Araştırma Makalesi
BibTex RIS Kaynak Göster

Bitki Uçucu Yağların Gri Küf Hastalığı Etmeni Botrytis cinerea’nın Misel Gelişimi, Konidi Çimlenmesi ve Hif Morfolojisi Üzerine Antifungal Etkileri

Yıl 2023, , 817 - 828, 31.08.2023
https://doi.org/10.18016/ksutarimdoga.vi.1221681

Öz

Gri küf hastalığına neden olan Botrytis cinerea aralarında turunçgil meyvelerininde bulunduğu oldukça geniş konukçu dizisine sahip fungal bir hastalık etmenidir. Bu çalışmada farklı kekik türleri (Origanum onites L., Origanum syriacum Holm., Thymbra spicata L.) ve rezene (Foeniculum vulgare Mill.) bitkilerinden elde edilen uçucu yağların Botrytis cinerea’nın misel gelişimi, spor çimlenmesi ve hiflerinin morfolojik yapısı üzerine buhar fazında antifungal etkinlikleri in vitro koşullarda araştırılmıştır. Uçucu yağlar arasında en yüksek antifungal etkinlik (% 100 engelleme) O. onites ve O. syriacum uçucu yağlarının 10 µg ml-1 dozunda tespit edilmiş olup, bu uygulamaları 40 µg ml-1 dozunda T. spicata ile nispeten daha yüksek dozda (120 µg ml-1) kullanılan F. vulgare uçucu yağları takip etmiştir. Uçucu yağların misel gelişimini tamamen engelleyen dozlardaki etkinliğinin fungisidal özellikte olduğu belirlenmiştir. Test edilen uçucu yağların tamamı 10 µg ml-1 dozda fungus konidilerin çimlenmesini tamamen engellemiştir. Yapılan taramalı ve ışık mikroskop çalışmalarında uçucu yağların minimum engelleme dozlarında fungus misel ve konidileri üzerinde vesikülleşme, sitoplazmalarında pıhtılaşma, hiflerde erime gibi ciddi bozulmalara neden olduğu gözlenmiştir. Mikroskop gözlem sonuçları uçucu yağlar tarafından gösterilen antifungal etkinliğin fungus misel ve konidilerinde neden olunan morfolojik bozulmalardan kaynaklandığını göstermiştir. Elde edilen sonuçlar özellikle kekik türlerine ait uçucu yağların depolanmış ürünlerde sorun olan fungal hastalıklarla mücadelede kimyasallara alternatif çevre dostu biyofungisit olarak kullanılabilme potansiyeline sahip olduğunu göstermiştir.

Destekleyen Kurum

Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

06-M-0203

Teşekkür

Bu çalışma, HMKÜ Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiş proje (06-M-0203) kapsamında gerçekleştirilmiştir

Kaynakça

  • Abbey, J.A., Percival, D., Abbey, L., Asiedu, S.K., Prithiviraj, B., & Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)-prospects and challenges. Biocontrol Science and Technology, 29, 241–262. https://doi.org/10.1080/09583157.2018.1548574
  • Abdolahi, A., Hassani, A., Ghuosta, Y., Bernousi, I., & Meshkatalsadat, M.H. (2010). In vitro efficacy of four plant essential oils against Botrytis cinerea Pers.:Fr. and Mucor piriformis A. Fischer. Journal of Essential Oil Bearing Plants, 13, 97-107. https://doi.org/10.1080/0972060X.2010.10643796.
  • Ağar, İ.T. (1987). Satsuma, klemantin ve fremont mandarinleri ile mineola tangelo’nun kontrollü atmosferde muhafaza olanakları üzerinde araştırmalar (Tez No 2066). [Yüksek Lisans Tezi Ç.Ü Fen Bilimleri Enstitüsü, Gıda Mühendisliği Ana Bilim Dalı, 160 sayfa]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Aguilar-González, E., Palou, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innovative Food Science & Emerging Technologies, 32, 181–185. https://doi.org/10.1016/j.ifset.2015.09.003
  • Altintas, A., Tabanca, N., Tyihak, E., Ott, P.G., Moricz, A.M., Mincsovics, E., & Wedge, D.E. (2013). Characterization of volatile constituents from Origanum onites and their antifungal and antibacterial activity. Journal of Aoac International, 96, 1200-1208. https://doi.org/ 10.5740/jaoacint.SGEAltintas
  • Amiri, Z., Sourestani, M.M, Mortazavi, S.M.H., Kiasat, A.R., & Ramezani, Z. (2022). Efficiency of chemical composition of some essential oils against Botrytis cinerea, the pathogen of post‑harvest strawberry fruits. Journal of Food Measurement and Characterization 16 : 66–75. https://doi.org/ 10.1007/s11694-021-01133-z
  • Anonim, (2021). Türkiye İstatistik Kurumu (TUİK) Bitkisel Üretim İstatistikleri. https://biruni. tuik.gov.tr/medas/?kn=92&locale=tr (Erişim Tarihi: 28.01.2022).
  • Anonymous, (2020). Food and Agriculture Organization of the United Nations, FAOSTAT. https://www.fao.org/faostat/en/#data/QCL/visualize (Alınma Tarihi: 24.02.2022).
  • Anonymous, (2022). Botrytis Diseases and Disorders. Agriculture: Citrus Pest Management Guidelines, https://www2.ipm.ucanr.edu/agriculture/citrus/Botrytis-Diseases-And-Disorders/
  • Arras, G. & Usai, M. (2001). Fungitoxic activity of 12 essential oils against four postharvest citrus pathogens: chemical analysis of Thymus capitatus oil and its effect in subatmospheric pressure conditions. Journal of Food Protection, 64, 1025-1029. https://doi.org/10.4315/0362-028X-64.7.1025.
  • Atay, M. & Soylu, S. (2022). Biber meyvelerinde hasat sonrası çürümelere sebep olan bazı fungal hastalık etmenlerine karşı isothiocyanate bileşiklerinin antifungal etkilerinin belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 26, 290-302. https://doi.org/10.29050/harranziraat.1136632
  • Atay, M. & Soylu, S., (2023). Kurutmalık biber meyvelerinde iç çürüklüğüne neden olan bazı fungal etmenlere karşı bitki uçucu yağlarının in vitro antifungal etkileri. KSÜ Tarım ve Doğa Dergisi, 26(1), 76-89. https://doi.org/10.18016/ ksutarimdoga.vi.1085859.
  • Bazioli, J.M., Belinato, J.R., Costa, J.H., Akiyama, D.Y., de Moraes Pontes, J.G., Kupper, K.C., Augusto, F., de Carvalho, J.E., & Fill, T.P. (2019). Biological control of citrus postharvest phytopathogens. Toxins, 11, article no. 460. https://doi.org/10.3390/toxins11080460
  • Benli, M. (2003). Hasat sonrası fungal hastalıklarla kimyasal ve biyolojik mücadele. Orlab On-Line Mikrobiyoloji Dergisi, 1, 1-25.
  • Bouchra, C., Achouri, M., Idrissi Hassani, L.M. & Hmamouchi, M. (2003). Chemical composition and antifungal activity of essential oils of seven moroccan labiatae against Botrytis cinerea pers: Fr. Journal of Ethnopharmacology, 89, 165-169. https://doi.org/10.1016/S0378-8741(03)00275-7.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro. 2004.03.022.
  • Camele, I., De Feo, V., Altieri, L., Mancini, E., De Martino, L., & Rana, GL. (2010). An attempt of postharvest orange fruit rot control using essential oils from Mediterranean Plants. Journal of Medicinal Food, 13, 1515-1523. https://doi.org/ 10.1089/jmf.2009.0285.
  • Cohen, E. (1989). Evaluation of fenpropimorph and flutriafol for control of sour rot, blue mold and gren mold in lemon fruit. Plant Disease, 73, 807-809
  • Dave, B., Sales, M., & Walia, M. (1990). Resistance of different strains of Penicillium digitatum to imazalil treatment in California citrus packinghouse. Proceedings of the Florida State Horticultural Society, 102, 178-179.
  • de Oliveira Filho, J.G., da Cruz Silva, G., de Aguiar, A.C., Cipriano, L., de Azeredo, H.M.C., Junior, S.B., & Ferreira, M.D. (2021). Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. Journal of Food Measurement and Characterization, 15, 1815–1825. https://doi.org/ 10.1007/s11694-020-00765-x.
  • Delen, N., & Tosun, N. (1995). Botrytis cinerea izolatlarının bazı dithiocarbamate’lara duyarlılığı üzerinde çalışmalar. 7.Türkiye Fitopatoloji Kongresi Bildirileri, Adana, 141-144.
  • Diánez, F., Santos, M., Blanco, R., & Tello, J.C. (2002). Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (southwestern Spain). Phytoparasitica, 30, 529-534. https://doi.org/10.1007/BF02979759.
  • Hadian, J., Ghasemnezhad, M., Ranjbar, H., Frazane, M., & Ghorbanpour, M. (2008). Antifungal potency of some essential oils in control of postharvest decay of strawberry caused by Botrytis cinerea, Rhizopus stolonifer and Aspergillus niger. Journal of Essential Oil Bearing Plants, 11, 553-562. https://doi.org/10.1080/0972060X.2008.10643666.
  • Ismail, M., & Zhang, J. (2004). Post–harvest citrus diseases and their control. Outlooks Pest Management, 15, 29–35. https://doi.org/10.1564/ 15feb12.
  • Isman, B.M. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 603–608. https://doi.org/10.1016/S0261-2194(00)00079-X.
  • Jafarzadeh, S., Salehabadi, A., Nafchi, A.M., Oladzadabbasabadi, N., & Jafari, S.M. (2021). Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Science & Technology, 116, 218–231. https://doi.org/10.1016/j.tifs.2021.07.021.
  • Jayasekara, A., Daranagama, A., Kodituwakku, T.D., & Abeywickrama, K. (2022). Morphological and molecular identification of fungi for their association with postharvest fruit rots in some selected citrus species. The Journal of Agricultural Sciences-Sri Lanka, 17, 79-93. http://doi.org/ 10.4038/jas.v17i1.9612.
  • Kahramanoglu, I., Panfilova, O., Kesimci, T.G., Bozhuyuk, A.U., Gurbuz, R., & Alptekin, H. (2022). Control of postharvest gray mold at strawberry fruits caused by Botrytis cinerea and improving fruit storability through Origanum onites L. and Ziziphora clinopodioides L. volatile essential oils. Agronomy, 12, Article Number 389. https://doi.org/10.3390/agronomy12020389.
  • Kaplan, H.J., & Dave, B.A. (1979). The current status of imazalil: a post harvest fungucide for Citrus. Proceedings of the Florida State Horticultural Society, 92, 37-43.
  • Kara, M., Soylu, S., Türkmen, M., & Kaya, D.A. (2020). Determination and antifungal activities of laurel and fennel essential oils against fungal disease agents of cypress seedlings. Tekirdağ Ziraat Fakültesi Dergisi, 17, 264-275. https://doi.org/ 10.33462/jotaf.663452
  • Kara, M., Türkmen, M., Soylu, S. (2022a). Rezene ve defne uçucu yağ karışımlarının kimyasal bileşenlerinin servi sürgün uç yanıklığı hastalık etmeni Pestalotiopsis funerea’ya karşı antifungal etkinliklerinin belirlenmesi. KSÜ Tarım ve Doğa Dergisi, 25 (1), 113-126. https://doi.org/10.18016/ ksutarimdoga.vi.904966
  • Kara, M., Türkmen, M., Soylu, S. (2022b). Chemical compositions and in vitro antifungal activities of essential oils obtained from different Origanum species against postharvest gray mold rot of persimmon fruit. Acta Horticulturae, 1338, 283-290. https://doi.org/10.17660/ActaHortic.2022. 1338.41
  • Kelly, J.L., & Austin, L.A. (1985). A quantitative detection method for P. italicum and P. digitatum in citrus packinghouses. Proceedings of the Florida State Horticultural Society, 98, 211-213. Knobloch, K., Pauli, P., Iberl, B., Weigand, H., & Weis N. (1989). Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research, 1, 119-128. https://doi.org/10.1080/ 10412905.1989.9697767.
  • Liu, X., Wang, L.P., Li Y.C., Li H.T., Yu, T., & Zheng, X.D. (2009). Antifungal activity of thyme oil against Geotrichum citri-aurantii in vitro and in vivo. Journal of Applied Microbiology, 107, 1450-1456. https://doi.org/10.1111/j.1365-2672.2009.04328.x.
  • Maldonado M.C., Corona J., Gordillo M.A., Navarro AR., (2009). Isolation and partial characterization of antifungal metabolites produced by Bacillus sp. IBA 33. Current Microbiology, 59, 646-650 https://doi.org/10.1007/s00284-009-9489-5.
  • Mbili N.C., Opara, U.L., Lennox, C.L., & Vries, F.A. (2017). Citrus and lemongrass essential oils inhibit Botrytis cinerea on ‘Golden Delicious’, ‘Pink Lady’ and ‘Granny Smith’ apples. Journal of Plant Disease and Protection, 124, 499-511. https://doi.org/10.1007/s41348-017-0121-9.
  • Myresiotis, C.K., Karaoglanidis, G.S., & Tzavella-Klonari, K. (2007). Resistance of Botrytis cinerea isolates from vegetable crops to anilinompyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicorboximide fungicides. Plant Diseases, 91, 407-403. https://doi.org/10.1094/PDIS-91-4-0407.
  • Özbel, T., & Delen, N. 1995. Turunçgil meyvelerinde Penicillium türlerinin oluşturdukları hasat sonrası çürüklüklerine karşı fungisitlerin etkinlikleri üzerinde çalışmalar. 7.Türkiye Fitopatoloji Kongresi, 220-223.
  • Pappas, A.C. (1982). Metalaxyl resistance and control of cucumber downy mildew with oomycetes-fungisides. Annales de I’İnstitut Pyhtopathologique Benaki, 13, 194-212.
  • Perina, F.J., Amaral, D.C., Fernandes, R.S., Labory, C.R.G., Teixeira, G.A., & Alves, E. (2015). Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: effects on growth, viability, early infection and cellular mode of action. Pest Management Science, 71, 1371-1378. https:// doi.org/10.1002/ps.3933.
  • Prusky, D. (2011). Reduction of the incidence of postharvest quality losses, and future prospects. Food Security, 3, 463-474. https://doi.org/ 10.1007/s12571-011-0147-y.
  • Rasooli, I., Rezaei, M.B., & Allameh, A. (2006). Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Control, 17, 359-364. https://doi.org/10.1016/j.foodcont.2004. 12.002
  • Romagnoli, C., Bruni R., Andreotti, E., Rai, M.K., Vicentini, C.B. & Mares, D. (2005). Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L. Protoplasma, 225, 57-65. https://doi.org/ 10.1007/s00709-005-0084-8.
  • Rosslenbroich, H.J., & Stuebler, D. (2000). Botrytis cinerea–history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–61. https://doi.org/10.1016/S0261-2194(00) 00072-7.
  • Saito, S., & Xiao, C.L. (2017). Prevalence of postharvest diseases of mandarin fruit in California. Plant Health Progress, 18, 204-210. https://doi.org/10.1094/PHP-08-17-0048-RS
  • Saito, S., & Xiao, C-L. (2017b). Emerging post-harvest fruit rot diseases of mandarins. Citrograph, 8, 44-47.
  • Saito, S., & Xiao, C-L. (2018). Fungicide resistance in Botrytis cinerea populations in California and its influence on control of gray mold on stored mandarin fruit. Plant Disease, 102, 2545-2549. https://doi.org/10.1094/PDIS-05-18-0766-RE.
  • Saito, S., Michailides, T.J., & Xiao, C. L. (2016). Mucor rot – An emerging post-harvest disease of mandarin fruit caused by Mucor piriformis and other Mucor spp. in California. Plant Disease 100(6), 1054-1063. https://doi.org/10.1094/PDIS-10-15-1173-RE.
  • Salunkhe, D.K., & Desai, B.B. (1984). Postharvest Biotechnology of Fruits. Mahatma Phule Agricultural University, India, CRS Pres, Vol 1 :59-75
  • Soylu, E.M., & Köse, F. (2015). Antifungal activities of essential oils against citrus black rot disease agent Alternaria alternate. Journal of Essential Oil Bearing Plants, 18, 894-903.
  • Soylu, E.M., Kurt, S., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143, 183-189. https://doi.org/ 10.1016/j.ijfoodmicro.2010.08.015.
  • Soylu, E.M., Soylu, S., & Kurt, Ş. (2006). Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia, 161, 119-128 https://doi.org/10.1007/s11046-005-0206-z.
  • Soylu, E.M., Tok, F.M., Soylu, S., Kaya, A.D., & Evrendilek, G.A. (2005). Antifungal activities of the essential oils on post-harvest disease agent Penicillium digitatum. Pakistan Journal of Biological Sciences, 8, 25-29.
  • Soylu, S., Yigitbas, H., Soylu, E.M., & Kurt, Ş. (2007). Antifungal effects of essential oils from oregano and fennel on Sclerotinia Sclerotiorum. Journal of Applied Microbiology, 103, 1021-1030. https://doi.org/10.1111/j.1365-2672.2007.03310.x.
  • Stange, R.R., & Eckert, J.W. (1994). Influence of postharvest hanling and surfactants on control of gren mold of lemons by curing. Phytopathology, 84, 612-616. https://doi.org/10.1094/Phyto-84-612.
  • Szczerbanik, M., Jobling, J., Morris, S., & Holford, P. (2007). Essential oil vapours control some common postharvest fungal pathogens. Australian Journal of Experimental Agriculture, 47, 103-109. https://doi.org/10.1071/EA05236.
  • Toker, S., & Biçici, M. (1996). Turunçgil meyvelerinde görülen hasat sonrası hastalıklara bazı fungisit ve depolama uygulamalarının etkisi. Turkish Journal of Agricultural and Forestry, 20, 73-83.
  • Uysal, A., Kurt, Ş., Soylu, S., Kara, M., & Soylu, E.M. (2022). Hatay ilinde yer alan turunçgil paketleme tesislerinde meyve ve hava kökenli mikrobiyata içerisindeki fungal ve bakteriyel türler ile yoğunluklarının belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(2), 340-351. https://doi.org/10.37908/mkutbd.1095692.
  • Vaughn, S.F., & Spencer, G.F. (1994). Antifungal activity of natural compounds against thiabendazole-resistant Fusarium sambucinum strains. Journal of Agricultural and Food Chemistry, 42, 200-203. https://doi.org/ 10.1021/jf00037a036.
  • Vitoratos, A., Bilalis, D., Karkanis, A., & Efthimiadou, A. (2013). Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici., 41, 86-92. https://doi.org/10.15835/ nbha4118931.
  • Wild, B.L., and Eckert, J.W. (1982). Synergy between a benzimidazole-sensitive isolate and benzimidazole-resistant isolates of Penicillium digitatum. Phytopathology, 72, 1329-1332.
  • Wilson, C.L., & Pusey, P.L. (1985). Potantial for biological control of postharvest plant diseases. Plant Disease, 69, 375-378.
  • Wilson, C.L., Ghaouth, A.E., Chalutz, E., Drony, S., Stevens, C., Lu, J.Y., Khan, V., and Arul, J. (1994). Potantial of induced resistance to control postharvest diseases of fruits and vegatables. Plant Disease, 78, 837-844.
  • Wodnicka, A., Huzar, E., Dzieciol, M., & Krawczyk, M. (2019). Comparison of the composition and fungicidal activity of essential oils from fennel fruits cultivated in Poland and Egypt. Polish Journal of Chemical Technology, 21, 38-42. https://doi.org/10.2478/pjct-2019-0018.
  • Yilmaz, A., Ermis, E., & Boyraz, N. (2016). Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot diseases - Colletotrichum gloeosporioides, Botrytis cinerea and Penicillium expansum. Journal of Food Safety and Food Quality, 67, 122-131. https://doi.org/10.2376/0003-925X-67-12.
  • Zambonelli, A., Zechini D’Aulerio, A., Bianchi, A., & Albasini, A. (1996). Effects of essential oils on phytopathogenic fungi in vitro. Journal of Phytopathology, 144, 491-494. https://doi.org/ 10.1111/j.1439-0434.1996.tb00330.x.

Antifungal Effects of Essential Oils on Mycelial Growth, Conidia Germination and Morphology of Hyphae of Gray Mold Disease Agent Botrytis cinerea

Yıl 2023, , 817 - 828, 31.08.2023
https://doi.org/10.18016/ksutarimdoga.vi.1221681

Öz

Botrytis cinerea, which causes gray mold disease, is a fungal disease agent with a wide host range, including citrus fruits. In this study, antifungal effects of plant essential oils obtained from different thyme species (Origanum onites L., Origanum syriacum Holm., Thymbra spicata L.) and fennel (Foeniculum vulgare Mill.) in vapor phase were investigated on mycelial growth, conidia germination and morphology of hyphae of B. cinerea in vitro conditions. Among the essential oils, the highest antifungal activity (100% inhibition) was detected at the dose of 10 µg mL-1 of O. onites and O. syriacum essential oils, and these applications were followed by T. spicata at a dose of 40 µg mL-1 and F. vulgare essential oil at a relatively higher dose (120 µg mL-1) used. The effectiveness of essential oils at doses that completely inhibit mycelial growth were determined as fungicidal. All essential oils tested completely inhibited the germination of fungal conidia at the dose of 10 µg mL-1. In scanning and light microscopy studies, it has been observed that essential oils cause serious deteriorations such as vesiculation, cytoplasmic coagulation and lysis on fungal mycelium and conidia at minimum inhibition concentrations determined. Microscope observation results showed that the antifungal activities were due to the morphological deteriorations caused by the essential oils on the fungal hyphae and conidia. Overall results showed that essential oils of thyme species have the potential to be used as environmental friendly biofungicide alternative to chemicals against fungal diseases in stored products.

Proje Numarası

06-M-0203

Kaynakça

  • Abbey, J.A., Percival, D., Abbey, L., Asiedu, S.K., Prithiviraj, B., & Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)-prospects and challenges. Biocontrol Science and Technology, 29, 241–262. https://doi.org/10.1080/09583157.2018.1548574
  • Abdolahi, A., Hassani, A., Ghuosta, Y., Bernousi, I., & Meshkatalsadat, M.H. (2010). In vitro efficacy of four plant essential oils against Botrytis cinerea Pers.:Fr. and Mucor piriformis A. Fischer. Journal of Essential Oil Bearing Plants, 13, 97-107. https://doi.org/10.1080/0972060X.2010.10643796.
  • Ağar, İ.T. (1987). Satsuma, klemantin ve fremont mandarinleri ile mineola tangelo’nun kontrollü atmosferde muhafaza olanakları üzerinde araştırmalar (Tez No 2066). [Yüksek Lisans Tezi Ç.Ü Fen Bilimleri Enstitüsü, Gıda Mühendisliği Ana Bilim Dalı, 160 sayfa]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Aguilar-González, E., Palou, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innovative Food Science & Emerging Technologies, 32, 181–185. https://doi.org/10.1016/j.ifset.2015.09.003
  • Altintas, A., Tabanca, N., Tyihak, E., Ott, P.G., Moricz, A.M., Mincsovics, E., & Wedge, D.E. (2013). Characterization of volatile constituents from Origanum onites and their antifungal and antibacterial activity. Journal of Aoac International, 96, 1200-1208. https://doi.org/ 10.5740/jaoacint.SGEAltintas
  • Amiri, Z., Sourestani, M.M, Mortazavi, S.M.H., Kiasat, A.R., & Ramezani, Z. (2022). Efficiency of chemical composition of some essential oils against Botrytis cinerea, the pathogen of post‑harvest strawberry fruits. Journal of Food Measurement and Characterization 16 : 66–75. https://doi.org/ 10.1007/s11694-021-01133-z
  • Anonim, (2021). Türkiye İstatistik Kurumu (TUİK) Bitkisel Üretim İstatistikleri. https://biruni. tuik.gov.tr/medas/?kn=92&locale=tr (Erişim Tarihi: 28.01.2022).
  • Anonymous, (2020). Food and Agriculture Organization of the United Nations, FAOSTAT. https://www.fao.org/faostat/en/#data/QCL/visualize (Alınma Tarihi: 24.02.2022).
  • Anonymous, (2022). Botrytis Diseases and Disorders. Agriculture: Citrus Pest Management Guidelines, https://www2.ipm.ucanr.edu/agriculture/citrus/Botrytis-Diseases-And-Disorders/
  • Arras, G. & Usai, M. (2001). Fungitoxic activity of 12 essential oils against four postharvest citrus pathogens: chemical analysis of Thymus capitatus oil and its effect in subatmospheric pressure conditions. Journal of Food Protection, 64, 1025-1029. https://doi.org/10.4315/0362-028X-64.7.1025.
  • Atay, M. & Soylu, S. (2022). Biber meyvelerinde hasat sonrası çürümelere sebep olan bazı fungal hastalık etmenlerine karşı isothiocyanate bileşiklerinin antifungal etkilerinin belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 26, 290-302. https://doi.org/10.29050/harranziraat.1136632
  • Atay, M. & Soylu, S., (2023). Kurutmalık biber meyvelerinde iç çürüklüğüne neden olan bazı fungal etmenlere karşı bitki uçucu yağlarının in vitro antifungal etkileri. KSÜ Tarım ve Doğa Dergisi, 26(1), 76-89. https://doi.org/10.18016/ ksutarimdoga.vi.1085859.
  • Bazioli, J.M., Belinato, J.R., Costa, J.H., Akiyama, D.Y., de Moraes Pontes, J.G., Kupper, K.C., Augusto, F., de Carvalho, J.E., & Fill, T.P. (2019). Biological control of citrus postharvest phytopathogens. Toxins, 11, article no. 460. https://doi.org/10.3390/toxins11080460
  • Benli, M. (2003). Hasat sonrası fungal hastalıklarla kimyasal ve biyolojik mücadele. Orlab On-Line Mikrobiyoloji Dergisi, 1, 1-25.
  • Bouchra, C., Achouri, M., Idrissi Hassani, L.M. & Hmamouchi, M. (2003). Chemical composition and antifungal activity of essential oils of seven moroccan labiatae against Botrytis cinerea pers: Fr. Journal of Ethnopharmacology, 89, 165-169. https://doi.org/10.1016/S0378-8741(03)00275-7.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro. 2004.03.022.
  • Camele, I., De Feo, V., Altieri, L., Mancini, E., De Martino, L., & Rana, GL. (2010). An attempt of postharvest orange fruit rot control using essential oils from Mediterranean Plants. Journal of Medicinal Food, 13, 1515-1523. https://doi.org/ 10.1089/jmf.2009.0285.
  • Cohen, E. (1989). Evaluation of fenpropimorph and flutriafol for control of sour rot, blue mold and gren mold in lemon fruit. Plant Disease, 73, 807-809
  • Dave, B., Sales, M., & Walia, M. (1990). Resistance of different strains of Penicillium digitatum to imazalil treatment in California citrus packinghouse. Proceedings of the Florida State Horticultural Society, 102, 178-179.
  • de Oliveira Filho, J.G., da Cruz Silva, G., de Aguiar, A.C., Cipriano, L., de Azeredo, H.M.C., Junior, S.B., & Ferreira, M.D. (2021). Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. Journal of Food Measurement and Characterization, 15, 1815–1825. https://doi.org/ 10.1007/s11694-020-00765-x.
  • Delen, N., & Tosun, N. (1995). Botrytis cinerea izolatlarının bazı dithiocarbamate’lara duyarlılığı üzerinde çalışmalar. 7.Türkiye Fitopatoloji Kongresi Bildirileri, Adana, 141-144.
  • Diánez, F., Santos, M., Blanco, R., & Tello, J.C. (2002). Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (southwestern Spain). Phytoparasitica, 30, 529-534. https://doi.org/10.1007/BF02979759.
  • Hadian, J., Ghasemnezhad, M., Ranjbar, H., Frazane, M., & Ghorbanpour, M. (2008). Antifungal potency of some essential oils in control of postharvest decay of strawberry caused by Botrytis cinerea, Rhizopus stolonifer and Aspergillus niger. Journal of Essential Oil Bearing Plants, 11, 553-562. https://doi.org/10.1080/0972060X.2008.10643666.
  • Ismail, M., & Zhang, J. (2004). Post–harvest citrus diseases and their control. Outlooks Pest Management, 15, 29–35. https://doi.org/10.1564/ 15feb12.
  • Isman, B.M. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 603–608. https://doi.org/10.1016/S0261-2194(00)00079-X.
  • Jafarzadeh, S., Salehabadi, A., Nafchi, A.M., Oladzadabbasabadi, N., & Jafari, S.M. (2021). Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Science & Technology, 116, 218–231. https://doi.org/10.1016/j.tifs.2021.07.021.
  • Jayasekara, A., Daranagama, A., Kodituwakku, T.D., & Abeywickrama, K. (2022). Morphological and molecular identification of fungi for their association with postharvest fruit rots in some selected citrus species. The Journal of Agricultural Sciences-Sri Lanka, 17, 79-93. http://doi.org/ 10.4038/jas.v17i1.9612.
  • Kahramanoglu, I., Panfilova, O., Kesimci, T.G., Bozhuyuk, A.U., Gurbuz, R., & Alptekin, H. (2022). Control of postharvest gray mold at strawberry fruits caused by Botrytis cinerea and improving fruit storability through Origanum onites L. and Ziziphora clinopodioides L. volatile essential oils. Agronomy, 12, Article Number 389. https://doi.org/10.3390/agronomy12020389.
  • Kaplan, H.J., & Dave, B.A. (1979). The current status of imazalil: a post harvest fungucide for Citrus. Proceedings of the Florida State Horticultural Society, 92, 37-43.
  • Kara, M., Soylu, S., Türkmen, M., & Kaya, D.A. (2020). Determination and antifungal activities of laurel and fennel essential oils against fungal disease agents of cypress seedlings. Tekirdağ Ziraat Fakültesi Dergisi, 17, 264-275. https://doi.org/ 10.33462/jotaf.663452
  • Kara, M., Türkmen, M., Soylu, S. (2022a). Rezene ve defne uçucu yağ karışımlarının kimyasal bileşenlerinin servi sürgün uç yanıklığı hastalık etmeni Pestalotiopsis funerea’ya karşı antifungal etkinliklerinin belirlenmesi. KSÜ Tarım ve Doğa Dergisi, 25 (1), 113-126. https://doi.org/10.18016/ ksutarimdoga.vi.904966
  • Kara, M., Türkmen, M., Soylu, S. (2022b). Chemical compositions and in vitro antifungal activities of essential oils obtained from different Origanum species against postharvest gray mold rot of persimmon fruit. Acta Horticulturae, 1338, 283-290. https://doi.org/10.17660/ActaHortic.2022. 1338.41
  • Kelly, J.L., & Austin, L.A. (1985). A quantitative detection method for P. italicum and P. digitatum in citrus packinghouses. Proceedings of the Florida State Horticultural Society, 98, 211-213. Knobloch, K., Pauli, P., Iberl, B., Weigand, H., & Weis N. (1989). Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research, 1, 119-128. https://doi.org/10.1080/ 10412905.1989.9697767.
  • Liu, X., Wang, L.P., Li Y.C., Li H.T., Yu, T., & Zheng, X.D. (2009). Antifungal activity of thyme oil against Geotrichum citri-aurantii in vitro and in vivo. Journal of Applied Microbiology, 107, 1450-1456. https://doi.org/10.1111/j.1365-2672.2009.04328.x.
  • Maldonado M.C., Corona J., Gordillo M.A., Navarro AR., (2009). Isolation and partial characterization of antifungal metabolites produced by Bacillus sp. IBA 33. Current Microbiology, 59, 646-650 https://doi.org/10.1007/s00284-009-9489-5.
  • Mbili N.C., Opara, U.L., Lennox, C.L., & Vries, F.A. (2017). Citrus and lemongrass essential oils inhibit Botrytis cinerea on ‘Golden Delicious’, ‘Pink Lady’ and ‘Granny Smith’ apples. Journal of Plant Disease and Protection, 124, 499-511. https://doi.org/10.1007/s41348-017-0121-9.
  • Myresiotis, C.K., Karaoglanidis, G.S., & Tzavella-Klonari, K. (2007). Resistance of Botrytis cinerea isolates from vegetable crops to anilinompyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicorboximide fungicides. Plant Diseases, 91, 407-403. https://doi.org/10.1094/PDIS-91-4-0407.
  • Özbel, T., & Delen, N. 1995. Turunçgil meyvelerinde Penicillium türlerinin oluşturdukları hasat sonrası çürüklüklerine karşı fungisitlerin etkinlikleri üzerinde çalışmalar. 7.Türkiye Fitopatoloji Kongresi, 220-223.
  • Pappas, A.C. (1982). Metalaxyl resistance and control of cucumber downy mildew with oomycetes-fungisides. Annales de I’İnstitut Pyhtopathologique Benaki, 13, 194-212.
  • Perina, F.J., Amaral, D.C., Fernandes, R.S., Labory, C.R.G., Teixeira, G.A., & Alves, E. (2015). Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: effects on growth, viability, early infection and cellular mode of action. Pest Management Science, 71, 1371-1378. https:// doi.org/10.1002/ps.3933.
  • Prusky, D. (2011). Reduction of the incidence of postharvest quality losses, and future prospects. Food Security, 3, 463-474. https://doi.org/ 10.1007/s12571-011-0147-y.
  • Rasooli, I., Rezaei, M.B., & Allameh, A. (2006). Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Control, 17, 359-364. https://doi.org/10.1016/j.foodcont.2004. 12.002
  • Romagnoli, C., Bruni R., Andreotti, E., Rai, M.K., Vicentini, C.B. & Mares, D. (2005). Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L. Protoplasma, 225, 57-65. https://doi.org/ 10.1007/s00709-005-0084-8.
  • Rosslenbroich, H.J., & Stuebler, D. (2000). Botrytis cinerea–history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–61. https://doi.org/10.1016/S0261-2194(00) 00072-7.
  • Saito, S., & Xiao, C.L. (2017). Prevalence of postharvest diseases of mandarin fruit in California. Plant Health Progress, 18, 204-210. https://doi.org/10.1094/PHP-08-17-0048-RS
  • Saito, S., & Xiao, C-L. (2017b). Emerging post-harvest fruit rot diseases of mandarins. Citrograph, 8, 44-47.
  • Saito, S., & Xiao, C-L. (2018). Fungicide resistance in Botrytis cinerea populations in California and its influence on control of gray mold on stored mandarin fruit. Plant Disease, 102, 2545-2549. https://doi.org/10.1094/PDIS-05-18-0766-RE.
  • Saito, S., Michailides, T.J., & Xiao, C. L. (2016). Mucor rot – An emerging post-harvest disease of mandarin fruit caused by Mucor piriformis and other Mucor spp. in California. Plant Disease 100(6), 1054-1063. https://doi.org/10.1094/PDIS-10-15-1173-RE.
  • Salunkhe, D.K., & Desai, B.B. (1984). Postharvest Biotechnology of Fruits. Mahatma Phule Agricultural University, India, CRS Pres, Vol 1 :59-75
  • Soylu, E.M., & Köse, F. (2015). Antifungal activities of essential oils against citrus black rot disease agent Alternaria alternate. Journal of Essential Oil Bearing Plants, 18, 894-903.
  • Soylu, E.M., Kurt, S., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143, 183-189. https://doi.org/ 10.1016/j.ijfoodmicro.2010.08.015.
  • Soylu, E.M., Soylu, S., & Kurt, Ş. (2006). Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia, 161, 119-128 https://doi.org/10.1007/s11046-005-0206-z.
  • Soylu, E.M., Tok, F.M., Soylu, S., Kaya, A.D., & Evrendilek, G.A. (2005). Antifungal activities of the essential oils on post-harvest disease agent Penicillium digitatum. Pakistan Journal of Biological Sciences, 8, 25-29.
  • Soylu, S., Yigitbas, H., Soylu, E.M., & Kurt, Ş. (2007). Antifungal effects of essential oils from oregano and fennel on Sclerotinia Sclerotiorum. Journal of Applied Microbiology, 103, 1021-1030. https://doi.org/10.1111/j.1365-2672.2007.03310.x.
  • Stange, R.R., & Eckert, J.W. (1994). Influence of postharvest hanling and surfactants on control of gren mold of lemons by curing. Phytopathology, 84, 612-616. https://doi.org/10.1094/Phyto-84-612.
  • Szczerbanik, M., Jobling, J., Morris, S., & Holford, P. (2007). Essential oil vapours control some common postharvest fungal pathogens. Australian Journal of Experimental Agriculture, 47, 103-109. https://doi.org/10.1071/EA05236.
  • Toker, S., & Biçici, M. (1996). Turunçgil meyvelerinde görülen hasat sonrası hastalıklara bazı fungisit ve depolama uygulamalarının etkisi. Turkish Journal of Agricultural and Forestry, 20, 73-83.
  • Uysal, A., Kurt, Ş., Soylu, S., Kara, M., & Soylu, E.M. (2022). Hatay ilinde yer alan turunçgil paketleme tesislerinde meyve ve hava kökenli mikrobiyata içerisindeki fungal ve bakteriyel türler ile yoğunluklarının belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(2), 340-351. https://doi.org/10.37908/mkutbd.1095692.
  • Vaughn, S.F., & Spencer, G.F. (1994). Antifungal activity of natural compounds against thiabendazole-resistant Fusarium sambucinum strains. Journal of Agricultural and Food Chemistry, 42, 200-203. https://doi.org/ 10.1021/jf00037a036.
  • Vitoratos, A., Bilalis, D., Karkanis, A., & Efthimiadou, A. (2013). Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici., 41, 86-92. https://doi.org/10.15835/ nbha4118931.
  • Wild, B.L., and Eckert, J.W. (1982). Synergy between a benzimidazole-sensitive isolate and benzimidazole-resistant isolates of Penicillium digitatum. Phytopathology, 72, 1329-1332.
  • Wilson, C.L., & Pusey, P.L. (1985). Potantial for biological control of postharvest plant diseases. Plant Disease, 69, 375-378.
  • Wilson, C.L., Ghaouth, A.E., Chalutz, E., Drony, S., Stevens, C., Lu, J.Y., Khan, V., and Arul, J. (1994). Potantial of induced resistance to control postharvest diseases of fruits and vegatables. Plant Disease, 78, 837-844.
  • Wodnicka, A., Huzar, E., Dzieciol, M., & Krawczyk, M. (2019). Comparison of the composition and fungicidal activity of essential oils from fennel fruits cultivated in Poland and Egypt. Polish Journal of Chemical Technology, 21, 38-42. https://doi.org/10.2478/pjct-2019-0018.
  • Yilmaz, A., Ermis, E., & Boyraz, N. (2016). Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot diseases - Colletotrichum gloeosporioides, Botrytis cinerea and Penicillium expansum. Journal of Food Safety and Food Quality, 67, 122-131. https://doi.org/10.2376/0003-925X-67-12.
  • Zambonelli, A., Zechini D’Aulerio, A., Bianchi, A., & Albasini, A. (1996). Effects of essential oils on phytopathogenic fungi in vitro. Journal of Phytopathology, 144, 491-494. https://doi.org/ 10.1111/j.1439-0434.1996.tb00330.x.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Fatih Köse 0000-0003-3739-5248

Emine Mine Soylu 0000-0001-5961-0848

Proje Numarası 06-M-0203
Erken Görünüm Tarihi 15 Mayıs 2023
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 20 Aralık 2022
Kabul Tarihi 27 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Köse, F., & Soylu, E. M. (2023). Bitki Uçucu Yağların Gri Küf Hastalığı Etmeni Botrytis cinerea’nın Misel Gelişimi, Konidi Çimlenmesi ve Hif Morfolojisi Üzerine Antifungal Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(4), 817-828. https://doi.org/10.18016/ksutarimdoga.vi.1221681

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149