Bu çalışmada yağı alınmış nar çekirdeklerin fenolik antioksidanların uygun şartlarda özütlenmesine odaklanılmıştır. Bu bağlamda özütleme adımında ultrases sistemi kullanılmış ve şartlar yanıt yüzey yöntemi ile optimize edilmiştir. Optimizasyon işleminde, özütleme süresinin (5-60 dk) ve ultrases cihazının genliğinin (%20-100) toplam fenolik madde miktarı üzerine etkisi araştırılmıştır. Maksimum toplam fenolik madde miktarı (TFM), özütleme süresinin 52 dk ve genliğin %88 olduğu noktada elde edilmiştir. Optimum koşullarda elde edilen özütlere ait özellikler klasik yöntemle (metanolik özütler) elde edilen özütlerle karşılaştırmalı olarak verilmiştir. Ultrases sistemi kullanılarak elde edilen özütlerin TFM (2.94 mg GAE g-1), toplam flavanoid madde miktarı (TFMM) (0.36 mg KE g-1) ve toplam hidrolize tanen madde miktarı (THTM) (22.07 mg TAE g-1) metanolik özütlerden (2.60 mg GAE g-1, 0.27 mg KE g-1, 16.73 mg TAE g-1) daha yüksek olduğu tespit edilmiştir. LC-ESI-MS/MS sonuçları yağsız nar çekirdeklerinin gallik asit ve ellajik asit açısından zengin olduğunu göstermiştir. Fenolik asitlerin baskınlığı FTIR spektroskopisi ile doğrulanmıştır. Üstün antioksidatif davranış optimum koşullarda hazırlanan özütlerde (DPPH: 105.26 µmol TEAC g-1, ABTS: 57.65 µmol TEAC g-1, FRAP: 13.03 µmol TEAC g-1, CUPRAC: 8.91 µmol TEAC g-1) tespit edilmiştir. Sonuçlar, meyve çekirdeklerden biyoaktif maddelerin özütlenmesinde ultrases sisteminin efektif bir uygulama olduğunu ortaya koymuştur.
Abid, M., Yaich, H., Hidouri, H., Attia, H., & Ayadi, M. A. (2018). Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam. Food Chemistry, 239, 1047–1054. https://doi.org/10.1016/j.foodchem. 2017.07.006
Aishwarya, V., Solaipriya, S., & Sivaramakrishnan, V. (2021). Role of ellagic acid for the prevention and treatment of liver diseases. Phytotherapy Research, 35(6), 2925–2944. https://doi.org/10.1002/ptr.7001
Alasalvar, H., & Yildirim, Z. (2021). Ultrasound-assisted extraction of antioxidant phenolic compounds from Lavandula angustifolia flowers using natural deep eutectic solvents: An experimental design approach. Sustainable Chemistry and Pharmacy, 22, 100492. https:// doi.org/10.1016/j.scp.2021.100492
Ambigaipalan, P., de Camargo, A. C., & Shahidi, F. (2017). Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chemistry, 221, 1883–1894. https://doi.org/10.1016/ j.foodchem.2016.10.058
Andrade, S., Loureiro, J. A., & Pereira, M. do C. (2021). Influence of in vitro neuronal membranes on the anti-amyloidogenic activity of gallic acid: Implication for the therapy of Alzheimer’s disease. Archives of Biochemistry and Biophysics, 711, 109022. https://doi.org/10.1016/j.abb.2021.109022
Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413–419. https://doi.org/10.1007/s00604-007-0777-0
Ben Yakoub, A. R., Abdehedi, O., Jridi, M., Elfalleh, W., Nasri, M., & Ferchichi, A. (2018). Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Industrial Crops and Products, 118, 206–213. https://doi.org/10.1016/j.indcrop.2018.03. 047
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/ 10.1006/abio.1996.0292
Bou Dargham, M., Matar Boumosleh, J., Farhat, A., Abdelkhalek, S., Bou-Maroun, E., & el Hosry, L. (2022). Antioxidant and anti-diabetic activities in commercial and homemade pomegranate molasses in Lebanon. Food Bioscience, 46, 101540. https://doi.org/10.1016/j.fbio.2021.101540
Brito, T. B. N., Ferreira, M. S. L., & Fai, A. E. C. (2022). Utilization of agricultural by-products: Bioactive properties and technological applications. Food Reviews International, 38(6), 1305–1329. https://doi.org/10.1080/87559129.2020.1804930
Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112(3), 721–726. https://doi.org/ 10.1016/j.foodchem.2008.06.009
Çam, M., İçyer, N. C., & Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Science and Technology, 55(1), 117–123. https://doi.org/ 10.1016/j.lwt.2013.09.011
Chen, D., Bai, R., Yong, H., Zong, S., Jin, C., & Liu, J. (2022). Improving the digestive stability and prebiotic effect of carboxymethyl chitosan by grafting with gallic acid: In vitro gastrointestinal digestion and colonic fermentation evaluation. International Journal of Biological Macromolecules, 214, 685–696. https://doi.org/ 10.1016/j.ijbiomac.2022.06.170
Corbin, C., Fidel, T., Leclerc, E. A., Barakzoy, E., Sagot, N., Falguiéres, A., ... & Hano, C. (2015). Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrasonics Sonochemistry, 26, 176-185. https://doi.org/10.1016/j.ultsonch.2015.02.008
Da Porto, C., Porretto, E., & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20(4), 1076-1080. https://doi.org/10.1016/j.ultsonch.2012.12.002
Dairi, S., Dahmoune, F., Belbahi, A., Remini, H., Kadri, N., Aoun, O., Bouaoudia, N., & Madani, K. (2021). Optimization of microwave extraction method of phenolic compounds from red onion using response surface methodology and inhibition of lipoprotein low-density oxidation. Journal of Applied Research on Medicinal and Aromatic Plants, 22, 100301. https://doi.org/10.1016/
j.jarmap.2021.100301
Elfalleh, W., Kirkan, B., & Sarikurkcu, C. (2019). Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Industrial Crops and Products, 127, 212–216. https://doi.org/10.1016/j.indcrop. 2018.10.078
Gisbert, M., Barcala, M., Rosell, C. M., Sineiro, J., & Moreira, R. (2021). Aqueous extracts characteristics obtained by ultrasound-assisted extraction from Ascophyllum nodosum seaweeds: Effect of operation conditions. Journal of Applied Phycology, 33(5), 3297–3308. https://doi.org/10.1007/s10811-021-02546-5
Hashemi, Z., Shirzadi-Ahodashti, M., Mortazavi-Derazkola, S., & Ebrahimzadeh, M. A. (2022). Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorganic Chemistry Communications, 139, 109320. https://doi.org/10.1016/j.inoche.2022.109320
Ismail, B. B., Guo, M., Pu, Y., Wang, W., Ye, X., & Liu, D. (2019). Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrasonics Sonochemistry, 52, 257-267. https://doi.org/10.1016/j.ultsonch. 2018.11.023
Jing, P., Ye, T., Shi, H., Sheng, Y., Slavin, M., Gao, B., Liu, L., & Yu, L. (Lucy). (2012). Antioxidant properties and phytochemical composition of China-grown pomegranate seeds. Food Chemistry, 132(3), 1457–1464. https://doi.org/10.1016/j.foodchem.2011.12.002
Kaderides, K., Kyriakoudi, A., Mourtzinos, I., & Goula, A. M. (2021). Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology, 115, 380–390. https://doi.org/ 10.1016/j.tifs.2021.06.050
Karaçelik, A. A., Şeker, M. E., & Karaköse, M. (2022). Determination of antioxidant activity of different extracts from bark of Pinus spp. grown in Giresun (Turkey) province–phenolic analysis by RP-HPLC-DAD. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 25(1), 10-18. https://doi.org/10.18016/ksutarimdoga.vi.875313
Kashyap, P., Riar, C. S., & Jindal, N. (2022). Effect of extraction methods and simulated in vitro gastrointestinal digestion on phenolic compound profile, bio-accessibility, and antioxidant activity of Meghalayan cherry (Prunus nepalensis) pomace extracts. LWT-Food Science and Technology, 153, 112570. https://doi.org/10.1016/j.lwt.2021.112570
Ma, Y.-L., Sun, P., Feng, J., Yuan, J., Wang, Y., Shang, Y.-F., Niu, X.-L., Yang, S.-H., & Wei, Z.-J. (2021). Solvent effect on phenolics and antioxidant activity of Huangshan Gongju (Dendranthema morifolium (Ramat) Tzvel. cv. Gongju) extract. Food and Chemical Toxicology, 147, 111875. https://doi.org/ 10.1016/j.fct.2020.111875
Méndez, D. A., Fabra, M. J., Odriozola-Serrano, I., Martín-Belloso, O., Salvia-Trujillo, L., López-Rubio, A., & Martínez-Abad, A. (2022). Influence of the extraction conditions on the carbohydrate and phenolic composition of functional pectin from persimmon waste streams. Food Hydrocolloids, 123, 107066. https://doi.org/10.1016/ j.foodhyd.2021.107066
Mesías, M., Navarro, M., Gökmen, V., & Morales, F. J. (2013). Antiglycative effect of fruit and vegetable seed extracts: Inhibition of AGE formation and carbonyl-trapping abilities. Journal of the Science of Food and Agriculture, 93(8), 2037–2044. https://doi.org/10.1002/jsfa.6012
Mrkonjić, Ž., Rakić, D., Olgun, E. O., Canli, O., Kaplan, M., Teslić, N., Zeković, Z., & Pavlić, B. (2021). Optimization of antioxidants recovery from wild thyme (Thymus serpyllum L.) by ultrasound-assisted extraction: Multi-response approach. Journal of Applied Research on Medicinal and Aromatic Plants, 24, 100333. https://doi.org/ 10.1016/j.jarmap.2021.100333
Naji, A. M., Başyiğit, B., Alaşalvar, H., Salum, P., Berktaş, S., Erbay, Z., & Çam, M. (2022). Instant soluble roselle (Hibiscus sabdariffa L.) powder rich in bioactive compounds: Effect of the production process on volatile compounds. Journal of Food Measurement and Characterization. https://doi.org/ 10.1007/s11694-022-01593-x
Pandey, A., Belwal, T., Sekar, K. C., Bhatt, I. D., & Rawal, R. S. (2018). Optimization of ultrasesic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Industrial Crops and Products, 119, 218–225. https://doi.org/10.1016/j.indcrop. 2018.04.019
Paul, A., & Radhakrishnan, M. (2020). Pomegranate seed oil in food industry: Extraction, characterization, and applications. Trends in Food Science & Technology, 105, 273–283. https://doi.org/ 10.1016/j.tifs.2020.09.014
Peng, Y. (2019). Comparative analysis of the biological components of pomegranate seed from different cultivars. International Journal of Food Properties, 22(1), 784–794. https://doi.org/10.1080/10942912. 2019.1609028
Pinto, D., Vieira, E. F., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., & Rodrigues, F. (2021). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry, 334, 127521. https://doi.org/10.1016/j.foodchem.2020.127521
Qu, W., Pan, Z., Zhang, R., Ma, H., Zhu, B., Wang, Z., & Atungulu, G. G. (2009). Integrated extraction and anaerobic digestion process for recovery of nutraceuticals and biogas from pomegranate marc. Transactions of the ASABE, 52(6), 1997-2006. https://doi.org/10.13031/2013.29196
Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512–531. https://doi.org/10.1111/1541-4337.12330
Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J. A., Calderas, F., González-Laredo, R. F., Rocha-Guzmán, N. E., Ochoa-Martínez, L. A., & Bernad-Bernad, M. J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT-Food Science and Technology, 64(2), 571–577. https://doi.org/10.1016/j.lwt.2015.06.020
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
Sinha, S., & Tripathi, P. (2021). Trends and challenges in valorisation of food waste in developing economies: A case study of India. Case Studies in Chemical and Environmental Engineering, 4, 100162. https://doi.org/10.1016/j.cscee.2021.100162
Tülek, Z., Alaşalvar, H., Başyiğit, B., Berktas, S., Salum, P., Erbay, Z., Telci, I., & Çam, M. (2021). Extraction optimization and microencapsulation of phenolic antioxidant compounds from lemon balm (Melissa officinalis L.): Instant soluble tea production. Journal of Food Processing and Preservation, 45(1). https://doi.org/10.1111/jfpp. 14995
Willis, R. B. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. The Analyst, 123(3), 435–439. https://doi.org/10.1039/ a706862j
Wu, J., Wang, X., He, Y., Li, J., Ma, K., Zhang, Y., Li, H., Yin, C., & Zhang, Y. (2022). Stability evaluation of gardenia yellow pigment in presence of different phenolic compounds. Food Chemistry, 373, 131441. https://doi.org/10.1016/j.foodchem.2021.131441
Zhang, J., & Lee, T. G. (2021). Optimization of phenolics and flavonoids extraction from the fruit of Empetrum nigrum var. japonicum from Jeju Island in South Korea. Journal of Industrial and Engineering Chemistry, 98, 350–357. https://doi.org/10.1016/j.jiec.2021.03.031
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
Use of Ultrasound System in Extraction of Phenolic Antioxidants from Oil-Free Pomegranate Seeds
This study focused on the extraction of phenolic antioxidants from oil-free pomegranate seeds under suitable conditions. In this context, the ultrasound system was applied in the extraction step and the conditions were optimized by the response surface method. The effects of the extraction time (5-60 min) and the amplitude (20-100%) on total phenolic content were investigated. The optimum conditions were 52 min and 88% amplitude for providing maximum total phenolic content. The attributes of the extracts produced under optimum conditions were compared with the extracts obtained by the classical method (methanolic extracts). Total contents of phenolic (2.94 mg GAE g-1), flavonoid (0.36 mg CE g-1), and hydrolysable tannin (22.07 mg TAE g-1) in the extracts prepared using ultrasound assisted system were superior than those of methanolic extracts (2.60 mg GAE g-1, 0.27 mg CE g-1, 16.73 mg TAE g-1). LC-ESI-MS/MS results indicated that defatted pomegranate seeds were rich in gallic acid and ellagic acid. The predominance of phenolic acids was endorsed by FTIR spectroscopy. The extracts produced in the optimum conditions exhibited higher antioxidative behavior (DPPH: 105.26 µmol TEAC g-1, ABTS: 57.65 µmol TEAC g-1, FRAP: 13.03 µmol TEAC g-1, CUPRAC: 8.91 µmol TEAC g-1). The results indicated that ultrasound system created awareness in terms of the effective extraction of bioactive substances from fruit seeds.
Abid, M., Yaich, H., Hidouri, H., Attia, H., & Ayadi, M. A. (2018). Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam. Food Chemistry, 239, 1047–1054. https://doi.org/10.1016/j.foodchem. 2017.07.006
Aishwarya, V., Solaipriya, S., & Sivaramakrishnan, V. (2021). Role of ellagic acid for the prevention and treatment of liver diseases. Phytotherapy Research, 35(6), 2925–2944. https://doi.org/10.1002/ptr.7001
Alasalvar, H., & Yildirim, Z. (2021). Ultrasound-assisted extraction of antioxidant phenolic compounds from Lavandula angustifolia flowers using natural deep eutectic solvents: An experimental design approach. Sustainable Chemistry and Pharmacy, 22, 100492. https:// doi.org/10.1016/j.scp.2021.100492
Ambigaipalan, P., de Camargo, A. C., & Shahidi, F. (2017). Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chemistry, 221, 1883–1894. https://doi.org/10.1016/ j.foodchem.2016.10.058
Andrade, S., Loureiro, J. A., & Pereira, M. do C. (2021). Influence of in vitro neuronal membranes on the anti-amyloidogenic activity of gallic acid: Implication for the therapy of Alzheimer’s disease. Archives of Biochemistry and Biophysics, 711, 109022. https://doi.org/10.1016/j.abb.2021.109022
Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413–419. https://doi.org/10.1007/s00604-007-0777-0
Ben Yakoub, A. R., Abdehedi, O., Jridi, M., Elfalleh, W., Nasri, M., & Ferchichi, A. (2018). Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Industrial Crops and Products, 118, 206–213. https://doi.org/10.1016/j.indcrop.2018.03. 047
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/ 10.1006/abio.1996.0292
Bou Dargham, M., Matar Boumosleh, J., Farhat, A., Abdelkhalek, S., Bou-Maroun, E., & el Hosry, L. (2022). Antioxidant and anti-diabetic activities in commercial and homemade pomegranate molasses in Lebanon. Food Bioscience, 46, 101540. https://doi.org/10.1016/j.fbio.2021.101540
Brito, T. B. N., Ferreira, M. S. L., & Fai, A. E. C. (2022). Utilization of agricultural by-products: Bioactive properties and technological applications. Food Reviews International, 38(6), 1305–1329. https://doi.org/10.1080/87559129.2020.1804930
Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112(3), 721–726. https://doi.org/ 10.1016/j.foodchem.2008.06.009
Çam, M., İçyer, N. C., & Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Science and Technology, 55(1), 117–123. https://doi.org/ 10.1016/j.lwt.2013.09.011
Chen, D., Bai, R., Yong, H., Zong, S., Jin, C., & Liu, J. (2022). Improving the digestive stability and prebiotic effect of carboxymethyl chitosan by grafting with gallic acid: In vitro gastrointestinal digestion and colonic fermentation evaluation. International Journal of Biological Macromolecules, 214, 685–696. https://doi.org/ 10.1016/j.ijbiomac.2022.06.170
Corbin, C., Fidel, T., Leclerc, E. A., Barakzoy, E., Sagot, N., Falguiéres, A., ... & Hano, C. (2015). Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrasonics Sonochemistry, 26, 176-185. https://doi.org/10.1016/j.ultsonch.2015.02.008
Da Porto, C., Porretto, E., & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20(4), 1076-1080. https://doi.org/10.1016/j.ultsonch.2012.12.002
Dairi, S., Dahmoune, F., Belbahi, A., Remini, H., Kadri, N., Aoun, O., Bouaoudia, N., & Madani, K. (2021). Optimization of microwave extraction method of phenolic compounds from red onion using response surface methodology and inhibition of lipoprotein low-density oxidation. Journal of Applied Research on Medicinal and Aromatic Plants, 22, 100301. https://doi.org/10.1016/
j.jarmap.2021.100301
Elfalleh, W., Kirkan, B., & Sarikurkcu, C. (2019). Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Industrial Crops and Products, 127, 212–216. https://doi.org/10.1016/j.indcrop. 2018.10.078
Gisbert, M., Barcala, M., Rosell, C. M., Sineiro, J., & Moreira, R. (2021). Aqueous extracts characteristics obtained by ultrasound-assisted extraction from Ascophyllum nodosum seaweeds: Effect of operation conditions. Journal of Applied Phycology, 33(5), 3297–3308. https://doi.org/10.1007/s10811-021-02546-5
Hashemi, Z., Shirzadi-Ahodashti, M., Mortazavi-Derazkola, S., & Ebrahimzadeh, M. A. (2022). Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorganic Chemistry Communications, 139, 109320. https://doi.org/10.1016/j.inoche.2022.109320
Ismail, B. B., Guo, M., Pu, Y., Wang, W., Ye, X., & Liu, D. (2019). Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrasonics Sonochemistry, 52, 257-267. https://doi.org/10.1016/j.ultsonch. 2018.11.023
Jing, P., Ye, T., Shi, H., Sheng, Y., Slavin, M., Gao, B., Liu, L., & Yu, L. (Lucy). (2012). Antioxidant properties and phytochemical composition of China-grown pomegranate seeds. Food Chemistry, 132(3), 1457–1464. https://doi.org/10.1016/j.foodchem.2011.12.002
Kaderides, K., Kyriakoudi, A., Mourtzinos, I., & Goula, A. M. (2021). Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology, 115, 380–390. https://doi.org/ 10.1016/j.tifs.2021.06.050
Karaçelik, A. A., Şeker, M. E., & Karaköse, M. (2022). Determination of antioxidant activity of different extracts from bark of Pinus spp. grown in Giresun (Turkey) province–phenolic analysis by RP-HPLC-DAD. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 25(1), 10-18. https://doi.org/10.18016/ksutarimdoga.vi.875313
Kashyap, P., Riar, C. S., & Jindal, N. (2022). Effect of extraction methods and simulated in vitro gastrointestinal digestion on phenolic compound profile, bio-accessibility, and antioxidant activity of Meghalayan cherry (Prunus nepalensis) pomace extracts. LWT-Food Science and Technology, 153, 112570. https://doi.org/10.1016/j.lwt.2021.112570
Ma, Y.-L., Sun, P., Feng, J., Yuan, J., Wang, Y., Shang, Y.-F., Niu, X.-L., Yang, S.-H., & Wei, Z.-J. (2021). Solvent effect on phenolics and antioxidant activity of Huangshan Gongju (Dendranthema morifolium (Ramat) Tzvel. cv. Gongju) extract. Food and Chemical Toxicology, 147, 111875. https://doi.org/ 10.1016/j.fct.2020.111875
Méndez, D. A., Fabra, M. J., Odriozola-Serrano, I., Martín-Belloso, O., Salvia-Trujillo, L., López-Rubio, A., & Martínez-Abad, A. (2022). Influence of the extraction conditions on the carbohydrate and phenolic composition of functional pectin from persimmon waste streams. Food Hydrocolloids, 123, 107066. https://doi.org/10.1016/ j.foodhyd.2021.107066
Mesías, M., Navarro, M., Gökmen, V., & Morales, F. J. (2013). Antiglycative effect of fruit and vegetable seed extracts: Inhibition of AGE formation and carbonyl-trapping abilities. Journal of the Science of Food and Agriculture, 93(8), 2037–2044. https://doi.org/10.1002/jsfa.6012
Mrkonjić, Ž., Rakić, D., Olgun, E. O., Canli, O., Kaplan, M., Teslić, N., Zeković, Z., & Pavlić, B. (2021). Optimization of antioxidants recovery from wild thyme (Thymus serpyllum L.) by ultrasound-assisted extraction: Multi-response approach. Journal of Applied Research on Medicinal and Aromatic Plants, 24, 100333. https://doi.org/ 10.1016/j.jarmap.2021.100333
Naji, A. M., Başyiğit, B., Alaşalvar, H., Salum, P., Berktaş, S., Erbay, Z., & Çam, M. (2022). Instant soluble roselle (Hibiscus sabdariffa L.) powder rich in bioactive compounds: Effect of the production process on volatile compounds. Journal of Food Measurement and Characterization. https://doi.org/ 10.1007/s11694-022-01593-x
Pandey, A., Belwal, T., Sekar, K. C., Bhatt, I. D., & Rawal, R. S. (2018). Optimization of ultrasesic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Industrial Crops and Products, 119, 218–225. https://doi.org/10.1016/j.indcrop. 2018.04.019
Paul, A., & Radhakrishnan, M. (2020). Pomegranate seed oil in food industry: Extraction, characterization, and applications. Trends in Food Science & Technology, 105, 273–283. https://doi.org/ 10.1016/j.tifs.2020.09.014
Peng, Y. (2019). Comparative analysis of the biological components of pomegranate seed from different cultivars. International Journal of Food Properties, 22(1), 784–794. https://doi.org/10.1080/10942912. 2019.1609028
Pinto, D., Vieira, E. F., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., & Rodrigues, F. (2021). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry, 334, 127521. https://doi.org/10.1016/j.foodchem.2020.127521
Qu, W., Pan, Z., Zhang, R., Ma, H., Zhu, B., Wang, Z., & Atungulu, G. G. (2009). Integrated extraction and anaerobic digestion process for recovery of nutraceuticals and biogas from pomegranate marc. Transactions of the ASABE, 52(6), 1997-2006. https://doi.org/10.13031/2013.29196
Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512–531. https://doi.org/10.1111/1541-4337.12330
Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J. A., Calderas, F., González-Laredo, R. F., Rocha-Guzmán, N. E., Ochoa-Martínez, L. A., & Bernad-Bernad, M. J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT-Food Science and Technology, 64(2), 571–577. https://doi.org/10.1016/j.lwt.2015.06.020
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
Sinha, S., & Tripathi, P. (2021). Trends and challenges in valorisation of food waste in developing economies: A case study of India. Case Studies in Chemical and Environmental Engineering, 4, 100162. https://doi.org/10.1016/j.cscee.2021.100162
Tülek, Z., Alaşalvar, H., Başyiğit, B., Berktas, S., Salum, P., Erbay, Z., Telci, I., & Çam, M. (2021). Extraction optimization and microencapsulation of phenolic antioxidant compounds from lemon balm (Melissa officinalis L.): Instant soluble tea production. Journal of Food Processing and Preservation, 45(1). https://doi.org/10.1111/jfpp. 14995
Willis, R. B. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. The Analyst, 123(3), 435–439. https://doi.org/10.1039/ a706862j
Wu, J., Wang, X., He, Y., Li, J., Ma, K., Zhang, Y., Li, H., Yin, C., & Zhang, Y. (2022). Stability evaluation of gardenia yellow pigment in presence of different phenolic compounds. Food Chemistry, 373, 131441. https://doi.org/10.1016/j.foodchem.2021.131441
Zhang, J., & Lee, T. G. (2021). Optimization of phenolics and flavonoids extraction from the fruit of Empetrum nigrum var. japonicum from Jeju Island in South Korea. Journal of Industrial and Engineering Chemistry, 98, 350–357. https://doi.org/10.1016/j.jiec.2021.03.031
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
Başyiğit, B. (2023). Yağı Alınmış Nar Çekirdeklerinden Fenolik Antioksidanların Özütlenmesinde Ultrases Sisteminin Kullanımı. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(6), 1346-1357. https://doi.org/10.18016/ksutarimdoga.vi.1197761