The Effect of Different Harvest Times on Phenolic Content and Antioxidant Activity in Some Microgreens
Year 2024,
, 417 - 422, 01.04.2024
Sıla Barut Gök
,
Fatma Özdüven
,
Funda Eryılmaz Açıkgöz
Abstract
Microgreens, which have only become popular during the last decades, are rich in phytochemicals, including phenolic compounds, which act as antioxidants. The study aimed to examine the effects of two different harvest times (cotyledon [embryonic leaves] and 1.5-true leaf stage) of five microgreens on the bioactive compounds in terms of antioxidant capacity and total phenolics. The total phenolic components ranged from 60.9 to 2153.2 mg GAE g-1 in cotyledon leaves, whereas the value varied from 96.2 to 2113.9 mg GAE g-1 in the true leaves of microgreens. Increases in the phenolic content of the first true leaves in dill and chia were detected as 57.8% and 29.6% compared to the cotyledon leaf. Among the cotyledon microgreens, the maximum phenolic content was detected in the garden cress. The antioxidant capacity of the cotyledon and true leaf stages ranged between 485.4±2.3-1985.67±24.9 µg g-1 and 508.87±5.3-2393.56±12.6 µg g-1, respectively. The maximum antioxidant capacity was detected in radish, followed by garden cress. The biggest variation between the cotyledon and first true leaves in the study was observed for red beetroot. This study revealed the alteration in the phenolic content and antioxidant activity of five cultivars based on growth stages of cotyledonary and true leaves in microgreen form.
References
- Ainsworth, E.A. & Gillespie, K.M. (2007). Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin-Ciocalteu Reagent. Nature Protocols, 2, 875-877.
- Brand-Williams,W. Cuvelier, M.E. & Berset, C. (1995). Use of a freeradical method to evaluate antioxidant activity. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 28(1), 25– 30.
- Choe, U. Yu, L. Wang, T.T.Y. (2018). The science behind microgreens as an exciting new food for the 21st century, Journal of Agricultural and Food Chemistry, 66, 11519-11530. https://doi.org/ 10.1021/acs.jafc.8b03096.
- Di Bella, M.C. Niklas, A. Toscano, S. Picchi, V. Romano, D. Lo Scalzo, R. Branca, F. (2020). Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: sprouts, microgreens and baby leaves, Agronomy 10(6), 782. https://doi.org/10.3390/agronomy10060782.
- Di Gioia, F. Renna, M. & Santamaria, P. (2017). Sprouts, Microgreens and “Baby Leaf” Vegetables. In: Yildiz F., Wiley R. (eds) Minimally Processed Refrigerated Fruits and Vegetables. Food Engineering Series. Springer, Boston, MA.
- Delgado, R. Martin, P. Del Alamo, M. & Gonzalez, M.R. (2004). Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates Journal of the Science of Food and Agriculture, 84(7), 623-630.
- Ebert, A.W. Wu, T.H. Yang, R.Y. (2015). Amaranth sprouts and microgreens—a homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. In: Sustaining small-scale vegetable production and marketing systems for food and nutrition security, Bangkok, pp 233–244.
- Kyriacou, M.C. El-Nakhel, C. Pannico, A. Graziani, G. Soteriou, G.A. Giordano, M. Palladino, M. Ritieni, A. De Pascale, S. & Rouphael, Y. (2020). Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants, 9, 252.
10.3390/antiox9030252.
- Lenzi, A. Orlandini, A. Bulgari, R. Ferrante, A. & Bruschi, P. (2019). Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods, 8, 487.
- Marton, M. Mandoki, Zs. & Csapo, J. (2010). Evaluation of biological value of sprouts. Fat content, fatty acid Composition. Acta Univ. Sapientiae Alimentaria, 3, 53-65.
- Medda, S. Dessena, L. & Mulas, M. (2020). Monitoring of the PAL Enzymatic Activity and Polyphenolic Compounds in Leaves and Fruits of Two Myrtle Cultivars during Maturation. Agriculture, 10(9), 389. https://doi.org/ 10.3390/agriculture10090389.
- Messaoud, C., & Boussaid, M. (2011). Myrtus communis berry color morphs: A comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities. Chemistry & Biodiversity, 8(2), 300–310. https://doi.org/ 10.1002/cbdv.201000088.
- Mishra, P. Dikshit, G. Thimmegowda, H. Tontang, V. Stobdan, M. Sangwan, T. Aski, S. Dhaka, M. et al. (2021). Diversity in Phytochemical Composition, Antioxidant Capacities, and Nutrient Contents Among Mungbean and Lentil Microgreens When Grown at Plain-Altitude Region (Delhi) and High-Altitude Region (Leh-Ladakh), India. Frontiers in Plant Science, 12, 710-812. 10.3389/ fpls.2021.710812.
- Navarro, S. Leon, M. Roca-Perez, L., Boluda, R., Garcia-Ferriz, L., Perez-Bermudez, P. & Gavidia, I. (2008). Characterisation of Bobal and Crujidera Grape Cultivars, In Comparison with Tempranillo and Cabernet Sauvignon: Evolution of leaf macronutrients and berry composition during grape ripening. Food Chemistry, 108, 182-190.
- Pinto E., Almeida, A. A., Aguiar, A. A., & Ferreira, I. M. P. L. V. O., (2015). Comparison between the mineral profile and nitrate content of microgreens and mature lettuces, J. Food Compos Anal., 37(3), 38-43.
- Sun, J., Xiao, Z., Lin, L.Z., Lester, G.E., Wang, Q., Harnly, J.M., Chen, P., (2013). Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 61(46), 10960–10970.
- Yadav, L. Koley, T. Tripathi, A. Singh, S. (2019). Antioxidant potentiality and mineral content of summer season leafy greens: comparison at mature and microgreen stages using chemometric, Agric. Res. 8, 165-175. https://doi.org/10.1007/s40003-018-0378-7.
- Yaşa, B., Genç, M., Angın, N. & Ertaş, M., (2023). Characterization of Some Phytochemical Properties of Myrtle (Myrtus communis L.) Fruits Grown in Different Regions. KSU J. Agric Nat 26(6), 1230-1238. https://doi.org/10.18016/ksutarimdoga.vi.1248947.
- Xiao, Z., Lester, G. E., Park, E., Saftner, R. A., Luo, Y. & Wang, Q. (2015). Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Bio. Tech. 110, 140–148.
- Xiao, Z., Lester, G.E., Luo, Y. & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens? J. Agric. Food Chem. 60(31), 7644–7651.
- Xiao, Z. Lester, G., Luo, Y. & Wang, Q. (2013). Recent research findings on an emerging food product: Edible mirogreens. Journal of Food Composition and Analysis 49, 87–93.
- Zhao, X., Iwamoto, T. & Carey, E.E. (2007). Antioxidant Capacity of Leafy Vegetables as Affected by High Tunnel Environment, Fertilisation and Growth Stage. Journal of the Science of Food and Agriculture, 87, 2692-2699.
- Zhang Y., Xiao Z., Agera E., Konga L., & Tana L. (2021). Nutritional quality and health benefits of microgreens, a crop of modern agriculture. Journal of Future Foods, 1(1), 58-66
Farklı Hasat Zamanlarının Bazı Mikroyeşilliklerin Fenolik İçerik ve Antioksidan Aktivitesi Üzerine Etkisi
Year 2024,
, 417 - 422, 01.04.2024
Sıla Barut Gök
,
Fatma Özdüven
,
Funda Eryılmaz Açıkgöz
Abstract
Son yıllarda popüler hale gelen mikroyeşillikler, antioksidan rolü oynayan fenolik bileşikler de dahil olmak üzere fitokimyasallar açısından zengin besinlerdir. Çalışmanın amacı, beş mikroyeşilliğe uygulanan iki farklı hasat zamanının (kotiledon [embriyonik yapraklar] ve 1.5-gerçek yaprak aşaması) biyoaktif bileşikler üzerindeki etkilerini fenolik içerik ve antioksidan aktivite açısından incelemektir. Toplam fenolik içerik kotiledon yapraklarında 60.9 ile 2153.2 mg GAE g-1 arasında değişirken mikroyeşilliklerin gerçek yapraklarında bu değer 96.2 ile 2113.9 mg GAE g-1 arasında değişmiştir. Dereotu ve chia bitkilerinde ilk gerçek yaprakların fenolik içeriklerindeki artışlar kotiledon yapraktakine kıyasla %57.8 ve %29.6 olarak tespit edilmiştir. Kotiledon mikroyeşillikler arasında en fazla fenolik içerik bahçe teresinde tespit edilmiştir. Kotiledon ve gerçek yaprak dönemlerinin antioksidan kapasiteleri sırasıyla 485.4±2.3-1985.67±24.9 µg g-1 ve 508.87±5.3-2393.56±12.6 µg g-1 arasında değişmiştir. En yüksek antioksidan kapasite, turp ve ardından terede tespit edilmiştir. Çalışmada kotiledon ile ilk gerçek yapraklar arasındaki en büyük farklılık kırmızı pancarda gözlemlenmiştir. Bu çalışma, kotiledon ve gerçek yaprağın büyüme aşamalarına dayalı olarak beş mikroyeşillik çeşidinin fenolik içeriği ve antioksidan aktivitesindeki değişimi açıkça ortaya koymuştur.
References
- Ainsworth, E.A. & Gillespie, K.M. (2007). Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin-Ciocalteu Reagent. Nature Protocols, 2, 875-877.
- Brand-Williams,W. Cuvelier, M.E. & Berset, C. (1995). Use of a freeradical method to evaluate antioxidant activity. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 28(1), 25– 30.
- Choe, U. Yu, L. Wang, T.T.Y. (2018). The science behind microgreens as an exciting new food for the 21st century, Journal of Agricultural and Food Chemistry, 66, 11519-11530. https://doi.org/ 10.1021/acs.jafc.8b03096.
- Di Bella, M.C. Niklas, A. Toscano, S. Picchi, V. Romano, D. Lo Scalzo, R. Branca, F. (2020). Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: sprouts, microgreens and baby leaves, Agronomy 10(6), 782. https://doi.org/10.3390/agronomy10060782.
- Di Gioia, F. Renna, M. & Santamaria, P. (2017). Sprouts, Microgreens and “Baby Leaf” Vegetables. In: Yildiz F., Wiley R. (eds) Minimally Processed Refrigerated Fruits and Vegetables. Food Engineering Series. Springer, Boston, MA.
- Delgado, R. Martin, P. Del Alamo, M. & Gonzalez, M.R. (2004). Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates Journal of the Science of Food and Agriculture, 84(7), 623-630.
- Ebert, A.W. Wu, T.H. Yang, R.Y. (2015). Amaranth sprouts and microgreens—a homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. In: Sustaining small-scale vegetable production and marketing systems for food and nutrition security, Bangkok, pp 233–244.
- Kyriacou, M.C. El-Nakhel, C. Pannico, A. Graziani, G. Soteriou, G.A. Giordano, M. Palladino, M. Ritieni, A. De Pascale, S. & Rouphael, Y. (2020). Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants, 9, 252.
10.3390/antiox9030252.
- Lenzi, A. Orlandini, A. Bulgari, R. Ferrante, A. & Bruschi, P. (2019). Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods, 8, 487.
- Marton, M. Mandoki, Zs. & Csapo, J. (2010). Evaluation of biological value of sprouts. Fat content, fatty acid Composition. Acta Univ. Sapientiae Alimentaria, 3, 53-65.
- Medda, S. Dessena, L. & Mulas, M. (2020). Monitoring of the PAL Enzymatic Activity and Polyphenolic Compounds in Leaves and Fruits of Two Myrtle Cultivars during Maturation. Agriculture, 10(9), 389. https://doi.org/ 10.3390/agriculture10090389.
- Messaoud, C., & Boussaid, M. (2011). Myrtus communis berry color morphs: A comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities. Chemistry & Biodiversity, 8(2), 300–310. https://doi.org/ 10.1002/cbdv.201000088.
- Mishra, P. Dikshit, G. Thimmegowda, H. Tontang, V. Stobdan, M. Sangwan, T. Aski, S. Dhaka, M. et al. (2021). Diversity in Phytochemical Composition, Antioxidant Capacities, and Nutrient Contents Among Mungbean and Lentil Microgreens When Grown at Plain-Altitude Region (Delhi) and High-Altitude Region (Leh-Ladakh), India. Frontiers in Plant Science, 12, 710-812. 10.3389/ fpls.2021.710812.
- Navarro, S. Leon, M. Roca-Perez, L., Boluda, R., Garcia-Ferriz, L., Perez-Bermudez, P. & Gavidia, I. (2008). Characterisation of Bobal and Crujidera Grape Cultivars, In Comparison with Tempranillo and Cabernet Sauvignon: Evolution of leaf macronutrients and berry composition during grape ripening. Food Chemistry, 108, 182-190.
- Pinto E., Almeida, A. A., Aguiar, A. A., & Ferreira, I. M. P. L. V. O., (2015). Comparison between the mineral profile and nitrate content of microgreens and mature lettuces, J. Food Compos Anal., 37(3), 38-43.
- Sun, J., Xiao, Z., Lin, L.Z., Lester, G.E., Wang, Q., Harnly, J.M., Chen, P., (2013). Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 61(46), 10960–10970.
- Yadav, L. Koley, T. Tripathi, A. Singh, S. (2019). Antioxidant potentiality and mineral content of summer season leafy greens: comparison at mature and microgreen stages using chemometric, Agric. Res. 8, 165-175. https://doi.org/10.1007/s40003-018-0378-7.
- Yaşa, B., Genç, M., Angın, N. & Ertaş, M., (2023). Characterization of Some Phytochemical Properties of Myrtle (Myrtus communis L.) Fruits Grown in Different Regions. KSU J. Agric Nat 26(6), 1230-1238. https://doi.org/10.18016/ksutarimdoga.vi.1248947.
- Xiao, Z., Lester, G. E., Park, E., Saftner, R. A., Luo, Y. & Wang, Q. (2015). Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Bio. Tech. 110, 140–148.
- Xiao, Z., Lester, G.E., Luo, Y. & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens? J. Agric. Food Chem. 60(31), 7644–7651.
- Xiao, Z. Lester, G., Luo, Y. & Wang, Q. (2013). Recent research findings on an emerging food product: Edible mirogreens. Journal of Food Composition and Analysis 49, 87–93.
- Zhao, X., Iwamoto, T. & Carey, E.E. (2007). Antioxidant Capacity of Leafy Vegetables as Affected by High Tunnel Environment, Fertilisation and Growth Stage. Journal of the Science of Food and Agriculture, 87, 2692-2699.
- Zhang Y., Xiao Z., Agera E., Konga L., & Tana L. (2021). Nutritional quality and health benefits of microgreens, a crop of modern agriculture. Journal of Future Foods, 1(1), 58-66