Research Article
BibTex RIS Cite

Akdeniz Bölgesi’nden Beş Asteraceae Türünün Biyoaktif Potansiyeli ve Fenolik Profili Üzerine Karşılaştırmalı Bir Değerlendirme

Year 2024, , 56 - 67, 28.02.2024
https://doi.org/10.18016/ksutarimdoga.vi.1140934

Abstract

Besin değerinin yanısıra biyoaktif özellikleri de olan bitkiler son yıllarda oldukça yoğun araştırılmaktadır. Tür çeşitliliği bakımından çiçekli bitkilerin en zengin familyası olan Asteraceae çoğu sebze ve bitki çayı olarak tüketilen ve biyoaktif bileşiklerce zengin olan birçok yabani tür içerir. Bu çalışmada, Calendula arvensis, Cichorium intybus subsp. intybus, Glebionis coronaria, Scolymus hispanicus ve Tragopogon porrifolius subsp. longirostris türlerinin radikal süpürücü, antibakteriyel ve fitotoksik aktivitesi ile fenolik içerikleri araştırıldı. Sonuç olarak C. intybus, G. coronaria ve S. hispanicus ekstraktları diğerlerinden daha yüksek 2,2-difenil-1-pikril-hidrazil radikali süpürücü aktivite gösterdi (P<0.05). En yüksek süperoksit radikali süpürücü aktivite ve gallik aside eşdeğer toplam fenolik madde G. coronaria ekstraktında gözlendi. En yüksek kateşine eşdeğer toplam flavonoid miktarı sırasıyla C. intybus ve S. hispanicus ekstraktlarında gözlendi. Yüksek Basınçlı Sıvı Kromatografi analizleri ekstraktların çeşitli düzeylerde fenolik asitler ve kuersetin içerdiğini gösterdi. C. intybus, S. hispanicus ve T. porrifolius ekstraktları hem gram-pozitif (Listeria monocytogenes ve Staphylococcus aureus) hem de gram-negatif (Salmonella enterica subp. enterica ve Escherichia coli) bakterilerin büyümesini inhibe etti (Minimal İnhibitör Konsantrasyon = 4 mg mL1). Gallik asidin (pozitif kontrol) bütün konsantrasyonları ile C. arvensis, S. hispanicus ve T. porrifolius’un 4 g L1 konsantrasyonları tere (Lepidium sativum L.) fideleri üzerinde şiddetli inhibisyon gösterdi.

References

  • Abbas, Z. K., Saggu, S., Sakeran, M. I., Zidan, N., Rehman, H.,  Ansari, A. A. (2014). Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi Journal of Biological Science, 22, 322-326. https://doi.org/10.1016/ j.sjbs.2014.11.015
  • Abdalla, M. A.,  Zidorn, C. (2020). The genus Tragopogon (Asteraceae): A review of its traditional uses, phytochemistry, and pharmacological properties. Journal of Ethnopharmacology, 250, 112466. https://doi.org/ 10.1016/j.jep.2019.112466
  • Abdelgaleil, S. A. M., Saad, M. M. G., Ariefta, N. R.,  Shiono, Y. (2020). Antimicrobial and phytotoxic activities of secondary metabolites from Haplophyllum tuberculatum and Chrysanthemum coronarium. South African Journal of Botany, 128, 35–41. https://doi.org/10.1016/j.sajb.2019.10.005
  • Bakour, M., Campos, M. G., Imtara, H.,  Lyoussi, B. (2020). Antioxidant content and identification of phenolic/flavonoid compounds in the pollen of fourteen plants using HPLC-DAD. Journal of Apicultural Research, 59, 35–41. https://doi.org/ 10.1080/00218839.2019.1675336
  • Bardaweel, S. K., Hudaib, M. M., Tawaha, K. A.,  Bashatwah, R. M. (2015). Studies on the in vitro antiproliferative, antimicrobial, antioxidant, and acetylcholinesterase inhibition activities associated with Chrysanthemum coronarium essential oil. Evidence-Based Complementary and Alternative Medicine, 790838, 1-6. https://doi.org/10.1155/ 2015/790838
  • Batish, D. R., Singh, H. P., Kaur, S., Kohli, R. K.,  Yadav, S. S. (2008). Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). Journal of Plant Physiology, 165, 297-305. https://doi.org/ 10.1016/j.jplph.2007.05.003
  • Begum, K., Shammi, M., Hasan, N., Asaduzzaman, Md., Appiah, K. S.,  FUJII, Y. (2019). Potential allelopathic candidates for land use and possible sustainable weed management in South Asian ecosystem. Sustainability (Switzerland), 11(2649), 1-18. https://doi.org/10.3390/su11092649
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  • Brand-Williams, W., Cuvelier, M. E.,  Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25-30. https://doi.org/10.1016/ S0023-6438(95)80008-5
  • Caponio, F., Alloggio. V.,  Gomes, T. (1999). Phenolic compounds of virgin olive oil: Influence of paste preparation techniques. Food Chemistry, 64, 203-209. https://doi.org/10.1016/S0308-8146(98)00146-0
  • Chon, S. U., Jang, H. G., Kim, D. K., Kim, Y. M., Boo, H. O.,  Kim, Y. J. (2005). Allelopathic potential in lettuce (Lactuca sativa L.) plants. Scientia Horticulturae, 106, 309-317. https://doi.org/ 10.1016/j.scienta.2005.04.005
  • Chon, S. U., Kim, Y. M.,  Lee, J. C. (2003). Herbicidal potential and quantification of causative allelochemicals from several Compositae weeds. Weed Research, 43, 444-450. https://doi.org/ 10.1046/j.0043-1737.2003.00361.x
  • D’Amato, S., Serio, A., López, C. C.,  Paparella, A. (2018). Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control, 86, 126-137. https://doi.org/10.1016/ j.foodcont.2017.10.030
  • Dalar, A.,  Konczak I 2014. Cichorium intybus from Eastern Anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. Industrial Crops and Products, 60, 79-85. https://doi.org/10.1016/j.indcrop.2014.05.043
  • Davis, P. H, (Ed.). (1965-1985). Flora of Turkey and the East Aegean Islands. Vol: 1-9. Edinburgh Univ. Press. Edinburgh.
  • Dehkordi, S. S., Tajik, H., Moradi, M.,  Khalighi-Sigaroodi, F. (2010). Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food and Chemical Toxicology, 48, 1562-1567. https://doi.org/10.1016/ j.fct.2010.03.025
  • Ercetin, T., Senol, F. S., Orhan, I. E.,  Toker, G. (2012). Comparative assessment of antioxidant and cholinesterase inhibitory properties of the marigold extracts from Calendula arvensis L. and Calendula officinalis L. Industrial Crops and Products, 36, 203-208. https://doi.org/ 10.1016/j.indcrop. 2011.09.007
  • Faustino, M. V., Pinto, D. C. G. A., Gonçalves, M. J., Salgueiro, L., Silveira, P.,  Silva, A. M. S. (2018). Calendula L. species polyphenolic profile and in vitro antifungal activity. Journal of Functional Foods, 45, 254-267. https://doi.org/10.1016/ j.jff.2018.04.013
  • Gür, M., Verep, D., Güneyi, K., Güder, A.,  Altuner, E. M. (2017). Determination of some flavonoids and antimicrobial behaviour of some plants’ extracts. Indian Journal of Pharmaceutical Education and Research, 51, S225-S229. https://doi.org/10.5530/ ijper.51.3s.18
  • Harput, U. S., Genc, Y.,  Saracoglu, I. (2012). Cytotoxic and antioxidative activities of Plantago lagopus L. and characterization of its bioactive compounds. Food and Chemical Toxicology, 50, 1554-1559. https://doi.org/10.1016/j.fct.2012.01.019
  • Heimler, D., Isolani, L., Vignolini, P.,  Romani, A. (2009). Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chemistry, 114, 765-770. https://doi.org/10.1016/j.foodchem.2008.10.010
  • Hosni, K., Hassen, I., Sebei, H.,  Casabianca, H. (2013). Secondary metabolites from Chrysanthemum coronarium (Garland) flowerheads: Chemical composition and biological activities. Industrial Crops and Products, 44, 263-271. https://doi.org/10.1016/j.indcrop.2012.11.033
  • Jamal, M. A. H. M., Moniruzzaman, M., Shaheen, Md. Z., Kamruzzaman, M., Rashid, M., Mahmud, Md. L., Khan, N. A., Pervin, H.,  Sharif, I. H. (2014). Analysis of antimicrobial activity of Calendula arvensis against bacterial pathogens. International Journal of Phytotheraphy Research, 4(2), 10-15.
  • Kadioğlu, İ.,  Yanar, Y. (2004). Allelopathic effects of plant extracts against seed germination of some weeds. Asian Journal of Plant Sciences, 3(4), 472-475. https://scialert.net/abstract/ ?doi=ajps.2004. 472.475
  • Kandil, Z. A., Esmat, A., El-Din, R. S.,  Ezzat, S. M. (2020). Anti-inflammatory activity of the lipophilic metabolites from Scolymus hispanicus L. South African Journal of Botany, 131, 43-50. https://doi.org/10.1016/j.sajb.2020.01.022
  • Kemper, K. J. (1999). Calendula (Calendula officinalis). Medicinal Herbs in Primary Care. The Longwood Herbal Task Force. http://www.mcp.edu/ herbal/default.htm 1–13. https://doi.org/10.1016/ b978-0-323-84676-9.00034-9
  • Khan, R., Khan, M. A.,  Waqas, M. (2012). Bioherbicidal activity of some winter weeds against some crops. Pakistan Journal of Weed Science Research, 18(4), 561-569.
  • Klančnik, A., Piskernik, S., Jeršek, B.,  Možina, S. S. (2010). Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods, 81, 121-126. https://doi.org/10.1016/j.mimet. 2010.02.004
  • Kunchandy, E.,  Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58, 237-240. https://doi.org/10.1016/0378-5173(90)90201-e
  • Lai, J. P., Lim, Y. H., Su, J., Shen, H. M.,  Ong, C. N. (2007). Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 848, 215-225. https://doi.org/10.1016/j.jchromb.2006.10.028
  • Li, X. Z., Yan, Z. Q., Pan, L., Jin, H., Yang, X. Y., Liu, J. D., He, X. F., Ren, X., Xie, M., Guo, K.,  Qin, B. (2017). Caffeic acid derivatives as growth inhibitors of Setaria viridis: Structure-activity relationships and mechanisms. Phytochemistry Letters, 20, 208-213. https://doi.org/10.1016/ j.phytol.2017.04.041
  • Mahadeva Rao, U. S., Akbar Kausar, S., Suresh Kumar, S.,  Babu Janarthanam, R. (2020). Is kaasini plant (Cichorium intybus L.) panacea to modified life style causing diseases in traditional medicine?: A review. International Medicine Journal, 27, 2-5.
  • Marmouzi, I., El Karbane, M., El Hamdani, M., Kharbach, M., Mrabti, H. N., Alami, R., Dahraoui, S., El Jemli, M., Ouzzif, Z., Cherrah, Y., Derraji, S.,  My El Abbes, F. (2017). Phytochemical and pharmacological variability in Golden Thistle functional parts: comparative study of roots, stems, leaves and flowers. Natural Product Research, 31, 2669-2674. https://doi.org/10.1080/14786419.2017. 1283494
  • Papetti, A., Maietta, M., Corana, F., Marrubini, G.,  Gazzani, G. (2017). Polyphenolic profile of green/red spotted Italian Cichorium intybus salads by RP-HPLC-PDA-ESI-MSn. Journal of Food Composition and Analysis, 63, 189-197. https://doi.org/ 10.1016/j.jfca.2017.08.010
  • Petropoulos, S. A., Fernandes, Â., Tzortzakis, N., Sokovic, M., Ciric, A., Barros, L.,  Ferreira, I. C. F. R. (2019). Bioactive compounds content and antimicrobial activities of wild edible Aster.aceae species of the Mediterranean flora under commercial cultivation conditions. Food Research International, 119, 859-868. https://doi.org/ 10.1016/j.foodres.2018.10.069
  • Petrovic, J., Stanojkovic, A., Comici L.,  Curcic, S. (2004). Antibacterial activity of Cichorium intybus. Fitoterapia, 75, 737-739. https://doi.org/10.1016/ j.fitote.2004.05.001
  • Pinho, I. A., Lopes, D. V., Martins, R. C.,  Quina, M. J. (2017). Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. Chemosphere, 185, 258-267. https://doi.org/10.1016/j.chemosphere.2017.07.002
  • Powo (2022). Royal Botanics Garden Kew. Plants of the World Online. (accessed April 13 2022) https://powo.science.kew.org/
  • Qasem, J. R. (2017). A Survey on the phytotoxicity of common weeds, wild grown species and medicinal plants on wheat. Allelopathy Journal, 42, 181-196. https://doi.org/10.26651/allelo.j./2017-42-2-1115
  • Rashed, K., Ivanišová, E.,  Kačániová, M. (2018). Evaluation of antioxidant, antimicrobial activities and phytochemical content of some Egyptian plants. International Food Research Journal, 25, 2292-2300.
  • Rayan, M., Abu-Farich, B., Basha, W., Rayan, A.,  Saleh, A. L. (2020). Correlation between antibacterial activity and free-radical scavenging: In-vitro evaluation of polar/non-polar extracts from 25 plants. Processes, 8(117), 1-12. https://doi.org/ 10.3390/pr8010117
  • Rehman, A., Ullah, N., Ullah, H.,  Ahmad, I. (2014). Antibacterial and antifungal study of Cichorium intybus. Asian Pacific Journal of Tropical Disease, 4, S943-S945. https://doi.org/10.1016/S2222-1808(14)60763-5
  • Sareedenchai, V.,  Zidorn, C. (2010). Flavonoids as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Biochemical Systematics and Ecology, 38, 935-957. https://doi.org/10.1016/ j.bse.2009.09.006
  • Scavo, A., Pandino, G., Restuccia, A.,  Mauromicale, G. (2020). Leaf extracts of cultivated cardoon as potential bioherbicide. Scientia Horticulturae, 261, 109024. https://doi.org/10.1016/j.scienta.2019. 109024
  • Shah, S., Mahmood, A., Saied, S.,  Malik, A. (2012). Analysis and phytotoxicity of oily fraction of aerial parts of Cichorium intybus. Journal of Chemical Society Pakistan, 34, 1464-1467.
  • Shaikh, T., Rub, R. A.,  Sasikumar, S. (2016). Antimicrobial screening of Cichorium intybus seed extracts. Arabian Journal of Chemistry, 9, S1569-S1573. https://doi.org/10.1016/j.arabjc.2012.04.012
  • Shilpa, K.,  Lakshmi, B. S. (2019). Influence of exogenous cinnamic acid on the production of chlorogenic acid in Cichorium intybus L cell culture. South African Journal of Botany, 125, 527-532. https://doi.org/10.1016/j.sajb.2019.01.004
  • Singleton, V. L.,  Rossi, J. A. J. (1965). Colorimetry to total phenolics with phosphomolybdic acid reagents. Americal Journal of Enology and Viticulture, 16, 144-58.
  • Sinkovič, L., Demšar, L., Žnidarčič, D., Vidrih, R., Hribar, J.,  Treutter, D. (2015). Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chemistry, 166, 507-513. https://doi.org/ 10.1016/j.foodchem.2014.06.024
  • Tabaraki, R., Nateghi, A.,  Ahmady-Asbchin, S. (2013). In vitro assessment of antioxidant and antibacterial activities of six edible plants from Iran. JAMS Journal of Acupuncture and Meridian Studies, 6, 159-162. https://doi.org/10.1016/ j.jams.2013.01.016
  • Tardugno, R., Pozzebon, M., Beggio, M., Del Turco, P.,  Pojana, G. (2018). Polyphenolic profile of Cichorium intybus L. endemic varieties from the Veneto region of Italy. Food Chemistry, 266, 175-182. https://doi.org/10.1016/j.foodchem.2018.05.085
  • Tosun, G., Yayli, B., Arslan, T., Yasar, A., Karaoglu, S. A.,  Yaylı, N. (2012). Comparative essential oil analysis of Calendula arvensis L. extracted by hydrodistillation and microwave distillation and antimicrobial activities. Asian Journal of Chemistry, 24, 1955-1958.
  • Trautmann, N. M.,  Krasny, M. E. (1998). Composting in the Classroom: Scientific Inquiry for High School Students. http://cwmi.css.cornell.edu/ compostingintheclassroom.pdf
  • Ullah, R., Ibrar, M., Shah, S.,  Hameed, I. (2012). Phytotoxic, cytotoxic and insecticidal activities of Calendula arvensis L. E3 Journal of Biotechnology and Pharmaceutical Research, 3, 104-111. http://www.e3journals.org/JBPR
  • Wan, C., Li, S., Liu, L., Chen, C.,  Fan, S. (2017). Caffeoylquinic acids from the aerial parts of Chrysanthemum coronarium L. Plants, 6, 11-16. https://doi.org/10.3390/plants6010010
  • Wang, Q., Liu, Y., Cui, J., Du, J., Chen, G.,  Liu, H. (2011). Optimization of ultrasonic-assisted extraction for herbicidal activity of chicory root extracts. Industrial Crops and Products, 34, 1429-1438. https://doi.org/10.1016/j.indcrop.2011.04.023
  • Weston, L. A.,  Duke, S. O. (2003). Weed and crop allelopathy. Critical Reviews in Plant Sciences, 22, 367-389. https://doi.org/10.1080/713610861
  • WHO (2022), World Health Organization, The top 10 causes of death (Accessed July 29 2022). https://www.who.int/news-room/fact-sheets/detail/ the-top-10-causes-of-death
  • Zhang, L., Li, Y., Liang, Y., Liang, K., Zhang, F., Xu, T., Wang, M., Song, H., Liu, X.,  Lu, B. (2019). Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chemistry, 276, 538-546. https://doi.org/ 10.1016/j.foodchem.2018.10.074
  • Zhishen, J., Mengcheng, T.,  Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.
  • Zhu, W., Liu, J., Ye, J.,  Li, G. (2017). Effects of phytotoxic extracts from peach root bark and benzoic acid on peach seedlings growth, photosynthesis, antioxidance and ultrastructure properties. Scientia Horticulturae, 215, 49-58. https://doi.org/10.1016/j.scienta.2016.12.004
  • Zidorn, C. (2008). Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry, 69, 2270-2296. https://doi.org/ 10.1016/j.phytochem. 2008.06.013

A Comparative Evaluation of Potential Bioactive Properties and Phenolic Profiles of Five Mediterranean Asteraceae Species

Year 2024, , 56 - 67, 28.02.2024
https://doi.org/10.18016/ksutarimdoga.vi.1140934

Abstract

In recent years, plants with bioactive properties as well as nutritional value have been densely researched. Asteraceae, the most species-rich family of flowering plants, includes numerous wild species most of which are consumed as bioactive compound-rich vegetables and herbal teas. In this study, radical scavenging, antibacterial, and phytotoxic activity as well as phenolic content of some Mediterranean Asteraceae species, Calendula arvensis, Cichorium intybus subsp. intybus, Glebionis coronaria, Scolymus hispanicus, and Tragopogon porrifolius subsp. longirostris, were investigated. As a result, C. intybus, G. coronaria, and S. hispanicus extracts have higher 2,2-diphenyl-1-picril-hydrazyl radical scavenging activity than that of the others (P<0.05). The highest superoxide radical scavenging activity and the highest gallic acid equivalent total phenolic content were detected in G. coronaria extract. The highest catechin equivalent total flavonoid content was found in C. intybus and S. hispanicus extracts, respectively. High-performance liquid chromatography analyses showed that the extracts contained various levels of phenolic acids and quercetin. C. intybus, S. hispanicus, and T. porrifolius extracts inhibited the growth of both gram-positive bacteria: Listeria monocytogenes and Staphylococcus aureus and gram-negative bacteria: Salmonella enterica subp. enterica and Escherichia coli. (Minimal inhibitory concentration = 4 mg mL1). All the concentrations of gallic acid (as a positive control) and 4 g L1 concentrations of C. arvensis, S. hispanicus and T. porrifolius extracts showed severe inhibition on garden cress (Lepidium sativum L.) seedlings.

Thanks

I would like to thank Dr. İsmail Kayagil (Mehmet Akif Ersoy University Faculty of Science and Art, Department of Chemistry, Burdur) for his technical support and Dr. İlker Çinbilgel (Akdeniz University, Manavgat Tourism Faculty, Department of Tourism Guidance, Antalya) for his support in the authentication of the plant species.

References

  • Abbas, Z. K., Saggu, S., Sakeran, M. I., Zidan, N., Rehman, H.,  Ansari, A. A. (2014). Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi Journal of Biological Science, 22, 322-326. https://doi.org/10.1016/ j.sjbs.2014.11.015
  • Abdalla, M. A.,  Zidorn, C. (2020). The genus Tragopogon (Asteraceae): A review of its traditional uses, phytochemistry, and pharmacological properties. Journal of Ethnopharmacology, 250, 112466. https://doi.org/ 10.1016/j.jep.2019.112466
  • Abdelgaleil, S. A. M., Saad, M. M. G., Ariefta, N. R.,  Shiono, Y. (2020). Antimicrobial and phytotoxic activities of secondary metabolites from Haplophyllum tuberculatum and Chrysanthemum coronarium. South African Journal of Botany, 128, 35–41. https://doi.org/10.1016/j.sajb.2019.10.005
  • Bakour, M., Campos, M. G., Imtara, H.,  Lyoussi, B. (2020). Antioxidant content and identification of phenolic/flavonoid compounds in the pollen of fourteen plants using HPLC-DAD. Journal of Apicultural Research, 59, 35–41. https://doi.org/ 10.1080/00218839.2019.1675336
  • Bardaweel, S. K., Hudaib, M. M., Tawaha, K. A.,  Bashatwah, R. M. (2015). Studies on the in vitro antiproliferative, antimicrobial, antioxidant, and acetylcholinesterase inhibition activities associated with Chrysanthemum coronarium essential oil. Evidence-Based Complementary and Alternative Medicine, 790838, 1-6. https://doi.org/10.1155/ 2015/790838
  • Batish, D. R., Singh, H. P., Kaur, S., Kohli, R. K.,  Yadav, S. S. (2008). Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). Journal of Plant Physiology, 165, 297-305. https://doi.org/ 10.1016/j.jplph.2007.05.003
  • Begum, K., Shammi, M., Hasan, N., Asaduzzaman, Md., Appiah, K. S.,  FUJII, Y. (2019). Potential allelopathic candidates for land use and possible sustainable weed management in South Asian ecosystem. Sustainability (Switzerland), 11(2649), 1-18. https://doi.org/10.3390/su11092649
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  • Brand-Williams, W., Cuvelier, M. E.,  Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25-30. https://doi.org/10.1016/ S0023-6438(95)80008-5
  • Caponio, F., Alloggio. V.,  Gomes, T. (1999). Phenolic compounds of virgin olive oil: Influence of paste preparation techniques. Food Chemistry, 64, 203-209. https://doi.org/10.1016/S0308-8146(98)00146-0
  • Chon, S. U., Jang, H. G., Kim, D. K., Kim, Y. M., Boo, H. O.,  Kim, Y. J. (2005). Allelopathic potential in lettuce (Lactuca sativa L.) plants. Scientia Horticulturae, 106, 309-317. https://doi.org/ 10.1016/j.scienta.2005.04.005
  • Chon, S. U., Kim, Y. M.,  Lee, J. C. (2003). Herbicidal potential and quantification of causative allelochemicals from several Compositae weeds. Weed Research, 43, 444-450. https://doi.org/ 10.1046/j.0043-1737.2003.00361.x
  • D’Amato, S., Serio, A., López, C. C.,  Paparella, A. (2018). Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control, 86, 126-137. https://doi.org/10.1016/ j.foodcont.2017.10.030
  • Dalar, A.,  Konczak I 2014. Cichorium intybus from Eastern Anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. Industrial Crops and Products, 60, 79-85. https://doi.org/10.1016/j.indcrop.2014.05.043
  • Davis, P. H, (Ed.). (1965-1985). Flora of Turkey and the East Aegean Islands. Vol: 1-9. Edinburgh Univ. Press. Edinburgh.
  • Dehkordi, S. S., Tajik, H., Moradi, M.,  Khalighi-Sigaroodi, F. (2010). Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food and Chemical Toxicology, 48, 1562-1567. https://doi.org/10.1016/ j.fct.2010.03.025
  • Ercetin, T., Senol, F. S., Orhan, I. E.,  Toker, G. (2012). Comparative assessment of antioxidant and cholinesterase inhibitory properties of the marigold extracts from Calendula arvensis L. and Calendula officinalis L. Industrial Crops and Products, 36, 203-208. https://doi.org/ 10.1016/j.indcrop. 2011.09.007
  • Faustino, M. V., Pinto, D. C. G. A., Gonçalves, M. J., Salgueiro, L., Silveira, P.,  Silva, A. M. S. (2018). Calendula L. species polyphenolic profile and in vitro antifungal activity. Journal of Functional Foods, 45, 254-267. https://doi.org/10.1016/ j.jff.2018.04.013
  • Gür, M., Verep, D., Güneyi, K., Güder, A.,  Altuner, E. M. (2017). Determination of some flavonoids and antimicrobial behaviour of some plants’ extracts. Indian Journal of Pharmaceutical Education and Research, 51, S225-S229. https://doi.org/10.5530/ ijper.51.3s.18
  • Harput, U. S., Genc, Y.,  Saracoglu, I. (2012). Cytotoxic and antioxidative activities of Plantago lagopus L. and characterization of its bioactive compounds. Food and Chemical Toxicology, 50, 1554-1559. https://doi.org/10.1016/j.fct.2012.01.019
  • Heimler, D., Isolani, L., Vignolini, P.,  Romani, A. (2009). Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chemistry, 114, 765-770. https://doi.org/10.1016/j.foodchem.2008.10.010
  • Hosni, K., Hassen, I., Sebei, H.,  Casabianca, H. (2013). Secondary metabolites from Chrysanthemum coronarium (Garland) flowerheads: Chemical composition and biological activities. Industrial Crops and Products, 44, 263-271. https://doi.org/10.1016/j.indcrop.2012.11.033
  • Jamal, M. A. H. M., Moniruzzaman, M., Shaheen, Md. Z., Kamruzzaman, M., Rashid, M., Mahmud, Md. L., Khan, N. A., Pervin, H.,  Sharif, I. H. (2014). Analysis of antimicrobial activity of Calendula arvensis against bacterial pathogens. International Journal of Phytotheraphy Research, 4(2), 10-15.
  • Kadioğlu, İ.,  Yanar, Y. (2004). Allelopathic effects of plant extracts against seed germination of some weeds. Asian Journal of Plant Sciences, 3(4), 472-475. https://scialert.net/abstract/ ?doi=ajps.2004. 472.475
  • Kandil, Z. A., Esmat, A., El-Din, R. S.,  Ezzat, S. M. (2020). Anti-inflammatory activity of the lipophilic metabolites from Scolymus hispanicus L. South African Journal of Botany, 131, 43-50. https://doi.org/10.1016/j.sajb.2020.01.022
  • Kemper, K. J. (1999). Calendula (Calendula officinalis). Medicinal Herbs in Primary Care. The Longwood Herbal Task Force. http://www.mcp.edu/ herbal/default.htm 1–13. https://doi.org/10.1016/ b978-0-323-84676-9.00034-9
  • Khan, R., Khan, M. A.,  Waqas, M. (2012). Bioherbicidal activity of some winter weeds against some crops. Pakistan Journal of Weed Science Research, 18(4), 561-569.
  • Klančnik, A., Piskernik, S., Jeršek, B.,  Možina, S. S. (2010). Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods, 81, 121-126. https://doi.org/10.1016/j.mimet. 2010.02.004
  • Kunchandy, E.,  Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58, 237-240. https://doi.org/10.1016/0378-5173(90)90201-e
  • Lai, J. P., Lim, Y. H., Su, J., Shen, H. M.,  Ong, C. N. (2007). Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 848, 215-225. https://doi.org/10.1016/j.jchromb.2006.10.028
  • Li, X. Z., Yan, Z. Q., Pan, L., Jin, H., Yang, X. Y., Liu, J. D., He, X. F., Ren, X., Xie, M., Guo, K.,  Qin, B. (2017). Caffeic acid derivatives as growth inhibitors of Setaria viridis: Structure-activity relationships and mechanisms. Phytochemistry Letters, 20, 208-213. https://doi.org/10.1016/ j.phytol.2017.04.041
  • Mahadeva Rao, U. S., Akbar Kausar, S., Suresh Kumar, S.,  Babu Janarthanam, R. (2020). Is kaasini plant (Cichorium intybus L.) panacea to modified life style causing diseases in traditional medicine?: A review. International Medicine Journal, 27, 2-5.
  • Marmouzi, I., El Karbane, M., El Hamdani, M., Kharbach, M., Mrabti, H. N., Alami, R., Dahraoui, S., El Jemli, M., Ouzzif, Z., Cherrah, Y., Derraji, S.,  My El Abbes, F. (2017). Phytochemical and pharmacological variability in Golden Thistle functional parts: comparative study of roots, stems, leaves and flowers. Natural Product Research, 31, 2669-2674. https://doi.org/10.1080/14786419.2017. 1283494
  • Papetti, A., Maietta, M., Corana, F., Marrubini, G.,  Gazzani, G. (2017). Polyphenolic profile of green/red spotted Italian Cichorium intybus salads by RP-HPLC-PDA-ESI-MSn. Journal of Food Composition and Analysis, 63, 189-197. https://doi.org/ 10.1016/j.jfca.2017.08.010
  • Petropoulos, S. A., Fernandes, Â., Tzortzakis, N., Sokovic, M., Ciric, A., Barros, L.,  Ferreira, I. C. F. R. (2019). Bioactive compounds content and antimicrobial activities of wild edible Aster.aceae species of the Mediterranean flora under commercial cultivation conditions. Food Research International, 119, 859-868. https://doi.org/ 10.1016/j.foodres.2018.10.069
  • Petrovic, J., Stanojkovic, A., Comici L.,  Curcic, S. (2004). Antibacterial activity of Cichorium intybus. Fitoterapia, 75, 737-739. https://doi.org/10.1016/ j.fitote.2004.05.001
  • Pinho, I. A., Lopes, D. V., Martins, R. C.,  Quina, M. J. (2017). Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. Chemosphere, 185, 258-267. https://doi.org/10.1016/j.chemosphere.2017.07.002
  • Powo (2022). Royal Botanics Garden Kew. Plants of the World Online. (accessed April 13 2022) https://powo.science.kew.org/
  • Qasem, J. R. (2017). A Survey on the phytotoxicity of common weeds, wild grown species and medicinal plants on wheat. Allelopathy Journal, 42, 181-196. https://doi.org/10.26651/allelo.j./2017-42-2-1115
  • Rashed, K., Ivanišová, E.,  Kačániová, M. (2018). Evaluation of antioxidant, antimicrobial activities and phytochemical content of some Egyptian plants. International Food Research Journal, 25, 2292-2300.
  • Rayan, M., Abu-Farich, B., Basha, W., Rayan, A.,  Saleh, A. L. (2020). Correlation between antibacterial activity and free-radical scavenging: In-vitro evaluation of polar/non-polar extracts from 25 plants. Processes, 8(117), 1-12. https://doi.org/ 10.3390/pr8010117
  • Rehman, A., Ullah, N., Ullah, H.,  Ahmad, I. (2014). Antibacterial and antifungal study of Cichorium intybus. Asian Pacific Journal of Tropical Disease, 4, S943-S945. https://doi.org/10.1016/S2222-1808(14)60763-5
  • Sareedenchai, V.,  Zidorn, C. (2010). Flavonoids as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Biochemical Systematics and Ecology, 38, 935-957. https://doi.org/10.1016/ j.bse.2009.09.006
  • Scavo, A., Pandino, G., Restuccia, A.,  Mauromicale, G. (2020). Leaf extracts of cultivated cardoon as potential bioherbicide. Scientia Horticulturae, 261, 109024. https://doi.org/10.1016/j.scienta.2019. 109024
  • Shah, S., Mahmood, A., Saied, S.,  Malik, A. (2012). Analysis and phytotoxicity of oily fraction of aerial parts of Cichorium intybus. Journal of Chemical Society Pakistan, 34, 1464-1467.
  • Shaikh, T., Rub, R. A.,  Sasikumar, S. (2016). Antimicrobial screening of Cichorium intybus seed extracts. Arabian Journal of Chemistry, 9, S1569-S1573. https://doi.org/10.1016/j.arabjc.2012.04.012
  • Shilpa, K.,  Lakshmi, B. S. (2019). Influence of exogenous cinnamic acid on the production of chlorogenic acid in Cichorium intybus L cell culture. South African Journal of Botany, 125, 527-532. https://doi.org/10.1016/j.sajb.2019.01.004
  • Singleton, V. L.,  Rossi, J. A. J. (1965). Colorimetry to total phenolics with phosphomolybdic acid reagents. Americal Journal of Enology and Viticulture, 16, 144-58.
  • Sinkovič, L., Demšar, L., Žnidarčič, D., Vidrih, R., Hribar, J.,  Treutter, D. (2015). Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chemistry, 166, 507-513. https://doi.org/ 10.1016/j.foodchem.2014.06.024
  • Tabaraki, R., Nateghi, A.,  Ahmady-Asbchin, S. (2013). In vitro assessment of antioxidant and antibacterial activities of six edible plants from Iran. JAMS Journal of Acupuncture and Meridian Studies, 6, 159-162. https://doi.org/10.1016/ j.jams.2013.01.016
  • Tardugno, R., Pozzebon, M., Beggio, M., Del Turco, P.,  Pojana, G. (2018). Polyphenolic profile of Cichorium intybus L. endemic varieties from the Veneto region of Italy. Food Chemistry, 266, 175-182. https://doi.org/10.1016/j.foodchem.2018.05.085
  • Tosun, G., Yayli, B., Arslan, T., Yasar, A., Karaoglu, S. A.,  Yaylı, N. (2012). Comparative essential oil analysis of Calendula arvensis L. extracted by hydrodistillation and microwave distillation and antimicrobial activities. Asian Journal of Chemistry, 24, 1955-1958.
  • Trautmann, N. M.,  Krasny, M. E. (1998). Composting in the Classroom: Scientific Inquiry for High School Students. http://cwmi.css.cornell.edu/ compostingintheclassroom.pdf
  • Ullah, R., Ibrar, M., Shah, S.,  Hameed, I. (2012). Phytotoxic, cytotoxic and insecticidal activities of Calendula arvensis L. E3 Journal of Biotechnology and Pharmaceutical Research, 3, 104-111. http://www.e3journals.org/JBPR
  • Wan, C., Li, S., Liu, L., Chen, C.,  Fan, S. (2017). Caffeoylquinic acids from the aerial parts of Chrysanthemum coronarium L. Plants, 6, 11-16. https://doi.org/10.3390/plants6010010
  • Wang, Q., Liu, Y., Cui, J., Du, J., Chen, G.,  Liu, H. (2011). Optimization of ultrasonic-assisted extraction for herbicidal activity of chicory root extracts. Industrial Crops and Products, 34, 1429-1438. https://doi.org/10.1016/j.indcrop.2011.04.023
  • Weston, L. A.,  Duke, S. O. (2003). Weed and crop allelopathy. Critical Reviews in Plant Sciences, 22, 367-389. https://doi.org/10.1080/713610861
  • WHO (2022), World Health Organization, The top 10 causes of death (Accessed July 29 2022). https://www.who.int/news-room/fact-sheets/detail/ the-top-10-causes-of-death
  • Zhang, L., Li, Y., Liang, Y., Liang, K., Zhang, F., Xu, T., Wang, M., Song, H., Liu, X.,  Lu, B. (2019). Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chemistry, 276, 538-546. https://doi.org/ 10.1016/j.foodchem.2018.10.074
  • Zhishen, J., Mengcheng, T.,  Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.
  • Zhu, W., Liu, J., Ye, J.,  Li, G. (2017). Effects of phytotoxic extracts from peach root bark and benzoic acid on peach seedlings growth, photosynthesis, antioxidance and ultrastructure properties. Scientia Horticulturae, 215, 49-58. https://doi.org/10.1016/j.scienta.2016.12.004
  • Zidorn, C. (2008). Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry, 69, 2270-2296. https://doi.org/ 10.1016/j.phytochem. 2008.06.013
There are 62 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Asuman Karadeniz Pekgöz 0000-0002-8141-7849

Early Pub Date October 13, 2023
Publication Date February 28, 2024
Submission Date July 5, 2022
Acceptance Date August 10, 2023
Published in Issue Year 2024

Cite

APA Karadeniz Pekgöz, A. (2024). A Comparative Evaluation of Potential Bioactive Properties and Phenolic Profiles of Five Mediterranean Asteraceae Species. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(1), 56-67. https://doi.org/10.18016/ksutarimdoga.vi.1140934

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149