Research Article
BibTex RIS Cite

Brassicaceae, Chenopodiaceae ve Urticaceae Familyalarına Ait Bazı Bitki Türlerinin Arbusküler Mikorhizal Fungus (AMF) ve Rhizobacteria Arasındaki İlişki

Year 2022, , 1350 - 1360, 30.12.2022
https://doi.org/10.18016/ksutarimdoga.vi.1096156

Abstract

Bu çalışma, AMF ile simbiyotik yaşam oluşumunu olumsuz etkileyen Brassicaceae, Chenopodiaceae ve Urticaceae familyalarından bazı bitkilerin gelişimini teşvik eden rizobakterilerin (PGPR) arbusküler mikorizal fungus (AMF) oluşumuna etkilerini araştırmak amacıyla yapılmıştır. Bitki gelişimine katkıda bulunan ve çeşitli konukçularda ‘mikorhizal helper’ olarak adlandırılan iki PGPR izolatı ilk aşamada belirlenmiş; daha sonra AMF türleriyle [Gigaspora margarita ve ticari AMF (ERS)] birlikte üç bitki türüne uygulanmıştır. Çalışma sonucunda; AMF x PGPR interaksiyonun ıspanak, karnabahar ve ısırgan otunda bitki gelişim parametreleri açısından teşvik edici olduğu ortaya konmuştur. Bitki türlerine göre PGPR’in kök kolonizasyonuna etkisi değişkenlik göstermiştir. En yüksek kök kolonizasyon oranı, ticari AMF + ıspanak kombinasyonundan elde edilmiştir. Ticari AMF’nin tek başına veya PGPR ile interaksiyonu karnabahar ve ıspanağın toprak spor yoğunluğunu ve mikorhizal bağımlılığını arttırdığı görülmüştür. Bitkilerde toplam fosfor içeriği açısından karnabahar ve ısırgan otu bitkilerinde kontrol grubuna göre önemli bir farklılık olmadığı, ıspanak bitkilerinde ise sadece bir uygulama grubunun (G. margarita x PGPR) fosfor içeriğinde artış olduğu ortaya konmuştur.

References

  • Akköprü A, Demir S 2005. Biological control of fusarium wilt in tomato caused by fusarium oxysporum f.sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology 9: 544-550.
  • Akköprü A, Demir S, Ozaktan H 2005. Effect of Different Fluorescent Pseudomonas (FP) isolates and an Arbuscular Mycorrhizal Fungus (AMF) Glomus intraradices on Some of the Morphological Parameters of Tomato and Fusarium Wilt (Fusarium oxysporum f.sp. lycopersici (Sacc) Syd. Et Hans.) in Tomato. Journal of Agricultural Sciences 2: 131-138.
  • Akköprü A, Akat Ş, Özaktan H, Gül A, Akbaba M 2021. The long-term colonization dynamics of endophytic bacteria in cucumber plants, and their effects on yield, fruit quality and Angular Leaf Spot Disease. Scientia Horticulturae 282: 110005
  • Barton CJ 1948. Photometric analysis of phosphate rock. Analytical Chemistry 11: 1068-1073.
  • Bayrak D, Okmen G 2014. Plant Growth Promoting Rhizobacteria. Journal of Anatolian Natural Sciences 1: 1-13.
  • Bellgard SE., Williams SE 2011. Response of mycorrhizal diversity to current climatic changes. Diversity 3: 8-90.
  • Brundrett MC 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 2: 37-77.
  • Cakmakci O, Cakmakci T, Durak Demirer E, Demir S, Sensoy S 2017. Effects of arbuscular mycorrhizal fungi in melon (Cucumis melo l.) seedling under deficit irrigation. Fresenius Environmental Bulletin 12: 7513-7520.
  • Ciftci G, Altınok HH 2019. Effects of Plant Growth Promoting Rhizobacteria Treatments of Eggplant Seeds Against Grey Mold atments of Eggplant Seeds Against Grey Mold (Botrytis cinerea Pers.: Fr.) Disease. Journal of Agriculture and Nature 22: 421-429.
  • Declerck S, Plenchette C, Strullu D. G 1995. Mycorrhizal dependency of banana (Musa acuminate, AAA group) cultivar. Plant Soil 176: 183-187.
  • Demir S 1998. Studies on the formation of vesicular-arbuscular mycorrhizae (Vam) in some culture plants and it is role on plant growth and resistance. Ege University, PhD Thesis.
  • Egamberdieva D, Adesemoye AO 2016. Improvement of crop protection and yield in hostile agroecological conditions with PGPR-based biofertilizer formulations. In Bioformulations: for Sustainable Agriculture, 199-211.
  • Erzurumlu GS, Kara EE 2014. Studies on Mycorrhiza in Turkey. Turkish Journal of Scientific Reviews 2: 55-65.
  • Fiorilli V, Vallino M, Biselli C, Faccio A, Bagnaresi P, Bonfante P 2015. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Frontiers in Plant Science, 6: 636.
  • Giovannetti M, Mosse B 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.
  • Gunes H, Demir S, Demirer Durak, E 2019. Relationship Between Brassicaceae, Chenopodiaceae and Urticaceae Families with Arbuscular Mycorrhizal Fungi (AMF). Journal of Agriculture and Nature 22: 109-115.
  • Hoagland DR, Arnon DI 1950. The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station, University of California, Berkeley Calif, United States of America
  • Kloepper JW 2003. A review of mechanisms for plant growth promotion by PGPR. In 6th International PGPR Workshop 5-10 October 2003, India
  • Lambers HP, Teste F 2013. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell and Environment 36: 1911-1915.
  • Pérez-de-Luque A, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD 2017. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Scientific reports 1: 16409.
  • Peterson RL., Farquhar ML 1994. Mycorrhizas-integrated development between root and fungi. Mycologia 3: 311-326.
  • Phillips JM, Hayman DS 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society 1: 158-IN18.
  • Poveda J, Hermosa R, Monte E, Nicolás C 2019. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Scientific Reports 9: 1150.
  • SAS 2018. SAS/SASTAT. Statistical analysis system for Windows. Realese 9.4. SAS Institute Inc.
  • Smith SE., Read DJ 2008. Mycorrhizal symbiosis. 3 th Ed., Academic Press, London, pp. 800
  • Sosa-Rodriguez T, Declerck S, Granet F, Gaurel S, Van Damme E J, Boulois HD 2013. Hevea brasiliensis and Urtica dioica, impact the in vitro mycorrhization of neighbouring Medicago truncatula seedlings. Symbiosis Journal 60: 123-132.
  • Soylu S 2011. Possible Use of Plant Growth Promoting Rhizobacteria Against White Mould Disease (Sclerotinia sclerotiorum (Lib.) de Bary) in Lettuce Plant (Lactuca sativa L.). Alatarım 2: 85-93.
  • Telek U, Akıncı İE, Kusek M 2019. The Effects of Rhizobacteria Strains on Yield and Plant Characteristics of Red Hot Pepper (Capsicum annuum L.). Journal of Agriculture and Nature 1: 62-70.
  • Tester M, Smith SE, Smith FA 1987. The phenomenon of" non-mycorrhizal" plants. Canadian journal of botany 3: 419-431.
  • Turhan Ş 2005. Sustainability in Agriculture and Organic Farming. Turkish Journal of Agricultural Economics, 1: 13-24.
  • Tushar K, Satish B 2013. Incidences of arbuscular mycorrhizal fungi (AMF)’in urban farming of mumbai and suburbs. International Research Journal of Environment Sciences, 1: 12-18.
  • Vargas R, Kenney AM, Bilinski T 2019. Variable Influences of Water Availability and Rhizobacteria on the Growth of Schizachyrium scoparium (Little Bluestem) at Different Ages. Frontiers in microbiology, 10: 860.
  • Vierheilig H, Iseli B, Alt M, Raikhel N, Wiemken A, Boller T 1996. Resistance of Urtica dioica to mycorrhizal colonization: a possible involvement of Urtica dioica agglutinin. Plant and Soil, 183: 131–136.
  • Zuccarini P, Savé R 2016. Three species of arbuscular mycorrhizal fungi confer different levels of resistance to water stress in Spinacia oleracea L. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 5: 851-854.

Relationship between Some Plants Species Belonging to Brassicaceae, Chenopodiaceae and Urticaceae Families, and Arbuscular Mycorrhizal Fungi and Rhizobacteria

Year 2022, , 1350 - 1360, 30.12.2022
https://doi.org/10.18016/ksutarimdoga.vi.1096156

Abstract

This study was conducted to investigate the effects of some plant growth-promoting rhizobacteria (PGPR) on the arbuscular mycorrhizal fungi (AMF) formation on [Brassica oleracea (cauliflower), Spinacia oleracea (spinach) ,and Urtica urens (stinging nettle)] belonging to Brassicaceae, Chenopodiaceae and Urticaceae families, which are known to have a negative influence on the symbiotic life formation with AMF. Two PGPR isolates that contributed to the plant's growth and served as a “mycorrhizal helper” in various hosts were predetermined at the initial stage; then they were applied to three plant species with AMF species [Gigaspora margarita and commercial AMF (ERS)]. The obtained results revealed that combined AMF x PGPR treatments improved the growth and morphological development parameters of cauliflower, spinach, and nettle plants. PGPR bacteria had different effects on AMF root colonization depending on the plant species. The highest root colonization rate was achieved in spinach plants with the commercial AMF treatments. Commercial AMF isolate, alone or in combination with PGPR strains, was also found to increase AMF spore density and mycorrhizal dependency in cauliflower and spinach plants. There was no significant difference in total phosphorus content in cauliflower and nettle compared to the control group, and only one application group (G. margarita x PGPR) in spinach plants had an increase in phosphorus content.

References

  • Akköprü A, Demir S 2005. Biological control of fusarium wilt in tomato caused by fusarium oxysporum f.sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology 9: 544-550.
  • Akköprü A, Demir S, Ozaktan H 2005. Effect of Different Fluorescent Pseudomonas (FP) isolates and an Arbuscular Mycorrhizal Fungus (AMF) Glomus intraradices on Some of the Morphological Parameters of Tomato and Fusarium Wilt (Fusarium oxysporum f.sp. lycopersici (Sacc) Syd. Et Hans.) in Tomato. Journal of Agricultural Sciences 2: 131-138.
  • Akköprü A, Akat Ş, Özaktan H, Gül A, Akbaba M 2021. The long-term colonization dynamics of endophytic bacteria in cucumber plants, and their effects on yield, fruit quality and Angular Leaf Spot Disease. Scientia Horticulturae 282: 110005
  • Barton CJ 1948. Photometric analysis of phosphate rock. Analytical Chemistry 11: 1068-1073.
  • Bayrak D, Okmen G 2014. Plant Growth Promoting Rhizobacteria. Journal of Anatolian Natural Sciences 1: 1-13.
  • Bellgard SE., Williams SE 2011. Response of mycorrhizal diversity to current climatic changes. Diversity 3: 8-90.
  • Brundrett MC 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 2: 37-77.
  • Cakmakci O, Cakmakci T, Durak Demirer E, Demir S, Sensoy S 2017. Effects of arbuscular mycorrhizal fungi in melon (Cucumis melo l.) seedling under deficit irrigation. Fresenius Environmental Bulletin 12: 7513-7520.
  • Ciftci G, Altınok HH 2019. Effects of Plant Growth Promoting Rhizobacteria Treatments of Eggplant Seeds Against Grey Mold atments of Eggplant Seeds Against Grey Mold (Botrytis cinerea Pers.: Fr.) Disease. Journal of Agriculture and Nature 22: 421-429.
  • Declerck S, Plenchette C, Strullu D. G 1995. Mycorrhizal dependency of banana (Musa acuminate, AAA group) cultivar. Plant Soil 176: 183-187.
  • Demir S 1998. Studies on the formation of vesicular-arbuscular mycorrhizae (Vam) in some culture plants and it is role on plant growth and resistance. Ege University, PhD Thesis.
  • Egamberdieva D, Adesemoye AO 2016. Improvement of crop protection and yield in hostile agroecological conditions with PGPR-based biofertilizer formulations. In Bioformulations: for Sustainable Agriculture, 199-211.
  • Erzurumlu GS, Kara EE 2014. Studies on Mycorrhiza in Turkey. Turkish Journal of Scientific Reviews 2: 55-65.
  • Fiorilli V, Vallino M, Biselli C, Faccio A, Bagnaresi P, Bonfante P 2015. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Frontiers in Plant Science, 6: 636.
  • Giovannetti M, Mosse B 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.
  • Gunes H, Demir S, Demirer Durak, E 2019. Relationship Between Brassicaceae, Chenopodiaceae and Urticaceae Families with Arbuscular Mycorrhizal Fungi (AMF). Journal of Agriculture and Nature 22: 109-115.
  • Hoagland DR, Arnon DI 1950. The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station, University of California, Berkeley Calif, United States of America
  • Kloepper JW 2003. A review of mechanisms for plant growth promotion by PGPR. In 6th International PGPR Workshop 5-10 October 2003, India
  • Lambers HP, Teste F 2013. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell and Environment 36: 1911-1915.
  • Pérez-de-Luque A, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD 2017. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Scientific reports 1: 16409.
  • Peterson RL., Farquhar ML 1994. Mycorrhizas-integrated development between root and fungi. Mycologia 3: 311-326.
  • Phillips JM, Hayman DS 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society 1: 158-IN18.
  • Poveda J, Hermosa R, Monte E, Nicolás C 2019. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Scientific Reports 9: 1150.
  • SAS 2018. SAS/SASTAT. Statistical analysis system for Windows. Realese 9.4. SAS Institute Inc.
  • Smith SE., Read DJ 2008. Mycorrhizal symbiosis. 3 th Ed., Academic Press, London, pp. 800
  • Sosa-Rodriguez T, Declerck S, Granet F, Gaurel S, Van Damme E J, Boulois HD 2013. Hevea brasiliensis and Urtica dioica, impact the in vitro mycorrhization of neighbouring Medicago truncatula seedlings. Symbiosis Journal 60: 123-132.
  • Soylu S 2011. Possible Use of Plant Growth Promoting Rhizobacteria Against White Mould Disease (Sclerotinia sclerotiorum (Lib.) de Bary) in Lettuce Plant (Lactuca sativa L.). Alatarım 2: 85-93.
  • Telek U, Akıncı İE, Kusek M 2019. The Effects of Rhizobacteria Strains on Yield and Plant Characteristics of Red Hot Pepper (Capsicum annuum L.). Journal of Agriculture and Nature 1: 62-70.
  • Tester M, Smith SE, Smith FA 1987. The phenomenon of" non-mycorrhizal" plants. Canadian journal of botany 3: 419-431.
  • Turhan Ş 2005. Sustainability in Agriculture and Organic Farming. Turkish Journal of Agricultural Economics, 1: 13-24.
  • Tushar K, Satish B 2013. Incidences of arbuscular mycorrhizal fungi (AMF)’in urban farming of mumbai and suburbs. International Research Journal of Environment Sciences, 1: 12-18.
  • Vargas R, Kenney AM, Bilinski T 2019. Variable Influences of Water Availability and Rhizobacteria on the Growth of Schizachyrium scoparium (Little Bluestem) at Different Ages. Frontiers in microbiology, 10: 860.
  • Vierheilig H, Iseli B, Alt M, Raikhel N, Wiemken A, Boller T 1996. Resistance of Urtica dioica to mycorrhizal colonization: a possible involvement of Urtica dioica agglutinin. Plant and Soil, 183: 131–136.
  • Zuccarini P, Savé R 2016. Three species of arbuscular mycorrhizal fungi confer different levels of resistance to water stress in Spinacia oleracea L. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 5: 851-854.
There are 34 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Hasret Güneş 0000-0003-3155-2695

Semra Demir 0000-0002-0177-7677

Ahmet Akköprü 0000-0002-1526-6093

Publication Date December 30, 2022
Submission Date April 4, 2022
Acceptance Date August 16, 2022
Published in Issue Year 2022

Cite

APA Güneş, H., Demir, S., & Akköprü, A. (2022). Relationship between Some Plants Species Belonging to Brassicaceae, Chenopodiaceae and Urticaceae Families, and Arbuscular Mycorrhizal Fungi and Rhizobacteria. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(6), 1350-1360. https://doi.org/10.18016/ksutarimdoga.vi.1096156

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149