Determination of Metal(loid)s in Mavi Dam Lake Sediment (Ankara) and Evaluation of Health Risks Level
Yıl 2023,
, 1010 - 1020, 31.10.2023
Şeyda Ergen
,
Çağrı Tekatlı
,
Ahmet Altindag
,
Gamze Kamışlı
,
Ayşe Kübra Kocatürk Döngel
,
Evren Tunca
Öz
This study revealed the current metal(loid) status of the Mavi Dam Lake, which is one of the important wetlands for Ankara, established the accumulation relations between metal(loid)s separately, and seek an answer to the question of whether the current metal(loid)s status poses a risk of public health. The amounts of 13 metal(loid)s were determined. Sediment quality guidelines were calculated to understand the ecological risk of metal(loid)s in the sediment and the results were compared with limit values. It was determined that Ni constitutes 51.28% of the total toxic effects of metals detected in the sediment. Ni and Cr revealed a strong correlation between cluster and correlation analyses and were involved in the same factor in the principal component analysis. Additionally, it was determined that As, Cd, Co, Cr, and Ni may pose carcinogenic risks in terms of public health by contact with the lake or ingestion. In conclusion, it was revealed that the lake being studied should be regularly monitored for all metal(loid)s, especially Ni, and Cr.
Kaynakça
- Abrahim, G.M.S. & Parker, R.J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environment Assessment Journal 136(1-3), 227-238. https://doi.org/10.1007/s10661-007-9678-2.
- Bat, L., Şahin, F. & ÖZTEKİN, A. (2019). Assessment of heavy metals pollution in water and sediments and Polychaetes in Sinop shores of the Black Sea. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 22(5), 806-816. https://doi.org/ 10.18016/ksutarimdoga.v22i45606.535882.
- Binet, M.T., Adams, M.S., Gissi, F., Golding, L.A., Schlekat, C.E., Garman, E.R., Merrington, G. & Stauber, J.L. (2018). Toxicity of nickel to tropical freshwater and sediment biota: A critical literature review and gap analysis. Environmental Toxicology and Chemistry 37 (2), 293-317. https://doi.org/ 10.1002/etc.3988.
- Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Martínez, M.Á., Domingo, J.L., Alimonti, A. & Schuhmacher, M. (2019). Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environmental Research 177, 108599. . https://doi.org/10.1016/j.envres.2019.108599.
- Carr, R.S., Long, E.R., Windom, H.L., Chapman, D.C., Thursby, G., Sloane, G.M. & Wolfe, D.A. (1996). Sediment quality assessment studies of Tampa Bay, Florida. Environmental Toxicology and Chemistry 15(7), 1218-1231. https://doi.org/ 10.1002/etc.5620150730.
- Chen, R., Chen, H., Song, L., Yao, Z., Meng, F. & Teng, Y. (2019). Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Science of The Total Environment 694, 133819. https://doi.org/10.1016/j.scitotenv.2019.133819.
- Dankoub, Z., Ayoubi, S., Khademi, H. & Sheng Gao, L. (2012). Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, central Iran. Pedosphere 22, 33–47. https://doi.org/10.1016/ S1002-0160(11)60189-6.
- Diami, S.M., Kusin, F.M. & Madzin, Z. (2016). Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia. Environmental Science and Pollution Research 23, 21086–21097. https://doi.org/10.1007/s11356-016-7314-9.
- Fang, T., Lu, W., Li, J., Zhao, X. & Yang, K. (2017). Levels and risk assessment of metals in sediment and fish from Chaohu Lake, Anhui Province, China. Environmental Science and Pollution Research 24(18), 15390-15400. https://doi.org/ 10.1007/ s11356-017-9053-y.
- Fikirdeşici-Ergen, Ş., Tekatli, Ç., Gürbüzer, P., Üçüncü-Tunca, E., Türe, H., Biltekin, D., Kurtuluş, B. & Tunca, E. (2021). Elemental accumulation in the surficial sediment of Kesikköprü, Çubuk II and Asartepe Dam Lakes (Ankara) and potential sediment toxicity. Chemistry and Ecology 3;37(6):552-72.
https://doi.org/10.1080/02757540.2021.1902509
- Ghorbani, H., Hafezi-Moghads, N. & Kashi, H. (2015). Effects of land use on the concentrations of some heavy metals in soils of golestan province, Iran. Jast 17, 1025–1040. http://jast.modares.ac.ir/ article-23-7240-en.html.
- Guo, B., Liu, Y., Zhang, F., Hou, J., Zhang, H. & Li, C. (2018). Heavy metals in the surface sediments of lakes on the Tibetan Plateau, China. Environmental Science and Pollution Research 25(4), 3695-3707. https://doi.org/10.1007/s11356-017-0680-0
- Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8.
- Hasan, A.B., Kabir, S., Reza, A.H.M.S., Zaman, M.N., Ahsan, A. & Rashid, M. (2013). Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary-Kumira), Chittagong, Bangladesh. Journal of Geochemical Exploration 125, 130-137.
https://doi.org/10.1016/j.gexplo. 2012.12.002.
- Hossain, M.A., Ali, N.M., Islam, M.S. & Hossain, H.M.Z. (2014). Spatial distribution and source apportionment of heavy metals in soils of Gebeng industrial city, Malaysia. Environmental Earth Sciences 73, 115–126. https://doi.org/10.1007/ s12665-014-3398-z
- Iqbal, J. & Shah, M.H. (2014). Occurrence, risk assessment, and source apportionment of heavy metals in surface sediments from Khanpur Lake, Pakistan. Journal of Analytical Science and Technology 5, 1–12. https://doi.org/10.1186/s40543-014-0028-z
- Iqbal, J., Tirmizi, S.A. & Shah, M.H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment 185, 729–743. https://doi.org/10.1007/s10661-012-2588-y
- Islam, M.S., Ahmed, M.K., Raknuzzaman, M., Habibullah-Al-Mamun, M. & Islam, M.K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators 48, 282-291. https://doi.org/10.1016/j.ecolind. 2014.08.016.
- Jia, L., Liu, H., Kong, Q., Li, M., Wu, S. & Wu, H. (2019). Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water Research 169, 115285. https://doi.org/10.1016/j.watres.2019.115285.
- Jordanova, M., Hristovski, S., Musai, M., Boskovska, V., Rebok, K., Dinevska-Kovkarovska, S. & Melovski, L. (2018). Accumulation of heavy metals in some organs in barbel and chub from Crn Drim River in the Republic of Macedonia. Bulletin of Environmental Contamination and Toxicology 101, 392–397.
https://doi.org/10.1007/s00128-018-2409-2.
- Khalil, M.K., Draz, S.E.Oç, El Zokm, G.M. & El-Said, G.F. (2016). Apportionment of geochemistry, texture’s properties, and risk assessment of some elements in surface sediments from Bardawil Lagoon, Egypt. Human and Ecological Risk Assessment 22, 775–791. https://doi.org/10.1080/ 10807039.2015.1107714.
- Kusin, F.M., Azani, N.N.M., Hasan, S.N.M.S. & Sulong, N.A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 165, 454–464. https://doi.org/10.1016/j.catena.2018.02.029.
- Li, Z., Liu, J., Chen, H., Li, Q., Yu, C., Huang, X. & Guo, H. (2019). Water environment in the Tibetan Plateau: heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environmental Geochemistry and Health 42, 2451–2469. https://doi.org/10.1007/s10653-019-00409-0.
- Li, Y., Zhou, S., Zhu, Q., Li, B., Wang, J., Wang, C., Chen, L. & Wu, S. (2018). One-century sedimentary record of heavy metal pollution in western Taihu Lake, China. Environmental Pollution 240, 709-716. https://doi.org/10.1016/j.envpol.2018.05.006.
- Liu, M., Zhong, J., Zheng, X., Yu, J., Liu, D. & Fan, C. (2018). Fraction distribution and leaching behavior of heavy metals in dredged sediment disposal sites around Meiliang Bay, Lake Taihu (China). Environmental Science and Pollution Research 25, 9737–9744. 10.1007/s11356-018-1249-2.
- Long, E.R. & Morgan, L.G. (1991). The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. National Oceanic and Atmospheric Administration, Seattle, WA. 175 pp appendices.
- Mudd, G.M. & Jowitti, S.M. (2014). A detailed assessment of global nickel resource trends and endowments. Economic Geology 109(7), 1813–1841. https://doi.org/10.2113/econgeo.109.7.1813.
- Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2, 108-118.
Niu, Y., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y. & Yu, H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Science of The Total Environment 700, 134509. https://doi.org/10.1016/j.scitotenv. 2019.134509.
- Nguyen, C.C., Hugie, C.N., Kile, M.L. & Navab-Daneshmand, T. (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: a review. Frontiers of Environmental Science & Engineering 13, 46. https://doi.org/10.1007/s11783-019-1129-0.
- Otari, M. & Dabiri, R. (2015). Geochemical and environmental assessment of heavy metals in soils and
sediments of Forumad Chromite mine, NE of Iran. Journal of Mining and Environment 6, 251–261.
- Pal, S. & Mandal, I (2019). Impacts of stone mining and crushing on environmental health in Dwarka riverbasin. Geocarto International 36(4), 392-420. https://doi.org/10.1080/10106049.2019.1597390.
- Paoli, L., Winkler, A., Guttová, A., Sagnotti, L., Grassi, A., Lackovıčová, A., Senko, D. & Loppi, S. (2017). Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production. Environmental Science and Pollution Research 24(13), 12063–12080.
https://doi.org/10.1007/s11356-016-6203-6.
- Ravisankar, R., Chandramohan, J., Chandrasekaran, A., Jebakumar, J.P., Vijayalakshmi, I., Vijayagopal, P. & Venkatraman, B. (2015). Assessments of Radioactivity Concentration of Natural Radionuclides and Radiological Hazard Indices in Sediment Samples from the East Coast of Tamilnadu, India with Statistical Approach. Marine Pollution Bulletin 97, 419 – 430. https://doi.org/10.1016/j.marpolbul.2015.05.058.
- Saher, N.U. & Siddiqui, A.S. (2019). Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone. Chemosphere 221, 89–98. 10.1016/ j.chemosphere. 2019.01.008.
- Salmanpour, A., Salehi, M.H. & Mohammadi, J. (2018). Distribution of Cr, Ni and Co in soils and rocks of Neyriz area (Iran): the influence of ophiolitic formations. Archives of Agronomy and Soil Science 64(8), 1106-1118. https://doi.org/10.1080/03650340.2017.1414197.
- Schlekat, C.E., Garman, E.R., Vangheluwe, M.L.U. & Burton, G.A. (2016). Development of a bioavailability-based risk assessment approach for nickel in freshwater sediments. Integrated Environmental Assessment and Management 12(4), 735–746. https://doi.org/10.1002/ieam.1720.
- Smith, S.L., Macdonald, D.D., Keenleyside, K.A., Ingersoll, C.G. & Field, L.J. (1996). A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research 22(3), 624-638. https://doi.org/10.1016/ S0380-1330(96)70985-1.
- Song, J., Liu, Q. & Sheng, Y. (2019). Distribution and risk assessment of trace metals in riverine surface sediments in gold mining area. Environmental Monitoring and Assessment 191, 191. https://doi.org/10.1007/s10661019-7311-9.
- Taghipour, M., Ayoubi, S. & Khademi, H. (2011). Contribution of lithologic and anthropogenic factors to surface soil heavy metals in western Iran using multivariate geostatistical analyses. Soil and Sediment Contamination: An International Journal 20(8), 921–937. https://doi.org/10.1080/15320383. 2011.620045
- Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffrey, D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33, 566-575. https://doi.org/10.1007/BF02414780.
- Tunca, E., Aydin, M. & Şahin, U.A. (2018). An ecological risk investigation of marine sediment from the northern Mediterranean coasts (Aegean Sea) using multiple methods of pollution determination. Environmental Science and Pollution Research 25, 7487–7503. https://doi.org/ 10.1007/s11356-017-0984-0.
- Turekian, K.K. & Wedepohl, K.H. (1961). Distribution of the Elements in some major units of the Earth's crust. Geological Society of America Bulletin 72(2), 175-192. https://doi.org/10.1130/0016-7606(1961)72 [175: DOTEIS]2.0.CO;2.
- US Environmental Protection Agency (EPA) 2004. Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment, United States Environmental Protection Agency.
- Wang, Y.B., Liu, C.W. & Wang, S.W. (2015). Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment. Ecotoxicology and Environmental Safety 113, 469–476. https://doi.org/10.1016/j.ecoenv.2014.12.036.
- US Environmental Protection Agency (EPA) 2012. Integrated Risk Information System of the US Environmental Protection Agency.
- Ustaoğlu, F. & Islam, M.S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators 113, 106237.
- Yaroshevsky, A.A. (2006). Abundances of chemical elements in the Earth’s crust. Geochemistry International 44, 48-55. https://doi.org/10.1134/ S001670290601006X.
- Yeni, A. (1995). Ankara İl Sınırları İçindeki Baraj Çevrelerinde Rekreasyonel Planlama ve Yararlanma Esasları Üzerine Bir Araştırma. (Tez No: 45725) [Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
- Yong, N., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y. & Yu. H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Science of The Total Environment 700, 134509. https://doi.org/10.1016/ j.scitotenv. 2019.134509.
- Zhang, J. & Liu, C.L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China – weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science 54(6), 1051–1070. https://doi.org/10.1006/ ecss.2001.0879.
Mavi Baraj Gölü Sedimentinde (Ankara) Metal(loid)lerin Belirlenmesi ve Sağlık Risk Düzeyinin Değerlendirilmesi
Yıl 2023,
, 1010 - 1020, 31.10.2023
Şeyda Ergen
,
Çağrı Tekatlı
,
Ahmet Altindag
,
Gamze Kamışlı
,
Ayşe Kübra Kocatürk Döngel
,
Evren Tunca
Öz
Bu çalışma kapsamında Ankara için önemli sulak alanlardan biri olan Mavi Baraj Göl’ün mevcut metal(loid) durumunun ortaya konması, ayrı ayrı metal(loid) arası birikim ilişkilerinin durumu, mevcut metal(loid) durumun canlılar için risk teşkil edip etmediği sorularına cevap aranmıştır. 13 metal(loid) miktarı belirlenmiştir. Sedimentteki metal(loid)lerin ekolojik riskini anlamak için sediment kalite kılavuzları hesaplanmış ve sonuçlar sınır değerlerle karşılaştırılmıştır. Sedimentte araştırılmış metallerin toplam toksik etkilerinin %51.28’ini Ni oluşturduğu tespit edilmiştir. Küme ve korelasyon analizleri ile Ni-Cr arasında güçlü bir ilişki olduğu tespit edilmiş, temel bileşen analizinde de aynı faktörde yer aldığı gözlenmiştir. Ayrıca As, Cd, Co, Cr ve Ni'in göl teması veya yutulması ile halk sağlığı açısından kanserojen risk oluşturabileceği belirlenmiştir. Sonuç olarak, çalışılan gölün başta Ni ve Cr olmak üzere tüm metal(loid)ler için düzenli olarak izlenmesi gerektiği ortaya konmuştur.
Kaynakça
- Abrahim, G.M.S. & Parker, R.J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environment Assessment Journal 136(1-3), 227-238. https://doi.org/10.1007/s10661-007-9678-2.
- Bat, L., Şahin, F. & ÖZTEKİN, A. (2019). Assessment of heavy metals pollution in water and sediments and Polychaetes in Sinop shores of the Black Sea. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 22(5), 806-816. https://doi.org/ 10.18016/ksutarimdoga.v22i45606.535882.
- Binet, M.T., Adams, M.S., Gissi, F., Golding, L.A., Schlekat, C.E., Garman, E.R., Merrington, G. & Stauber, J.L. (2018). Toxicity of nickel to tropical freshwater and sediment biota: A critical literature review and gap analysis. Environmental Toxicology and Chemistry 37 (2), 293-317. https://doi.org/ 10.1002/etc.3988.
- Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Martínez, M.Á., Domingo, J.L., Alimonti, A. & Schuhmacher, M. (2019). Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environmental Research 177, 108599. . https://doi.org/10.1016/j.envres.2019.108599.
- Carr, R.S., Long, E.R., Windom, H.L., Chapman, D.C., Thursby, G., Sloane, G.M. & Wolfe, D.A. (1996). Sediment quality assessment studies of Tampa Bay, Florida. Environmental Toxicology and Chemistry 15(7), 1218-1231. https://doi.org/ 10.1002/etc.5620150730.
- Chen, R., Chen, H., Song, L., Yao, Z., Meng, F. & Teng, Y. (2019). Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Science of The Total Environment 694, 133819. https://doi.org/10.1016/j.scitotenv.2019.133819.
- Dankoub, Z., Ayoubi, S., Khademi, H. & Sheng Gao, L. (2012). Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, central Iran. Pedosphere 22, 33–47. https://doi.org/10.1016/ S1002-0160(11)60189-6.
- Diami, S.M., Kusin, F.M. & Madzin, Z. (2016). Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia. Environmental Science and Pollution Research 23, 21086–21097. https://doi.org/10.1007/s11356-016-7314-9.
- Fang, T., Lu, W., Li, J., Zhao, X. & Yang, K. (2017). Levels and risk assessment of metals in sediment and fish from Chaohu Lake, Anhui Province, China. Environmental Science and Pollution Research 24(18), 15390-15400. https://doi.org/ 10.1007/ s11356-017-9053-y.
- Fikirdeşici-Ergen, Ş., Tekatli, Ç., Gürbüzer, P., Üçüncü-Tunca, E., Türe, H., Biltekin, D., Kurtuluş, B. & Tunca, E. (2021). Elemental accumulation in the surficial sediment of Kesikköprü, Çubuk II and Asartepe Dam Lakes (Ankara) and potential sediment toxicity. Chemistry and Ecology 3;37(6):552-72.
https://doi.org/10.1080/02757540.2021.1902509
- Ghorbani, H., Hafezi-Moghads, N. & Kashi, H. (2015). Effects of land use on the concentrations of some heavy metals in soils of golestan province, Iran. Jast 17, 1025–1040. http://jast.modares.ac.ir/ article-23-7240-en.html.
- Guo, B., Liu, Y., Zhang, F., Hou, J., Zhang, H. & Li, C. (2018). Heavy metals in the surface sediments of lakes on the Tibetan Plateau, China. Environmental Science and Pollution Research 25(4), 3695-3707. https://doi.org/10.1007/s11356-017-0680-0
- Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8.
- Hasan, A.B., Kabir, S., Reza, A.H.M.S., Zaman, M.N., Ahsan, A. & Rashid, M. (2013). Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary-Kumira), Chittagong, Bangladesh. Journal of Geochemical Exploration 125, 130-137.
https://doi.org/10.1016/j.gexplo. 2012.12.002.
- Hossain, M.A., Ali, N.M., Islam, M.S. & Hossain, H.M.Z. (2014). Spatial distribution and source apportionment of heavy metals in soils of Gebeng industrial city, Malaysia. Environmental Earth Sciences 73, 115–126. https://doi.org/10.1007/ s12665-014-3398-z
- Iqbal, J. & Shah, M.H. (2014). Occurrence, risk assessment, and source apportionment of heavy metals in surface sediments from Khanpur Lake, Pakistan. Journal of Analytical Science and Technology 5, 1–12. https://doi.org/10.1186/s40543-014-0028-z
- Iqbal, J., Tirmizi, S.A. & Shah, M.H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment 185, 729–743. https://doi.org/10.1007/s10661-012-2588-y
- Islam, M.S., Ahmed, M.K., Raknuzzaman, M., Habibullah-Al-Mamun, M. & Islam, M.K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators 48, 282-291. https://doi.org/10.1016/j.ecolind. 2014.08.016.
- Jia, L., Liu, H., Kong, Q., Li, M., Wu, S. & Wu, H. (2019). Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water Research 169, 115285. https://doi.org/10.1016/j.watres.2019.115285.
- Jordanova, M., Hristovski, S., Musai, M., Boskovska, V., Rebok, K., Dinevska-Kovkarovska, S. & Melovski, L. (2018). Accumulation of heavy metals in some organs in barbel and chub from Crn Drim River in the Republic of Macedonia. Bulletin of Environmental Contamination and Toxicology 101, 392–397.
https://doi.org/10.1007/s00128-018-2409-2.
- Khalil, M.K., Draz, S.E.Oç, El Zokm, G.M. & El-Said, G.F. (2016). Apportionment of geochemistry, texture’s properties, and risk assessment of some elements in surface sediments from Bardawil Lagoon, Egypt. Human and Ecological Risk Assessment 22, 775–791. https://doi.org/10.1080/ 10807039.2015.1107714.
- Kusin, F.M., Azani, N.N.M., Hasan, S.N.M.S. & Sulong, N.A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 165, 454–464. https://doi.org/10.1016/j.catena.2018.02.029.
- Li, Z., Liu, J., Chen, H., Li, Q., Yu, C., Huang, X. & Guo, H. (2019). Water environment in the Tibetan Plateau: heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environmental Geochemistry and Health 42, 2451–2469. https://doi.org/10.1007/s10653-019-00409-0.
- Li, Y., Zhou, S., Zhu, Q., Li, B., Wang, J., Wang, C., Chen, L. & Wu, S. (2018). One-century sedimentary record of heavy metal pollution in western Taihu Lake, China. Environmental Pollution 240, 709-716. https://doi.org/10.1016/j.envpol.2018.05.006.
- Liu, M., Zhong, J., Zheng, X., Yu, J., Liu, D. & Fan, C. (2018). Fraction distribution and leaching behavior of heavy metals in dredged sediment disposal sites around Meiliang Bay, Lake Taihu (China). Environmental Science and Pollution Research 25, 9737–9744. 10.1007/s11356-018-1249-2.
- Long, E.R. & Morgan, L.G. (1991). The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. National Oceanic and Atmospheric Administration, Seattle, WA. 175 pp appendices.
- Mudd, G.M. & Jowitti, S.M. (2014). A detailed assessment of global nickel resource trends and endowments. Economic Geology 109(7), 1813–1841. https://doi.org/10.2113/econgeo.109.7.1813.
- Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2, 108-118.
Niu, Y., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y. & Yu, H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Science of The Total Environment 700, 134509. https://doi.org/10.1016/j.scitotenv. 2019.134509.
- Nguyen, C.C., Hugie, C.N., Kile, M.L. & Navab-Daneshmand, T. (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: a review. Frontiers of Environmental Science & Engineering 13, 46. https://doi.org/10.1007/s11783-019-1129-0.
- Otari, M. & Dabiri, R. (2015). Geochemical and environmental assessment of heavy metals in soils and
sediments of Forumad Chromite mine, NE of Iran. Journal of Mining and Environment 6, 251–261.
- Pal, S. & Mandal, I (2019). Impacts of stone mining and crushing on environmental health in Dwarka riverbasin. Geocarto International 36(4), 392-420. https://doi.org/10.1080/10106049.2019.1597390.
- Paoli, L., Winkler, A., Guttová, A., Sagnotti, L., Grassi, A., Lackovıčová, A., Senko, D. & Loppi, S. (2017). Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production. Environmental Science and Pollution Research 24(13), 12063–12080.
https://doi.org/10.1007/s11356-016-6203-6.
- Ravisankar, R., Chandramohan, J., Chandrasekaran, A., Jebakumar, J.P., Vijayalakshmi, I., Vijayagopal, P. & Venkatraman, B. (2015). Assessments of Radioactivity Concentration of Natural Radionuclides and Radiological Hazard Indices in Sediment Samples from the East Coast of Tamilnadu, India with Statistical Approach. Marine Pollution Bulletin 97, 419 – 430. https://doi.org/10.1016/j.marpolbul.2015.05.058.
- Saher, N.U. & Siddiqui, A.S. (2019). Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone. Chemosphere 221, 89–98. 10.1016/ j.chemosphere. 2019.01.008.
- Salmanpour, A., Salehi, M.H. & Mohammadi, J. (2018). Distribution of Cr, Ni and Co in soils and rocks of Neyriz area (Iran): the influence of ophiolitic formations. Archives of Agronomy and Soil Science 64(8), 1106-1118. https://doi.org/10.1080/03650340.2017.1414197.
- Schlekat, C.E., Garman, E.R., Vangheluwe, M.L.U. & Burton, G.A. (2016). Development of a bioavailability-based risk assessment approach for nickel in freshwater sediments. Integrated Environmental Assessment and Management 12(4), 735–746. https://doi.org/10.1002/ieam.1720.
- Smith, S.L., Macdonald, D.D., Keenleyside, K.A., Ingersoll, C.G. & Field, L.J. (1996). A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research 22(3), 624-638. https://doi.org/10.1016/ S0380-1330(96)70985-1.
- Song, J., Liu, Q. & Sheng, Y. (2019). Distribution and risk assessment of trace metals in riverine surface sediments in gold mining area. Environmental Monitoring and Assessment 191, 191. https://doi.org/10.1007/s10661019-7311-9.
- Taghipour, M., Ayoubi, S. & Khademi, H. (2011). Contribution of lithologic and anthropogenic factors to surface soil heavy metals in western Iran using multivariate geostatistical analyses. Soil and Sediment Contamination: An International Journal 20(8), 921–937. https://doi.org/10.1080/15320383. 2011.620045
- Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffrey, D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33, 566-575. https://doi.org/10.1007/BF02414780.
- Tunca, E., Aydin, M. & Şahin, U.A. (2018). An ecological risk investigation of marine sediment from the northern Mediterranean coasts (Aegean Sea) using multiple methods of pollution determination. Environmental Science and Pollution Research 25, 7487–7503. https://doi.org/ 10.1007/s11356-017-0984-0.
- Turekian, K.K. & Wedepohl, K.H. (1961). Distribution of the Elements in some major units of the Earth's crust. Geological Society of America Bulletin 72(2), 175-192. https://doi.org/10.1130/0016-7606(1961)72 [175: DOTEIS]2.0.CO;2.
- US Environmental Protection Agency (EPA) 2004. Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment, United States Environmental Protection Agency.
- Wang, Y.B., Liu, C.W. & Wang, S.W. (2015). Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment. Ecotoxicology and Environmental Safety 113, 469–476. https://doi.org/10.1016/j.ecoenv.2014.12.036.
- US Environmental Protection Agency (EPA) 2012. Integrated Risk Information System of the US Environmental Protection Agency.
- Ustaoğlu, F. & Islam, M.S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators 113, 106237.
- Yaroshevsky, A.A. (2006). Abundances of chemical elements in the Earth’s crust. Geochemistry International 44, 48-55. https://doi.org/10.1134/ S001670290601006X.
- Yeni, A. (1995). Ankara İl Sınırları İçindeki Baraj Çevrelerinde Rekreasyonel Planlama ve Yararlanma Esasları Üzerine Bir Araştırma. (Tez No: 45725) [Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
- Yong, N., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y. & Yu. H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Science of The Total Environment 700, 134509. https://doi.org/10.1016/ j.scitotenv. 2019.134509.
- Zhang, J. & Liu, C.L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China – weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science 54(6), 1051–1070. https://doi.org/10.1006/ ecss.2001.0879.