ASAE Monograph No. 5, American Society of Agricultural Engineers, St. Joseph, Michigan 297-380.
  • Fraser AI, Harrod TR, Haygarth PM, 1999. The Effect of Rainfall İntensity On Soil Erosion and Particulate Phosphorus Transfer From Arable Soils. Water Science and Technology 39(12): 41-45. doi.org/10.1016/S0273-1223(99)00316-9
  • Fu G, Chen S, McCool DK 2006. Modeling the İmpacts of no-Till Practice On Soil Erosion and Sediment Yield With RUSLE, SEDD, and Arcview GIS. Soil and Tillage Research 85(1-2): 38-49. doi.org/10.1016/j.still.2004.11.009
  • Gee GW, Or D 2002. 2.4 Particle Size Analysis. Methods of Soil Analysis 4(598): 255-293.
  • Ghosal K, Bhattacharya, SD 2020. A Review of RUSLE Model. Journal of The Indian Society of Remote Sensing. 48(4): 689-707. doi.org/10.1007/ s12524-019-01097-0.
  • Haan CT, Barfield BJ, Hayes JC 1994. Design Hydrology and Sedimentology For Small Catchments. Academic Press An Imprint of Elseiver New York 38-101.
  • Jain MK, Kothyari UC 2000. Estimation of Soil Erosion and Sediment Yield Using GIS. Hydrological Sciences Journal 45(5): 771–786. doi.org/10.1080/02626660009492376
  • Jha MK, Paudel RC 2010. Erosion Predictions By Empirical Models İn A Mountainous Watershed İn Nepal. Journal of Spatial Hydrology 10(1): 89-102.
  • Joshi BR, Yadav SM. 2021. Effect on Sediment Delivery Ratio by Changes in Land Use Land Cover and Construction of Hydraulic Structures at Sub Basin Scale. Journal of Applied Water Engineering and Research. 10(1): 1-12. doi.org/10.1080/23249676.2021.1932617.
  • Katebikord A, Darvishan, AK, Alavi SJ 2017. Changeability of Soil Erosion Variables in Small Field Plots From Different Rainfall Durations With Constant İntensity. Journal of African Earth Sciences 129: 751-758. doi.org/10.1016/j.jafrearsci.2017.02.026.
  • Kayet N, Pathak K, Chakrabarty A, Sahoo S 2018. Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research, 6(1), 31–42.
  • Kemper WD, Rosenau RC 1986. Agregate Stability and Size Distiribution. Eds: Klute, A. Methods of Soil Analysis. Partı-Physical and Mineralocigal Methods 2nd ed. SSSA Book Series No:5 SSA and ASA Madison, Wisconsin, 4225-442.
  • Khare D, Mondal A, Kundu S, Mishra PK 2017. Climate Change İmpact on Soil Erosion in the Mandakini River Basin, North India. Applied Water Science 7(5): 2373-2383. doi.org/10.1007/s13201-016-0419-y
  • Kijowska SM, Bucała HA, Demczuk P 2018. Long‐Term İmpact of Land Use Changes On Soil Erosion İn An Agricultural Catchment (İn The Western Polish Carpathians). Land Degradation & Development 29(6): 1871-1884. doi.org/10.1002/ldr.2936
  • Klute A, Dirksen C 1986. Hydraulic Conductivity and Diffusivity: Laboratory Methods. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5: 687-734.
  • Kouli M, Soupios P, Vallianatos F 2009. Soil Erosion Prediction Using The Revised Universal Soil Loss Equation (RUSLE) İn A GIS Framework Chania Northwestern Crete Greece. Environmental Geology 57(3): 483-497. doi.org/10.1007/s00254-008-1318-9
  • Le Bissonnais YL 1996. Aggregate Stability and Assessment of Soil Crustability and Erodibility: I. Theory and Methodology. European Journal of Soil Science 47(4): 425-437. doi.org/10.1111/j.1365-2389.1996.tb01843.x
  • Li ZY, Fang HY 2016. Impacts of Climate Change On Water Erosion: A Review. Earth Science Review 163: 94–117. doi.org/10.1016/j.earscirev.2016.10.004
  • Liu M, Han G Li, X, Zhang S, Zhou W, Zhang Q 2020. Effects of Soil Properties on K Factor in the Granite and Limestone Regions of China. International Journal of Environmental Research and Public Health 17(3): 801. doi.org/10.3390/ijerph17030801.
  • Llena M, Batalla R, Smith M, Vericat D 2021. Do Badlands (always) Control Sediment Yield? Evidence From A Small Intermittent Catchment. Catena 198021: 105015-105030.
  • Lu H., Moran, C J., Prosser, I P., 2006. Modelling Sediment Delivery Ratio Over the Murray Darling Basin. Environmental Modeling & Software, 21(2006): 1297-1308.
  • Mallants D, Mohanty BP, Jacques D, Feyen J 1996. Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Science 161 (1): 167-181
  • Meral A, Demir Y, Yüksel A, Kılıç Ö, Doğan E, Eroğlu E. 2021. Peyzaj Karakterleri Bazlı Entegre Havza Yönetim Modellerinin Kurgulanması. TÜBİTAK 1002 Hızlı Destek Projesi Sonuç Raporu, Proje No: 120O150.
  • Meral A, Yüksel A, Demir Y, Basaran N, Doğan TG, Kaya S, Eroğlu E 2019. Soil stabilization and landscape rehabilitation studies in erosion areas: Capakcur microcatchment example. Fresenius Environmental Bulletin 7: 5518-5529.
  • Meral A. 2021. Peyzaj Karakterleri Çalışmalarının Entegre Havza Yönetim Modellerinde değerlendirilmesi; Bingöl Çapakçur, Yeşilköy, Yamaç Mikrohavzaları Örneği. Doktora Tezi, Düzce Üniversitesi, Lisansüstü Eğitim Enstitüsü.
  • Meral R, Dogan DA, Cemek B 2018. Analyses of Turbidity and Acoustic Backscatter Signal With Artificial Neural Network For Estimation of Suspended Sediment Concentration. Applied Ecology and Environmental Research 16(1): 697-708. doi.org/10.15666/aeer/1601_697708
  • Mermer H 1996. Araştırma Havzaları Kılavuzu Elektrik İşleri Etüt İdaresi Yayınları, Yayın: 96- 2. (In Turkish)
  • Mohamadi MA, Kavian A 2015. Effects of Rainfall Patterns On Runoff and Soil Erosion İn Field Plots. International Soil and Water Conservation Research 3(4): 273-281. doi.org/10.1016/j.iswer.2015.10.001
  • Moore ID, Burch GJ 1986. Modelling Erosion and Deposition: Topographic Effects. Transactions of the ASAE 29(6): 1624-1630.
  • Nearing MA 2001. Potential changes in rainfall erosivity in the US with climate change during the 21st century. Journal of Soil and Water Conservation 56(3): 229-232.
  • Oldeman L, Hakkeling R, Sombroek W 1990. World Map of The Status of Soil Degradation, An Explanatory Note. International Soil Reference and Information Center, Wageningen, The Netherlands and The United Nations Environmental Program, Nairobi, Kenya.
  • Onori F, De Bonis P, Grauso S 2006. Soil Erosion Prediction At The Basin Scale Using The Revised Universal Soil Loss Equation (RUSLE) İn A Catchment of Sicily (Southern Italy). Environmental Geology 50(8): 1129-1140. doi.org/10.1007/s00254-006-0286-1
  • Ouyang D, Bartholic J 1997. Predicting sediment delivery ratio in Saginaw Bay watershed. In Proceedings of the 22nd National Association of Environmental Professionals Conference. 659-671.
  • Pan J, Wen Y 2014. Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Natural Hazards 71(3): 2187-2205. doi.org/10.1007/s11069-013-1006-2
  • Panagos P, Borrelli P, Meusburger K, Alewell C, Lugato E, Montanarella L 2015. Estimating The Soil Erosion Cover-Management Factor at The European Scale. Land Use Policy 48: 38-50. doi.org/10.1016/j.landusepol.2015.05.021
  • Pınar MÖ, Şahin S, Madenoğlu S, Erpul G 2020. Determining Severe Erosion Affected Areas and Estimation Reservoir Sediment Load in Derinöz Dam Basin. Water Resources 5(2): 16-23.
  • Prasannakumar V, Vijith H, Abinod S, Geetha NJGF 2012. Estimation of Soil Erosion Risk Within A Small Mountainous Sub-Watershed İn Kerala, India, Using Revised Universal Soil Loss Equation (RUSLE) and Geo-İnformation Technology. Geoscience Frontiers 3(2): 209-215. doi.org/10.1016/j.gsf.2011.11.003
  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook 703: 25-28.
  • Renard KG, Laflen JM, Foster GR, McCool DK 1994. The Revised Universal Soil Loss Equation. Soil Erosion Research Methods 2: 105-124.
  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD 2013. Application of The Revised Universal Soil Loss Equation Model On Landslide Prevention. An example from N. Euboea (Evia) Island, Greece. Environmental Earth Sciences 70(7): 3255-3266. doi.org/10.1007/s12665-013-2390-3
  • Santos JCND, Andrade EMD, Medeiros PHA, Palácio HADQ, Araújo NJRD 2017. Sediment Delivery Ratio İn A Small Semi-Arid Watershed Under Conditions of Low Connectivity. Revista Ciência Agronômica 48(1): 49-58. doi.org/10.5935/1806-6690.20170006
  • Saygın SD, Ozcan AU, Basaran M, Timur OB, Dolarslan M, Yılman FE, Erpul G 2014. The Combined RUSLE/SDR Approach İntegrated With GIS and Geostatistics to Estimate Annual Sediment Flux Rates İn The Semi-Arid Catchment Turkey. Environmental Earth Sciences 71(4): 1605-1618. doi.org/10.1007/s12665-013-2565-y
  • Shainberg I, Warrington D, Laflen JM 1992. Soil Dispersibility, Rain Properties, and Slope İnteraction İn Rill Formation and Erosion. Soil Science Society of America Journal 56(1): 278-283. doi.org/10.2136/sssaj1992.03615995005600010044x
  • Sharma A, Tiwari KN, Bhadoria PBS 2011. Effect of Land Use Land Cover Change on Soil Erosion Potential in an Agricultural Watershed. Environmental Monitoring and Assessment 173(1-4): 789-801. doi.org/10.1007/s10661-010-1423-6.
  • Shit P, Nandi A, Bhunia G 2015. Soil Erosion Risk Mapping Using RUSLE model on Jhargam Sub-Division at West Bengal in India. Modeling Earth System and Environment, 2015: 1-28. doi 10.1007/s40808-015-0032-3
  • Singh G, Panda RK 2017. Grid-Cell Based Assessment of Soil Erosion Potential for İdentification of Critical Erosion Prone Areas Using USLE, GIS and Remote Sensing: A Case Study in The Kapgari Watershed India. International Soil and Water Conservation Research 5(3): 202-211. doi.org/10.1016/j.iswcr.2017.05.006
  • Thomas J, Joseph S, Thrivikramji KP 2018. Estimation of Soil Erosion İn A Rain Shadow River Basin İn The Southern Western Ghats, India Using RUSLE and Transport Limited Sediment Delivery Function. International Soil and Water Conservation Research, 6(2): 111-122. doi.org/10.1016/j.iswcr.2017.12.001
  • Toy TJ, Foster GR 1998. In JR Galetevic (Ed.), Guidelines For The Revised Universal Soil Loss Equation (Rusle) Version 1.06 On Mined Lands, Construction Sites, and Reclaimed Lands. Suite 3320: 80202-5733.
  • Toy TJ, Foster GR, Renard KG 1998. RUSLE For Mining, Construction and Reclamation Lands. Journal of Soil and Water Conservation 54(2): 462-467.
  • URL 1. https://land.copernicus.eu/pan-european/ corine-land-cover/ clc2018. (Access on: 16.05.2021.)
  • Verstraeten G, Poesen J 2001. Factors Controlling Sediment Yield From Small İntensively Cultivated Catchments İn A Temperate Humid Climate. Geomorphology 40(1-2): 123-144. doi.org/10.1016/S0169-555X(01)00040-X
  • Vigiak O, Borselli L, Newham LTH, McInnes J, Roberts, AM 2012. Comparison of Conceptual Landscape Metrics to Define Hillslope-Scale Sediment Deliver Ratio. Geomorphology, 138(2012): 74-88.
  • Walkley A, Black IA 1934. An Examination of The Degtjareff Method For Determining Soil Organic Matter, and A Proposed Modification of The Chromic Acid Titration Method. Soil science 37(1): 29-38.
  • Walling DE. 1994. Measuring Sediment Yield From River Basins. Soil Erosion Research Methods, Routledge. 39-80.
  • Warrick AW 2003. Soil Water Dynamics. Oxford University Press. ISBN: 0-19-512605-X, 125-416.
  • Wijitkosum S 2012. Impacts of Land Use Changes On Soil Erosion in Pa Deng Sub-District, Adjacent Area of Kaeng Krachan National Park, Thailand. Soil and Water Research 7(1): 10-17. doi.org/10.17221/32/2011-SWR
  • Williams JR, 1977. Sediment Delivery Ratios Determined With Sediment and Runoff Models. IAHS Publication 122, 168-179.
  • Wischmeier WH, Smith DD 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (No. 537). Department of Agriculture, Science and Education Administration.
  • Wubie MA, Assen M 2020. Effects of Land Cover Changes and Slope Gradient on Soil Quality İn The Gumara Watershed, Lake Tana basin of North–West Ethiopia. Modeling Earth Systems and Environment 6(1): 85-97. doi.org/10.1007/s40808-019-00660-5
  • Zaimes G, Kayiaoglu K, Kozanidis A 2017. Land-Use/Vegetation Cover and Soil Erosion İmpacts On Soil Properties of Hilly Slopes İn Drama Prefecture of Northern Greece. Kastamonu Unıversıty Journal of Forestry Faculty 17(3): 427-433. doi.org/10.17475/kastorman.300074
  • Zar HJ 1996. Biostatistical Analysis. 3rd Edition Prentice Hall, New Jersey: 662 p.
There are 85 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Yasin Demir 0000-0002-0117-8471

Alperen Meral 0000-0001-6714-7187

Azize Doğan Demir 0000-0003-2008-3408

Project Number Pikom.Bitki.2018.001
Publication Date December 30, 2022
Submission Date January 18, 2022
Acceptance Date May 9, 2022
Published in Issue Year 2022

Cite

APA Demir, Y., Meral, A., & Doğan Demir, A. (2022). Estimation of Soil Losses in Çapakcur Watershed (Bingol, Turkey) Using RUSLE Method and Comparison of Predicted Soil Losses with Sediment Yield. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(Ek Sayı 2), 523-537. https://doi.org/10.18016/ksutarimdoga.vi.1059631

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149