Research Article
BibTex RIS Cite

Determination of Changes in Physicochemical and Microbiological Properties of Tomato Paste Exposed to Different Gases of Cold Plasma Technique

Year 2024, , 216 - 227, 28.02.2024
https://doi.org/10.18016/ksutarimdoga.vi.1201966

Abstract

This study aimed to reveal the effect of cold plasma application using different gases and mixtures on some physicochemical and microbiological properties of tomato paste. For this purpose, applications were performed in different gases and times, and the effect of each application was examined separately. As a result of the study, the pH values of the samples varied between 3.77 and 4.87, and the aw values between 0.718 and 0.819. When the color values were examined, it was determined that the L* value varied between 22.42 – 32.48, the a* value varied between 23.59 – 30.18 and the b* value varied between 12.16 – 19.52 (P<0.05). In addition to this, when the samples were evaluated microbiologically, TMAB counts varied between 3.02 – 5.42 log cfu/g, TPAB values ranged between 1.80 – 3.37 log cfu/g, total mold counts were between 3.08 – 5.67 log cfu/g, total yeast counts were between 3.13-5.42 and osmophilic yeast counts were between 1.74 – 3.49 log cfu/g. Lycopene values of samples in the study were in the range of 15.30 – 23.42 mg/100g DM. When the data obtained from the study are evaluated as a whole, it is thought that cold plasma application has positive effects on the shelf life and quality of tomato paste. In the research where two different gases and mixtures of these gases were used, oxygen gas application showed the most effect on the physicochemical and microbiological properties of the samples (P<0.05). Mixture and argon gas applications followed this effect, and prolonging the application period also increased the effect. When the data obtained from the study are evaluated as a whole, it has been revealed that cold plasma application delays the mold problem, which is one of the most critical problems in industrially produced tomato paste, extends the shelf life, and slows down the negative changes in physicochemical quality values due to storage.

References

  • Ablay, Ö.D., Özdikicierler, O., Gümüşkesen, A.S. (2020). Ultrasound Applications in The Refining of Crude Oil. Pamukkale University Journal of Engineering Sciences 26(7), 1239-1244.
  • Akarca, G. (2013). Investigation of Changes Ripening Period in Simply and Spicy Encased Mozerella Chesee. PhD thesis, Afyon Kocatepe University, Afyonkarahisar, Türkiye.
  • Akarca, G., Atik, A., Atik, İ., Denizkara, A.J. (2023). The Use of Cold Plasma Technology in Solving The Mold Problem in Kashar Cheese. J Food Sci Technol 60, 752–760.
  • Albayrak, A. & Kılıç, G.B. (2020). Application of Plasma Technology in Food Processing. Turkish Journal of Agriculture Food Science and Technology 8(11), 2300-2306.
  • Anonymous 2001. Türk Standartları Enstitüsü, TS 6235 EN ISO 6887-1. Gıda ve Hayvan Yemleri Mikrobiyolojisi, Deney Numunelerinin Başlangıç Süspansiyonunun ve Ondalık Seyreltilerinin Hazırlanması İçin Genel Kurallar.
  • AOAC 2016. Official Methods of Analysis (20th ed.). 978.18. Washington: Association of Official Analytical Chemists
  • Asl, P.J., Rajulapati, V., Gavahian, M., Kapusta, I., Putnik, P., Khaneghah, A.M., Marszałek, K. (2022). Non-Thermal Plasma Technique for Preservation of Fresh Foods: A review. Food Control 134, 108560. DOI:10.1016/j.foodcont.2021.108560.
  • Atik, A. & Gümüş, T. (2021). The Effect of Different Doses of UV-C Treatment on Microbiological Quality of Bovine Milk. LWT Food Science and Technology 136, 1-7.
  • Aygel, G. & Aslan, M.M. (2023). Population Density and Infestation Rate of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) on Different Tomato Varieties in Mersin Field Conditions. KSU J. Agric Nat 26 (1), 27-37, 2023. https://doi.org/10.18016/ksutarimdoga.vi.1058984.
  • Bermúdez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G., Garcia-Perez, M. (2013). Effect of Atmospheric Pressure Cold Plasma (APCP) on the Inactivation of Escherichia coli in Fresh Produce. Food Control 34, 149-157. https://doi.org/10.1016/j.foodcont.2013.04.022.
  • Briones-Labarca, V., Giovagnoli-Vicuña, C., Cañas-Sarazúa, R. (2019). Optimization of Extraction Yield, Flavonoids and Lycopene from Tomato Pulp by High Hydrostatic Pressure-Assisted Extraction. Food Chemistry 278, 751-759. https://doi.org/10.1016/j.foodchem.2018.11.106.
  • Demiray, E., Tülek, Y. & Yılmaz, Y. (2013). Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes During Hot Air Drying. LWT - Food Science and Technology 50, 172-176. http://dx.doi.org/10.1016/j.lwt.2012.06.001.
  • Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R.R., Annapure, U.S. (2017). Influence of Cold Plasma on Fungal Growth and Aflatoxins Production on Groundnuts. Food Control 77, 187-191. DOI:10.1016/j.foodcont.2017.02.019.
  • Fernández, A., Noriega, E. & Thompson, A. (2013). Inactivation of Salmonella enterica serovar Typhimurium on Fresh Produce by Cold Atmospheric Gas Plasma Technology. Food Microbiology 33, 24-29.
  • Ganesan, A.R., Tiwari, U., Ezhilarasi, P.N., Rajauria. G., (2021). Application of Cold Plasma on Food Matrices: A Review on Current and Future Prospects. J. Food Process Preserv. 245:e15070. https://doi.org/10.1111/jfpp.15070.
  • Gao, Y., Yeh, H.Y., Bowker, B., Zhuang, H. (2021). Effects of Different Antioxidants on Quality of Meat Patties Treated with In-Package Cold Plasma. Innovative Food Science and Emerging Technologies 70, 1-7.
  • Gök, V., Aktop, S., Özkan, M., Tomar, O. (2019). The Effects of Atmospheric Cold Plasma on Inactivation of Listeria monocytogenes and Staphylococcus aureus and Some Quality Characteristics of Pastırma—A Dry-Cured Beef Product. Innovative Food Science & Emerging Technologies 56, 102188.
  • Heo, Y.S., Yim, D.G., Baek, K.H., Kang, T., Lee, Y.E., Kim, J., Choe, W., Jo, C. (2021). Effect of Inkjet-Printed Flexible Dielectric Barrier Discharge Plasma on Reduction of Pathogen and Quality Changes on Sliced Cheese”. LWT Food Science and Technology 143, 1-8.
  • Herceg, Z., Kovacˇevic, D.B., Kljusuric,´ J.G., Jambrak, A.R., Zoric´, Z., Dragovic´-Uzelac, V. (2016). Gas Phase Plasma Impact on Phenolic Compounds in Pomegranate Juice. Food Chemistry 190, 665-672.
  • Himashree, P., Sengar, A.S., Sunil, C.K. (2022). Food Thickening Agents: Sources, Chemistry, Properties and Applications - A Review. International Journal of Gastronomy and Food Science 27, 100468. https://doi.org/10.1016/j.ijgfs.2022.100468.
  • ISO 2008. International Standard Organization. 21527-1:2008 Microbiology of Food and Animal Feeding Stuffs, Horizontal Method for The Enumeration of Yeasts and Moulds Part 1: Colony Count Technique in Products with Water Activity Greater Than 0,95. Geneva, Switzerland.
  • ISO 2013a. International Standard Organization. 4833-2:2013 Horizontal Method for The Enumeration of Microorganisms. Part 2: Colony count at 30 degrees C by The Surface Plating Technique. Geneva, Switzerland.
  • ISO 2013b. International Standard Organization. 4833-1:2013 Microbiology of The Food Chain. Horizontal Method For The Enumeration of Microorganisms. Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. Geneva, Switzerland.
  • Jabbari, S.S., Jafari, S.M., Dehnad, D., Shadidi, S.A. (2018). Changes in Lycopene Content and Quality of Tomato Juice During Thermal Processing by a Nanofluid Heating Medium. Journal of Food Engineering 230, 1-7. https://doi.org/10.1016/j.jfoodeng.2018.02.020.
  • Jafari, S.M., Ghanbari, V., Dehnad, D., Ganje, M. (2021). Improving the Storage Stability of Tomato Paste by the Addition of Encapsulated Olive Leaf Phenolics and Experimental Growth Modeling. International Journal of Food Microbiology 338, 1-7.
  • Jayasena, D.D., Kim, H.J., Yong, H.I., Park, S., Kim, K., Choe, W., Jo, C. (2015). Flexible Thin-Layer Dielectric Barrier Discharge Plasma Treatment of Pork Butt and Beef Loin: Effects on Pathogen Inactivation and Meat-Quality Attributes. Food Microbiology 46: 51-57. DOI: 10.1016/j.fm. 2014.07.009.
  • Jayathunge, K.G.L.R., Stratakos, A.Ch &, Delgado-Pando Koidis, A. (2019). Thermal and Non‐Thermal Processing Technologies on Intrinsic and Extrinsic Quality Factors of Tomato Products: A Review. J Food Process Preserv. 43:e13901. https://doi.org/ 0.1111/jfpp.13901
  • Jiang, Y., Sokorai, K., Pyrgiotakis, G., Demokritou, P., Li, X., Mukhopadhyay, S., Jin, T., Fan, X.(2017). Cold Plasma-Activated Hydrogen Peroxide Aerosol Inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and Maintains Quality of Grape Tomato, Spinach and Cantaloupe. International Journal of Food Microbiology 249, 53-60. DOI: 10.1016/j.ijfoodmicro.2017.03.004.
  • Khani, M.R., Shokri, B., Khajen, K. (2017). Studying the Performance of Dielectric Barrier Discharge and Gliding Arc Plasma Reactors in Tomato Peroxidase Inactivation. Journal of Food Engineering 197, 107-112. https://doi.org/10.1016/ j.jfoodeng.2016.11.012.
  • Kurtuldu, O. & Ozcan, T. (2018). Effect of β‐glucan on The Properties of Probiotic Set Yoghurt with Bifidobacterium animalis subsp. lactis Strain Bb‐12. International Journal of Dairy Technology 71, 157-166.
  • Lee, S.Y., Park, H.H., Min, S.C. (2020). Pulsed Light Plasma Treatment for the Inactivation of Aspergillus flavus spores, Bacillus pumilus spores, and Escherichia coli O157:H7 in Red Pepper Flakes. Food Control 118, 107401. https://doi.org/10.1016/ j.foodcont.2020.107401.
  • Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., Ding, T. (2017). Inactivation Mechanisms of Non-Thermal Plasma on Microbes: A Review. Food Control 75, 83-91.
  • Mao, L., Mhaske, P., Zing, X., Kasapis, S., Majzoobi, M., Farahnaky, A. (2021). Cold Plasma: Microbial Inactivation and Effects on Quality Attributes of Fresh and Minimally Processed Fruits and Ready-To-Eat Vegetables. Trends in Food Science & Technology 116, 146-175.
  • Mehta, D., Sharma, N., Bansal, V., Sangwan, R.S., Yadav, S.K. (2019). Impact of Ultrasonication, Ultraviolet and Atmospheric Cold Plasma Processing on Quality Parameters of Tomato-Based Beverage in Comparison with Thermal Processing. Innovative Food Science and Emerging Technologies 52, 343-349.
  • Mir, S.A., Shah, M.A., Mir, M.M. (2016). Understanding the Role of Plasma Technology in Food Industry. Food Bioprocess Technology 9, 734-750.
  • Misra, N.N. & Jo, C. (2017). Applications of Cold Plasma Technology for Microbiological Safety in Meat Industry. Trends in Food Science & Technology 64, 74-86.
  • Molina-Hernandez, J.B., Laika, J., Peralta-Ruiz, Y., Palivala, V.K., Tappi, S., Cappelli, F., Ricci, A., Neri, L., Chaves-López, C. (2022). Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.). Foods 11(2), 210.
  • Olatunde, O.O., Benjakul, S. & Vongkamjan, K. (2019). High Voltage Cold Atmospheric Plasma: Antibacterial Properties and Its Effect on Quality of Asian Sea Bass Slices. Innovative Food Science and Emerging Technologies 52, 305-312. https://doi.org/10.1016/j.ifset.2019.01.011.
  • Saremnezhad, S., Soltani, M., Faraji, A., Hayaloglu, A.A. (2021). Chemical Changes of Food Constituents During Cold Plasma Processing: A Review. Food Research International 147, 1-14.
  • Sruthi, N.U., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M., Khaneghah, A.M. (2022). Impacts of Cold Plasma Treatment on Physicochemical, Functional, Bioactive, Textural, and Sensory Attributes of Food: A Comprehensive Review. Food Chemsitry 368, 1-15.
  • Ulbin-Figlewicz, N., Brychcy, E &, Jarmoluk, A. (2015). Effect of Low-Pressure Cold Plasma on Surface Microflora of Meat and Quality Attributes. Journal of Food Science and Technology 52, 1228-1232.
  • Uribe-Wandurraga, Z.N., Igual, M., Guallar-de, Rufino, R., Savall, C., García-Segovia, P., Martínez-Monz´o, J. (2021). Physicochemical and Rheological Characterisation of Microalgae-Enriched Ketchups and Their Sensory Acceptability. International Journal of Gastronomy and Food Science 26, 100424. https://doi.org/10.1016/j.ijgfs.2021.100424.
  • Varilla, C., Marcone, M. & Annor, G.A. (2020). Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 9, 1-17.
  • Waghmare, R. (2021). Cold Plasma Technology for Fruit Based Beverages: A Review. Trends in Food Science & Technology 114, 60-69.
  • Wan, Z., Misra, N.N., Li, G., Keener, K.M. (2021). High Voltage Atmospheric Cold Plasma Treatment of Listeria innocua and Escherichia coli K-12 on Queso Fresco (Fresh Cheese). LWT Food Science and Technology 146, 1-10.
  • Wang, S., Liu, Y., Zhang, Y., Lü, X., Zhao, L., Song, Y., Zhang, L., Jiang, H., Zhang, J., Ge, W. (2022). Processing Sheep Milk by Cold Plasma Technology: Impacts on the Microbial Inactivation, Physicochemical Characteristics, and Protein Structure. LWT Food Science and Technology 153, 1-11.
  • Yüksel, Ç.Y. & Karagözlü, N. (2017). Atmospheric Cold Plasma and its Application in Foods. Journal of Adnan Menderes University Agricultural Faculty 14(2), 81-86.
  • Yong, H.I., Lee, H., Park, S., Park, J., Choe, W., Jung, S., Cheorun, J. (2017). Flexible Thin-Layer Plasma Inactivation of Bacteria and Mold Survival in Beef Jerky Packaging and Its Effects on the Meat's Physicochemical Properties. Meat Science 123, 151-156.

Farklı Dozlarda Soğuk Plazma Tekniğine Maruz Bırakılan Domates Salçasının Fizikokimyasal ve Mikrobiyolojik Özelliklerindeki Değişikliklerin Belirlenmesi

Year 2024, , 216 - 227, 28.02.2024
https://doi.org/10.18016/ksutarimdoga.vi.1201966

Abstract

Bu çalışmanın amacı, farklı gaz ve karışımları kullanılan soğuk plazma uygulamasının domates salçasının bazı fizikokimyasal ve mikrobiyolojik özelliklerine etkisinin ortaya koyulmasıdır. Bu amaçla farklı gaz ve sürelerde uygulamalar yapılmış ve her uygulamanın etkisi ayrı ayrı incelenmiştir. Çalışma sonucunda numunelerin pH değerleri 3,77 ile 4,87 arasında, aw değerleri ise 0,718 ile 0,819 arasında değişmiştir (P<0.05). Renk değerleri incelendiğinde L* değerinin 22.42 – 32.48 arasında, a* değerinin 23.59 – 30.18 arasında ve b* değerinin 12.16 – 19.52 arasında değiştiği tespit edilmiştir (P<0.05). Ayrıca numuneler mikrobiyolojik olarak değerlendirildiğinde depolama süresince tüm örneklerde sayıların arttığı (P>0.05), ancak CP uygulamasının bu artışı ciddi anlamda yavaşlattığı belirlenmiştir.Örneklerin TMAB sayıları 3.02 – 5.42 log kob/g, TPAB değerleri 1.80 – 3.37 log kob/g, toplam küf sayısı 3.08 – 5.67 log kob/g, toplam maya sayısı 3.13 – 5.42 log kob/g ve ozmofilik maya sayıları 1.74 – 3.49 log kob/g arası arasında değişmektedir. Çalışmadaki örneklerin likopen değerleri 15.30 – 23.42 mg/100g DM aralığındaydı. İki farklı gaz ve bu gazların karışımlarının kullanıldığı araştırmada örneklerin fizikokimyasal ve mikrobiyolojik özellikleri üzerinde en fazla etkiyi oksijen gazı uygulaması göstermiştir (P<0.05). Bu etkiyi karışım ve argon gazı uygulamaları takip etmiş olup uygulama süresinin uzaması etkiyi de artırmıştır. Çalışmadan elde edilen veriler bir bütün olarak değerlendirildiğinde, soğuk plazma uygulamasının endüstriyel olarak üretilen salçalarda en önemli problemlerden birisi olan küflenme sorunu geciktirerek raf ömrü uzattığı ve depolamaya bağlı fizikokimyasal kalite değerlerinde meydana gelen olumsuz değişimleri yavaşlattığı ortaya konulmuştur.

References

  • Ablay, Ö.D., Özdikicierler, O., Gümüşkesen, A.S. (2020). Ultrasound Applications in The Refining of Crude Oil. Pamukkale University Journal of Engineering Sciences 26(7), 1239-1244.
  • Akarca, G. (2013). Investigation of Changes Ripening Period in Simply and Spicy Encased Mozerella Chesee. PhD thesis, Afyon Kocatepe University, Afyonkarahisar, Türkiye.
  • Akarca, G., Atik, A., Atik, İ., Denizkara, A.J. (2023). The Use of Cold Plasma Technology in Solving The Mold Problem in Kashar Cheese. J Food Sci Technol 60, 752–760.
  • Albayrak, A. & Kılıç, G.B. (2020). Application of Plasma Technology in Food Processing. Turkish Journal of Agriculture Food Science and Technology 8(11), 2300-2306.
  • Anonymous 2001. Türk Standartları Enstitüsü, TS 6235 EN ISO 6887-1. Gıda ve Hayvan Yemleri Mikrobiyolojisi, Deney Numunelerinin Başlangıç Süspansiyonunun ve Ondalık Seyreltilerinin Hazırlanması İçin Genel Kurallar.
  • AOAC 2016. Official Methods of Analysis (20th ed.). 978.18. Washington: Association of Official Analytical Chemists
  • Asl, P.J., Rajulapati, V., Gavahian, M., Kapusta, I., Putnik, P., Khaneghah, A.M., Marszałek, K. (2022). Non-Thermal Plasma Technique for Preservation of Fresh Foods: A review. Food Control 134, 108560. DOI:10.1016/j.foodcont.2021.108560.
  • Atik, A. & Gümüş, T. (2021). The Effect of Different Doses of UV-C Treatment on Microbiological Quality of Bovine Milk. LWT Food Science and Technology 136, 1-7.
  • Aygel, G. & Aslan, M.M. (2023). Population Density and Infestation Rate of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) on Different Tomato Varieties in Mersin Field Conditions. KSU J. Agric Nat 26 (1), 27-37, 2023. https://doi.org/10.18016/ksutarimdoga.vi.1058984.
  • Bermúdez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G., Garcia-Perez, M. (2013). Effect of Atmospheric Pressure Cold Plasma (APCP) on the Inactivation of Escherichia coli in Fresh Produce. Food Control 34, 149-157. https://doi.org/10.1016/j.foodcont.2013.04.022.
  • Briones-Labarca, V., Giovagnoli-Vicuña, C., Cañas-Sarazúa, R. (2019). Optimization of Extraction Yield, Flavonoids and Lycopene from Tomato Pulp by High Hydrostatic Pressure-Assisted Extraction. Food Chemistry 278, 751-759. https://doi.org/10.1016/j.foodchem.2018.11.106.
  • Demiray, E., Tülek, Y. & Yılmaz, Y. (2013). Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes During Hot Air Drying. LWT - Food Science and Technology 50, 172-176. http://dx.doi.org/10.1016/j.lwt.2012.06.001.
  • Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R.R., Annapure, U.S. (2017). Influence of Cold Plasma on Fungal Growth and Aflatoxins Production on Groundnuts. Food Control 77, 187-191. DOI:10.1016/j.foodcont.2017.02.019.
  • Fernández, A., Noriega, E. & Thompson, A. (2013). Inactivation of Salmonella enterica serovar Typhimurium on Fresh Produce by Cold Atmospheric Gas Plasma Technology. Food Microbiology 33, 24-29.
  • Ganesan, A.R., Tiwari, U., Ezhilarasi, P.N., Rajauria. G., (2021). Application of Cold Plasma on Food Matrices: A Review on Current and Future Prospects. J. Food Process Preserv. 245:e15070. https://doi.org/10.1111/jfpp.15070.
  • Gao, Y., Yeh, H.Y., Bowker, B., Zhuang, H. (2021). Effects of Different Antioxidants on Quality of Meat Patties Treated with In-Package Cold Plasma. Innovative Food Science and Emerging Technologies 70, 1-7.
  • Gök, V., Aktop, S., Özkan, M., Tomar, O. (2019). The Effects of Atmospheric Cold Plasma on Inactivation of Listeria monocytogenes and Staphylococcus aureus and Some Quality Characteristics of Pastırma—A Dry-Cured Beef Product. Innovative Food Science & Emerging Technologies 56, 102188.
  • Heo, Y.S., Yim, D.G., Baek, K.H., Kang, T., Lee, Y.E., Kim, J., Choe, W., Jo, C. (2021). Effect of Inkjet-Printed Flexible Dielectric Barrier Discharge Plasma on Reduction of Pathogen and Quality Changes on Sliced Cheese”. LWT Food Science and Technology 143, 1-8.
  • Herceg, Z., Kovacˇevic, D.B., Kljusuric,´ J.G., Jambrak, A.R., Zoric´, Z., Dragovic´-Uzelac, V. (2016). Gas Phase Plasma Impact on Phenolic Compounds in Pomegranate Juice. Food Chemistry 190, 665-672.
  • Himashree, P., Sengar, A.S., Sunil, C.K. (2022). Food Thickening Agents: Sources, Chemistry, Properties and Applications - A Review. International Journal of Gastronomy and Food Science 27, 100468. https://doi.org/10.1016/j.ijgfs.2022.100468.
  • ISO 2008. International Standard Organization. 21527-1:2008 Microbiology of Food and Animal Feeding Stuffs, Horizontal Method for The Enumeration of Yeasts and Moulds Part 1: Colony Count Technique in Products with Water Activity Greater Than 0,95. Geneva, Switzerland.
  • ISO 2013a. International Standard Organization. 4833-2:2013 Horizontal Method for The Enumeration of Microorganisms. Part 2: Colony count at 30 degrees C by The Surface Plating Technique. Geneva, Switzerland.
  • ISO 2013b. International Standard Organization. 4833-1:2013 Microbiology of The Food Chain. Horizontal Method For The Enumeration of Microorganisms. Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. Geneva, Switzerland.
  • Jabbari, S.S., Jafari, S.M., Dehnad, D., Shadidi, S.A. (2018). Changes in Lycopene Content and Quality of Tomato Juice During Thermal Processing by a Nanofluid Heating Medium. Journal of Food Engineering 230, 1-7. https://doi.org/10.1016/j.jfoodeng.2018.02.020.
  • Jafari, S.M., Ghanbari, V., Dehnad, D., Ganje, M. (2021). Improving the Storage Stability of Tomato Paste by the Addition of Encapsulated Olive Leaf Phenolics and Experimental Growth Modeling. International Journal of Food Microbiology 338, 1-7.
  • Jayasena, D.D., Kim, H.J., Yong, H.I., Park, S., Kim, K., Choe, W., Jo, C. (2015). Flexible Thin-Layer Dielectric Barrier Discharge Plasma Treatment of Pork Butt and Beef Loin: Effects on Pathogen Inactivation and Meat-Quality Attributes. Food Microbiology 46: 51-57. DOI: 10.1016/j.fm. 2014.07.009.
  • Jayathunge, K.G.L.R., Stratakos, A.Ch &, Delgado-Pando Koidis, A. (2019). Thermal and Non‐Thermal Processing Technologies on Intrinsic and Extrinsic Quality Factors of Tomato Products: A Review. J Food Process Preserv. 43:e13901. https://doi.org/ 0.1111/jfpp.13901
  • Jiang, Y., Sokorai, K., Pyrgiotakis, G., Demokritou, P., Li, X., Mukhopadhyay, S., Jin, T., Fan, X.(2017). Cold Plasma-Activated Hydrogen Peroxide Aerosol Inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and Maintains Quality of Grape Tomato, Spinach and Cantaloupe. International Journal of Food Microbiology 249, 53-60. DOI: 10.1016/j.ijfoodmicro.2017.03.004.
  • Khani, M.R., Shokri, B., Khajen, K. (2017). Studying the Performance of Dielectric Barrier Discharge and Gliding Arc Plasma Reactors in Tomato Peroxidase Inactivation. Journal of Food Engineering 197, 107-112. https://doi.org/10.1016/ j.jfoodeng.2016.11.012.
  • Kurtuldu, O. & Ozcan, T. (2018). Effect of β‐glucan on The Properties of Probiotic Set Yoghurt with Bifidobacterium animalis subsp. lactis Strain Bb‐12. International Journal of Dairy Technology 71, 157-166.
  • Lee, S.Y., Park, H.H., Min, S.C. (2020). Pulsed Light Plasma Treatment for the Inactivation of Aspergillus flavus spores, Bacillus pumilus spores, and Escherichia coli O157:H7 in Red Pepper Flakes. Food Control 118, 107401. https://doi.org/10.1016/ j.foodcont.2020.107401.
  • Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., Ding, T. (2017). Inactivation Mechanisms of Non-Thermal Plasma on Microbes: A Review. Food Control 75, 83-91.
  • Mao, L., Mhaske, P., Zing, X., Kasapis, S., Majzoobi, M., Farahnaky, A. (2021). Cold Plasma: Microbial Inactivation and Effects on Quality Attributes of Fresh and Minimally Processed Fruits and Ready-To-Eat Vegetables. Trends in Food Science & Technology 116, 146-175.
  • Mehta, D., Sharma, N., Bansal, V., Sangwan, R.S., Yadav, S.K. (2019). Impact of Ultrasonication, Ultraviolet and Atmospheric Cold Plasma Processing on Quality Parameters of Tomato-Based Beverage in Comparison with Thermal Processing. Innovative Food Science and Emerging Technologies 52, 343-349.
  • Mir, S.A., Shah, M.A., Mir, M.M. (2016). Understanding the Role of Plasma Technology in Food Industry. Food Bioprocess Technology 9, 734-750.
  • Misra, N.N. & Jo, C. (2017). Applications of Cold Plasma Technology for Microbiological Safety in Meat Industry. Trends in Food Science & Technology 64, 74-86.
  • Molina-Hernandez, J.B., Laika, J., Peralta-Ruiz, Y., Palivala, V.K., Tappi, S., Cappelli, F., Ricci, A., Neri, L., Chaves-López, C. (2022). Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.). Foods 11(2), 210.
  • Olatunde, O.O., Benjakul, S. & Vongkamjan, K. (2019). High Voltage Cold Atmospheric Plasma: Antibacterial Properties and Its Effect on Quality of Asian Sea Bass Slices. Innovative Food Science and Emerging Technologies 52, 305-312. https://doi.org/10.1016/j.ifset.2019.01.011.
  • Saremnezhad, S., Soltani, M., Faraji, A., Hayaloglu, A.A. (2021). Chemical Changes of Food Constituents During Cold Plasma Processing: A Review. Food Research International 147, 1-14.
  • Sruthi, N.U., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M., Khaneghah, A.M. (2022). Impacts of Cold Plasma Treatment on Physicochemical, Functional, Bioactive, Textural, and Sensory Attributes of Food: A Comprehensive Review. Food Chemsitry 368, 1-15.
  • Ulbin-Figlewicz, N., Brychcy, E &, Jarmoluk, A. (2015). Effect of Low-Pressure Cold Plasma on Surface Microflora of Meat and Quality Attributes. Journal of Food Science and Technology 52, 1228-1232.
  • Uribe-Wandurraga, Z.N., Igual, M., Guallar-de, Rufino, R., Savall, C., García-Segovia, P., Martínez-Monz´o, J. (2021). Physicochemical and Rheological Characterisation of Microalgae-Enriched Ketchups and Their Sensory Acceptability. International Journal of Gastronomy and Food Science 26, 100424. https://doi.org/10.1016/j.ijgfs.2021.100424.
  • Varilla, C., Marcone, M. & Annor, G.A. (2020). Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods 9, 1-17.
  • Waghmare, R. (2021). Cold Plasma Technology for Fruit Based Beverages: A Review. Trends in Food Science & Technology 114, 60-69.
  • Wan, Z., Misra, N.N., Li, G., Keener, K.M. (2021). High Voltage Atmospheric Cold Plasma Treatment of Listeria innocua and Escherichia coli K-12 on Queso Fresco (Fresh Cheese). LWT Food Science and Technology 146, 1-10.
  • Wang, S., Liu, Y., Zhang, Y., Lü, X., Zhao, L., Song, Y., Zhang, L., Jiang, H., Zhang, J., Ge, W. (2022). Processing Sheep Milk by Cold Plasma Technology: Impacts on the Microbial Inactivation, Physicochemical Characteristics, and Protein Structure. LWT Food Science and Technology 153, 1-11.
  • Yüksel, Ç.Y. & Karagözlü, N. (2017). Atmospheric Cold Plasma and its Application in Foods. Journal of Adnan Menderes University Agricultural Faculty 14(2), 81-86.
  • Yong, H.I., Lee, H., Park, S., Park, J., Choe, W., Jung, S., Cheorun, J. (2017). Flexible Thin-Layer Plasma Inactivation of Bacteria and Mold Survival in Beef Jerky Packaging and Its Effects on the Meat's Physicochemical Properties. Meat Science 123, 151-156.
There are 48 citations in total.

Details

Primary Language English
Subjects Food Properties
Journal Section RESEARCH ARTICLE
Authors

Azize Atik 0000-0002-3294-380X

İlker Atik 0000-0001-8049-0465

Gökhan Akarca 0000-0002-5055-2722

Ayşe Janseli Denizkara 0000-0002-3078-8914

Early Pub Date October 13, 2023
Publication Date February 28, 2024
Submission Date November 9, 2022
Acceptance Date July 6, 2023
Published in Issue Year 2024

Cite

APA Atik, A., Atik, İ., Akarca, G., Denizkara, A. J. (2024). Determination of Changes in Physicochemical and Microbiological Properties of Tomato Paste Exposed to Different Gases of Cold Plasma Technique. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(1), 216-227. https://doi.org/10.18016/ksutarimdoga.vi.1201966

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149