Research Article
BibTex RIS Cite

Determination of Tolerant Genotypes Against Flood Stress in Spinach

Year 2023, , 754 - 766, 31.08.2023
https://doi.org/10.18016/ksutarimdoga.vi.1082694

Abstract

Abiotic stress factors generate negative effects on agricultural production daily. With the effect of global warming, the floods that have increased recently not only affected human life negatively but also caused great losses in plant development. For this reason, developing tolerant plants against flooding stress is the most critical approach reducing yield and quality losses. The present study aimed to determine the genotypes that are tolerant of flooding stress by using the agro-morphological and physiological characteristics of the commercial varieties and S5-level spinach breeding materials. In the study, 13-day flood stress was applied to 48 hybrid cultivars and 23 spinach genotypes at the S5 stage during the seedling period. As a result, in addition to the adverse effects of flood stress on plant growth, it was determined that the tolerance was different between genotypes. In the light of the results obtained, SWA0760 F1 among commercial varieties was found to be the most tolerant variety to flood stress. At the same time, genotypes 14, 9, 21, 15, 4 and 10 from breeding lines were promising genotypes that were tolerant to flooding stress. As a result, it is predicted that the inclusion of the genotypes used in the study as parents in hybrid cultivar breeding will make significant contributions to the development of tolerant cultivars against flood stress.

References

  • Arif, M., Jatoi, S. A., Rafique, T. & Ghafoor, A. (2013). Genetic divergence in indigenous spinach genetic resources for agronomic performance and implication of multivariate analyses for future selection criteria. J Sci Technol Dev, 32(1), 7-15.
  • Arnell, N.W. & Liv, C. (2001). Hydrology and water resources. In: McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S. (Eds.), IPPC Climate Change 2001: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, pp. 191–233
  • Bailey-Serres, J. & Chang, R. (2005). Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals of botany, 96(4), 507-518.
  • Bange, M., Milroy, S. & Thongbai, P. (2004). Growth and yield of cotton in response to waterlogging. Field Crops Research, 88(2-3), 129-142.
  • Bennett, J. (2003). Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology. Water productivity in agriculture: limits and opportunities for improvement (pp. 103-126). Wallingford UK: CABI publishing.
  • Bhatt, R. M., Upreti, K. K., Divya, M., Bhat, S., Pavithra, C. & Sadashiva, A. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17.
  • Boyer, J. S., James, R. A., Munns, R., Condon, T. A. & Passioura, J. B. (2008). Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Functional Plant Biology, 35(11), 1172-1182.
  • Brazel, S., Barickman, T. & Sams, C. (2021). Short-term waterlogging of kale (Brassica oleracea L. var. acephala) plants causes a decrease in carotenoids and chlorophylls while increasing nutritionally important glucosinolates. InVIII International Symposium on Human Health Effects of Fruits and Vegetables-FAVHEALTH 2021 1329 (pp. 175-180).
  • Brejda, J. J., Moorman, T. B., Karlen, D. L. & Dao, T. H. (2000). Identification of regional soil quality factors and indicators I. Central and Southern High Plains. Soil Science Society of America Journal, 64(6), 2115-2124.
  • Damanik, R. I., Ismail, M. R., Shamsuddin, Z., Othman, S., Zain, A. M. & Maziah, M. (2012). Response of antioxidant systems in oxygen deprived suspension cultures of rice (Oryza sativa L.). Plant Growth Regulation, 67(1), 83-92.
  • Dehghani, H., Omidi, H. & Sabaghnia, N. (2008). Graphic analysis of trait relations of rapeseed using the biplot method. Agronomy Journal, 100(5), 1443-1449.
  • Drew, M. C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual review of plant biology, 48(1), 223-250.
  • Eftekhari, S. A., Hasandokht, M. R., Moghadam, M. R. F. F. & Kashi, A. (2010). Genetic diversity of some Iranian spinach (Spinacia oleracea L.) landraces using morphological traits. Iranian Journal of Horticultural Science, 41(1), 83-93.
  • Everitt, B. S. & Dunn, G. (2010). Applied Multivariate Data Analysis, 2nd Edition. 354.
  • Ezin, V., Pena, R. D. L. & Ahanchede, A. (2010). Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian Journal of Plant Physiology, 22, 131-142.
  • Fereidoonfar, H., Salehi-Arjmand, H., Khadivi, A. & Akramian, M. (2018). Morphological variability of sumac (Rhus coriaria L.) germplasm using multivariate analysis. Industrial Crops and Products, 120, 162-170.
  • Foyer, C. H. & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93-100.
  • Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Current opinion in plant biology, 6(3), 247-256.
  • Gibbs, J. & Greenway, H. (2003). Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology, 30(1), 1-47.
  • Grichko, V. P. & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiology and Biochemistry, 39(1), 11-17.
  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. & Kanae, S. (2013). Global flood risk under climate change. Nature climate change, 3(9), 816-821.
  • Hodgson, A. & Chan, K. (1982). The effect of short-term waterlogging during furrow irrigation of cotton in a cracking grey clay. Australian Journal of Agricultural Research, 33(1), 109-116.
  • Ishizawa, K., Murakami, S., Kawakami, Y. & Kuramochi, H. (1999). Growth and energy status of arrowhead tubers, pondweed turions and rice seedlings under anoxic conditions. Plant, Cell & Environment, 22(5), 505-514.
  • Jackson, M. & Colmer, T. (2005). Response and adaptation by plants to flooding stress. Annals of botany, 96(4), 501-505.
  • Kabiri, R., Nasibi, F. & Farahbakhsh, H. (2014). Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protection Science, 50(1), 43-51.
  • Kato, Y., Collard, B. C. Y., Septiningsih, E. M. & Ismail, A. M. (2014). Physiological analyses of traits associated with tolerance of long-term partial submergence in rice. AoB Plants, 6. https://doi.org/10.1093/aobpla/plu058.
  • Kawano, N., Ella, E., Ito, O., Yamauchi, Y. & Tanaka, K. (2002). Metabolic changes in rice seedlings with different submergence tolerance after desubmergence. Environmental and Experimental Botany, 47(3), 195-203.
  • Kawase, M. (1981). Anatomical and morphological adaptation of plants to waterlogging. Hort. Sci. 16, 8-12.
  • Kaya, C., Higgs, D., Ince, F., Amador, B. M., Cakir, A. & Sakar, E. (2003). Ameliorative effects of potassium phosphate on salt‐stressed pepper and cucumber. Journal of plant nutrition, 26(4), 807-820.
  • Kingston‐Smith, A. & Foyer, C. (2000). Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. Journal of experimental botany, 51(342), 123-130.
  • Kozlowski, T. (1997). Responses of woody plants to flooding and salinity. Tree physiology, 17(7), 490-490.
  • Kozlowski, T. T. & Pallardy, S. G. (1997). Growth control in woody plants. Elsevier.
  • Kramer, P. J. (1951). Causes of injury to plants resulting from flooding of the soil. Plant Physiology, 26(4), 722.
  • Liao, C.-T. & Lin, C.-H. (2001). Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council, Republic of China. Part B, Life Sciences, 25(3), 148-157.
  • Lichtenthaler, H. K. & Buschmann, C. (2001). Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Current protocols in food analytical chemistry, 1(1), F4. 2.1-F4. 2.6.
  • Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of botany, 78(3), 389-398.
  • Mohammadi, S. A. & Prasanna, B. (2003). Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Science, 43(4), 1235-1248.
  • Mozafari, A.-a., Ghaderi, N., Havas, F. & Dedejani, S. (2019). Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria× ananassa Duch.) under drought and salinity stresses: A study based on in vitro culture. Scientia Horticulturae, 256, 108601.
  • Panda, D. & Barik, J. (2021). Flooding tolerance in rice: Focus on mechanisms and approaches. Rice Science, 28(1), 43-57.
  • Panda, D. & Sarkar, R. K. (2013). Characterization of leaf gas exchange and anti-oxidant defense of rice (Oryza sativa L.) cultivars differing in submergence tolerance owing to complete submergence and consequent re-aeration. Agricultural Research, 2(4), 301-308.
  • Panda, D., Sharma, S. G. & Sarkar, R. K. (2008). Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquatic Botany, 88(2), 127-133.
  • Parkash, V. & Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945.
  • Patel, P. K., Singh, A. K., Tripathi, N., Yadav, D. & Hemantaranjan, A. (2014). Flooding: abiotic constraint limiting vegetable productivity. Advances in Plants and Agriculture Research, 1(3), 96-103.https://doi.org/10.15406/apar.2014.01.00016
  • Rasheed, R., Iqbal, M., Ashraf, M. A., Hussain, I., Shafiq, F., Yousaf, A. & Zaheer, A. (2018). Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato. The Journal of Horticultural Science and Biotechnology, 93(4), 385-391.
  • Rezvani, N., Sorooshzadeh, A. & Farhadi, N. (2012). Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol, 1, 517-522.
  • Sabaghnia, N., Asadi-Gharneh, H. & Janmohammadi, M. (2015). Genetic diversity of spinach (Spinacia oleracea L.) landraces collected in Iran using some morphological traits. Acta agriculturae Slovenica, 103(1), 101-111.
  • Sabaghnia, N., Dehghani, H., Alizadeh, B. & Moghaddam, M. (2011). Yield analysis of rapeseed (Brassica napus L.) under water-stress conditions using GGE biplot methodology. Journal of Crop Improvement, 25(1), 26-45.
  • Saglio, P. H., Raymond, P. & Pradet, A. (1980). Metabolic activity and energy charge of excised maize root tips under anoxia: control by soluble sugars. Plant Physiology, 66(6), 1053-1057.
  • Sarkar, R. K., Reddy, J. N., Sharma, S. G. & Ismail, A. M. (2006). Physiological basis of submergence tolerance in rice and implications for crop improvement. Current Science, 91(7), 899–906. http://www.jstor.org/stable/24094287
  • Sasidharan, R., Hartman, S., Liu, Z., Martopawiro, S., Sajeev, N., van Veen, H., Yeung, E. & Voesenek, L. A. (2018). Signal dynamics and interactions during flooding stress. Plant Physiology, 176(2), 1106-1117.
  • Seymen, M. (2021). How does the flooding stress occurring in different harvest times affect the morpho-physiological and biochemical characteristics of spinach? Scientia Horticulturae, 275, 109713.
  • Seymen, M., Yavuz, D., Dursun, A., Kurtar, E. S. & Türkmen, Ö. (2019). Identification of drought-tolerant pumpkin (Cucurbita pepo L.) genotypes associated with certain fruit characteristics, seed yield, and quality. Agricultural Water Management, 221, 150-159.
  • Singh, S., Mackill, D. J. & Ismail, A. M. (2009). Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Research, 113(1), 12-23.
  • Singh, S., Mackill, D. J., & Ismail, A. M. (2014). Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene. AoB Plants, 6. https://doi.org/10.1093/aobpla/plu060.
  • Tian, G., Qi, D., Zhu, J. & Xu, Y. (2021). Effects of nitrogen fertilizer rates and waterlogging on leaf physiological characteristics and grain yield of maize. Archives of Agronomy and Soil Science, 67(7), 863-875.
  • Witham, F. H., Blaydes, D. F. & Devlin, R.M. (1971). Experiments in plant physiology. Van Nostrand Reinhold Compan, New York, USA, pp 55–56.
  • Xu, C., & Leskovar, D. I. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae, 183, 39-47.
  • Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C. & Mackill, D. J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442(7103), 705-708.
  • Yadav, D.K. & Hemantaranjan, A. (2017). Mitigating effects of paclobutrazol on flooding stress damage by shifting biochemical and antioxidant defense mechanisms in mungbean (Vigna radiata L.) at pre-flowering stage. Legume Research: An International Journal, 40(3), 453–461. https:// doi.org/10.18805/lr.v0i0.7593
  • Yan, W. & Kang, M. S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press.
  • Yan, W. & Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1), 11-20.
  • Zhigou, Z. & Derrick M, O. (2012). Physiological Mechanism of Nitrogen Mediating Cotton (Gossypium hirsutum L.) Seedlings Growth under Water-Stress Conditions. American Journal of Plant Sciences, 3(6), 721-730. http://dx.doi.org/ 10.4236/ajps.2012.36087.

Ispanakta Sel Baskını Stresine Karşı Tolerant Genotiplerin Belirlenmesi

Year 2023, , 754 - 766, 31.08.2023
https://doi.org/10.18016/ksutarimdoga.vi.1082694

Abstract

Abiotik stres faktörleri gün geçtikçe tarımsal yetiştiricilikteki olumsuz etkilerini artırmaktadır. Küresel ısınmanında etkisi ile son zamanlarda artan sel baskınları insan hayatını olumsuz etkilediği gibi bitki gelişiminde de büyük kayıplara neden olmaktadır. Bu sebeple son zamanlarda sel baskını stresine karşı tolerant bitkilerin geliştirilmesi verim ve kalite kayıplarını azaltmada en önemli yaklaşımdır. Mevcut çalışmada bazı ticari çeşit ve gen havuzunda bulunan bazı ıspanak ıslah materyallerinin agro-morfolojik ve fizyolojik özelliklerinden sel baskını stresine tolerant genotiplerin belirlenmesi amaçlanmıştır. Çalışmada, 48 adet hibrit çeşit ve S5 kademesinde olan 23 adet ıspanak genotiplerine fide döneminde 13 günlük sel baskını stresi uygulanmıştır. Tam sulanan kontrol bitkileri ile kıyaslanan stres koşullarında bitki gelişiminin olumsuz etkilenmesinin yanı sıra ıslah hatlarında ve ticari çeşitlerin toleranslılığının farklı olduğu tespit edilmiştir. Elde edilen sonuçlar ışığında, ticari çeşitlerden SWA0760 F1 sel baskını stresine en tolerant çeşit olarak bulunurken, ıslah hatlarından 14, 9, 21, 15, 4 ve 10 numaralı genotipler sel baskını stresine tolerant ümitvar genotipler olarak bulunmuştur. Sonuç olarak, elde edilen genotiplerin hibrit çeşit ıslahında ebeveyn olarak melezleme programlarına dahil edilmesi sel baskını stresine tolerant çeşit geliştirilmesinde önemli katkılar sağlayacağı öngörülmektedir.

References

  • Arif, M., Jatoi, S. A., Rafique, T. & Ghafoor, A. (2013). Genetic divergence in indigenous spinach genetic resources for agronomic performance and implication of multivariate analyses for future selection criteria. J Sci Technol Dev, 32(1), 7-15.
  • Arnell, N.W. & Liv, C. (2001). Hydrology and water resources. In: McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S. (Eds.), IPPC Climate Change 2001: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, pp. 191–233
  • Bailey-Serres, J. & Chang, R. (2005). Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals of botany, 96(4), 507-518.
  • Bange, M., Milroy, S. & Thongbai, P. (2004). Growth and yield of cotton in response to waterlogging. Field Crops Research, 88(2-3), 129-142.
  • Bennett, J. (2003). Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology. Water productivity in agriculture: limits and opportunities for improvement (pp. 103-126). Wallingford UK: CABI publishing.
  • Bhatt, R. M., Upreti, K. K., Divya, M., Bhat, S., Pavithra, C. & Sadashiva, A. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17.
  • Boyer, J. S., James, R. A., Munns, R., Condon, T. A. & Passioura, J. B. (2008). Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Functional Plant Biology, 35(11), 1172-1182.
  • Brazel, S., Barickman, T. & Sams, C. (2021). Short-term waterlogging of kale (Brassica oleracea L. var. acephala) plants causes a decrease in carotenoids and chlorophylls while increasing nutritionally important glucosinolates. InVIII International Symposium on Human Health Effects of Fruits and Vegetables-FAVHEALTH 2021 1329 (pp. 175-180).
  • Brejda, J. J., Moorman, T. B., Karlen, D. L. & Dao, T. H. (2000). Identification of regional soil quality factors and indicators I. Central and Southern High Plains. Soil Science Society of America Journal, 64(6), 2115-2124.
  • Damanik, R. I., Ismail, M. R., Shamsuddin, Z., Othman, S., Zain, A. M. & Maziah, M. (2012). Response of antioxidant systems in oxygen deprived suspension cultures of rice (Oryza sativa L.). Plant Growth Regulation, 67(1), 83-92.
  • Dehghani, H., Omidi, H. & Sabaghnia, N. (2008). Graphic analysis of trait relations of rapeseed using the biplot method. Agronomy Journal, 100(5), 1443-1449.
  • Drew, M. C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual review of plant biology, 48(1), 223-250.
  • Eftekhari, S. A., Hasandokht, M. R., Moghadam, M. R. F. F. & Kashi, A. (2010). Genetic diversity of some Iranian spinach (Spinacia oleracea L.) landraces using morphological traits. Iranian Journal of Horticultural Science, 41(1), 83-93.
  • Everitt, B. S. & Dunn, G. (2010). Applied Multivariate Data Analysis, 2nd Edition. 354.
  • Ezin, V., Pena, R. D. L. & Ahanchede, A. (2010). Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian Journal of Plant Physiology, 22, 131-142.
  • Fereidoonfar, H., Salehi-Arjmand, H., Khadivi, A. & Akramian, M. (2018). Morphological variability of sumac (Rhus coriaria L.) germplasm using multivariate analysis. Industrial Crops and Products, 120, 162-170.
  • Foyer, C. H. & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93-100.
  • Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Current opinion in plant biology, 6(3), 247-256.
  • Gibbs, J. & Greenway, H. (2003). Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology, 30(1), 1-47.
  • Grichko, V. P. & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiology and Biochemistry, 39(1), 11-17.
  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. & Kanae, S. (2013). Global flood risk under climate change. Nature climate change, 3(9), 816-821.
  • Hodgson, A. & Chan, K. (1982). The effect of short-term waterlogging during furrow irrigation of cotton in a cracking grey clay. Australian Journal of Agricultural Research, 33(1), 109-116.
  • Ishizawa, K., Murakami, S., Kawakami, Y. & Kuramochi, H. (1999). Growth and energy status of arrowhead tubers, pondweed turions and rice seedlings under anoxic conditions. Plant, Cell & Environment, 22(5), 505-514.
  • Jackson, M. & Colmer, T. (2005). Response and adaptation by plants to flooding stress. Annals of botany, 96(4), 501-505.
  • Kabiri, R., Nasibi, F. & Farahbakhsh, H. (2014). Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protection Science, 50(1), 43-51.
  • Kato, Y., Collard, B. C. Y., Septiningsih, E. M. & Ismail, A. M. (2014). Physiological analyses of traits associated with tolerance of long-term partial submergence in rice. AoB Plants, 6. https://doi.org/10.1093/aobpla/plu058.
  • Kawano, N., Ella, E., Ito, O., Yamauchi, Y. & Tanaka, K. (2002). Metabolic changes in rice seedlings with different submergence tolerance after desubmergence. Environmental and Experimental Botany, 47(3), 195-203.
  • Kawase, M. (1981). Anatomical and morphological adaptation of plants to waterlogging. Hort. Sci. 16, 8-12.
  • Kaya, C., Higgs, D., Ince, F., Amador, B. M., Cakir, A. & Sakar, E. (2003). Ameliorative effects of potassium phosphate on salt‐stressed pepper and cucumber. Journal of plant nutrition, 26(4), 807-820.
  • Kingston‐Smith, A. & Foyer, C. (2000). Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. Journal of experimental botany, 51(342), 123-130.
  • Kozlowski, T. (1997). Responses of woody plants to flooding and salinity. Tree physiology, 17(7), 490-490.
  • Kozlowski, T. T. & Pallardy, S. G. (1997). Growth control in woody plants. Elsevier.
  • Kramer, P. J. (1951). Causes of injury to plants resulting from flooding of the soil. Plant Physiology, 26(4), 722.
  • Liao, C.-T. & Lin, C.-H. (2001). Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council, Republic of China. Part B, Life Sciences, 25(3), 148-157.
  • Lichtenthaler, H. K. & Buschmann, C. (2001). Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Current protocols in food analytical chemistry, 1(1), F4. 2.1-F4. 2.6.
  • Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of botany, 78(3), 389-398.
  • Mohammadi, S. A. & Prasanna, B. (2003). Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Science, 43(4), 1235-1248.
  • Mozafari, A.-a., Ghaderi, N., Havas, F. & Dedejani, S. (2019). Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria× ananassa Duch.) under drought and salinity stresses: A study based on in vitro culture. Scientia Horticulturae, 256, 108601.
  • Panda, D. & Barik, J. (2021). Flooding tolerance in rice: Focus on mechanisms and approaches. Rice Science, 28(1), 43-57.
  • Panda, D. & Sarkar, R. K. (2013). Characterization of leaf gas exchange and anti-oxidant defense of rice (Oryza sativa L.) cultivars differing in submergence tolerance owing to complete submergence and consequent re-aeration. Agricultural Research, 2(4), 301-308.
  • Panda, D., Sharma, S. G. & Sarkar, R. K. (2008). Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquatic Botany, 88(2), 127-133.
  • Parkash, V. & Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945.
  • Patel, P. K., Singh, A. K., Tripathi, N., Yadav, D. & Hemantaranjan, A. (2014). Flooding: abiotic constraint limiting vegetable productivity. Advances in Plants and Agriculture Research, 1(3), 96-103.https://doi.org/10.15406/apar.2014.01.00016
  • Rasheed, R., Iqbal, M., Ashraf, M. A., Hussain, I., Shafiq, F., Yousaf, A. & Zaheer, A. (2018). Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato. The Journal of Horticultural Science and Biotechnology, 93(4), 385-391.
  • Rezvani, N., Sorooshzadeh, A. & Farhadi, N. (2012). Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol, 1, 517-522.
  • Sabaghnia, N., Asadi-Gharneh, H. & Janmohammadi, M. (2015). Genetic diversity of spinach (Spinacia oleracea L.) landraces collected in Iran using some morphological traits. Acta agriculturae Slovenica, 103(1), 101-111.
  • Sabaghnia, N., Dehghani, H., Alizadeh, B. & Moghaddam, M. (2011). Yield analysis of rapeseed (Brassica napus L.) under water-stress conditions using GGE biplot methodology. Journal of Crop Improvement, 25(1), 26-45.
  • Saglio, P. H., Raymond, P. & Pradet, A. (1980). Metabolic activity and energy charge of excised maize root tips under anoxia: control by soluble sugars. Plant Physiology, 66(6), 1053-1057.
  • Sarkar, R. K., Reddy, J. N., Sharma, S. G. & Ismail, A. M. (2006). Physiological basis of submergence tolerance in rice and implications for crop improvement. Current Science, 91(7), 899–906. http://www.jstor.org/stable/24094287
  • Sasidharan, R., Hartman, S., Liu, Z., Martopawiro, S., Sajeev, N., van Veen, H., Yeung, E. & Voesenek, L. A. (2018). Signal dynamics and interactions during flooding stress. Plant Physiology, 176(2), 1106-1117.
  • Seymen, M. (2021). How does the flooding stress occurring in different harvest times affect the morpho-physiological and biochemical characteristics of spinach? Scientia Horticulturae, 275, 109713.
  • Seymen, M., Yavuz, D., Dursun, A., Kurtar, E. S. & Türkmen, Ö. (2019). Identification of drought-tolerant pumpkin (Cucurbita pepo L.) genotypes associated with certain fruit characteristics, seed yield, and quality. Agricultural Water Management, 221, 150-159.
  • Singh, S., Mackill, D. J. & Ismail, A. M. (2009). Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Research, 113(1), 12-23.
  • Singh, S., Mackill, D. J., & Ismail, A. M. (2014). Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene. AoB Plants, 6. https://doi.org/10.1093/aobpla/plu060.
  • Tian, G., Qi, D., Zhu, J. & Xu, Y. (2021). Effects of nitrogen fertilizer rates and waterlogging on leaf physiological characteristics and grain yield of maize. Archives of Agronomy and Soil Science, 67(7), 863-875.
  • Witham, F. H., Blaydes, D. F. & Devlin, R.M. (1971). Experiments in plant physiology. Van Nostrand Reinhold Compan, New York, USA, pp 55–56.
  • Xu, C., & Leskovar, D. I. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae, 183, 39-47.
  • Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C. & Mackill, D. J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442(7103), 705-708.
  • Yadav, D.K. & Hemantaranjan, A. (2017). Mitigating effects of paclobutrazol on flooding stress damage by shifting biochemical and antioxidant defense mechanisms in mungbean (Vigna radiata L.) at pre-flowering stage. Legume Research: An International Journal, 40(3), 453–461. https:// doi.org/10.18805/lr.v0i0.7593
  • Yan, W. & Kang, M. S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press.
  • Yan, W. & Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1), 11-20.
  • Zhigou, Z. & Derrick M, O. (2012). Physiological Mechanism of Nitrogen Mediating Cotton (Gossypium hirsutum L.) Seedlings Growth under Water-Stress Conditions. American Journal of Plant Sciences, 3(6), 721-730. http://dx.doi.org/ 10.4236/ajps.2012.36087.
There are 62 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Yeşim Dal 0000-0002-3806-6465

Musa Seymen 0000-0002-2742-137X

Ayşe Özgür Uncu 0000-0001-6435-579X

Önder Türkmen 0000-0003-3218-6551

Banu Çiçek Arı 0000-0002-1578-8561

Early Pub Date May 15, 2023
Publication Date August 31, 2023
Submission Date March 4, 2022
Acceptance Date June 1, 2022
Published in Issue Year 2023

Cite

APA Dal, Y., Seymen, M., Uncu, A. Ö., Türkmen, Ö., et al. (2023). Determination of Tolerant Genotypes Against Flood Stress in Spinach. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(4), 754-766. https://doi.org/10.18016/ksutarimdoga.vi.1082694

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149