Research Article
BibTex RIS Cite

Antibiotic Resistance Profiles of Gram Negative Bacteria Isolated From Wastewater

Year 2024, , 520 - 527, 30.06.2024
https://doi.org/10.18016/ksutarimdoga.vi.1248203

Abstract

Aims: The use of antibiotics, which have been used in the treatment of infections, has been increasing. Therefore, the occurrence of antibiotic-resistant bacteria and resistance genes, both in infections and in the environment, is also increasing. In settlements near the water, wastewater is commonly collected in certain centers and discharged into nearby waters after treatment. As a result, the waters are polluted with pathogenic and resistant microorganisms, posing a great danger to human health. In this study, it was aimed at determining the antibiotic resistance profiles of Gram-negative bacteria isolated from wastewater samples taken from Trabzon City Center. Material and methods: Samples taken from wastewater were inoculated on tryptic soy agar and eosin methylene blue media to analyze the growing microorganisms. Thirty-six Gram-negative bacteria were included in the study. Resistance in bacteria was investigated by the disk diffusion method. Microorganisms with resistance were identified with the MALDI-TOF MS and BD Phoenix automated microbiology systems, and resistance profiles were obtained with the automated systems. The presence of blaSHV, blaTEM, blaOXA, blaCTX-M, integrase 1, integrase 2, and integron in resistant bacteria was investigated by the PCR method, and the transmission mechanisms of these genes were examined by transformation and conjugation experiments. In addition, the production of Extended Spectrum Beta Lactamase (ESBL) in isolates resistant to antibiotics was investigated by a double-disc synergy test.
Results: As a result, in the current study, antibiotic resistance was found in 14 of 36 isolates. The presence of ESBL and blaoxa was shown to be isolated. It was determined that two isolates had plasmids. It was also shown that ampicillin resistance in one isolate was transformed with a conjugative plasmid, and kanamycin resistance was transformed with a non-conjugative plasmid. Conclusions: The detection of the presence of plasmids in some isolates carrying resistance suggests that antibiotic resistance may spread among bacteria in wastewater and may have adverse effects on living things.

References

  • Akkan, T., Kaya, A., & Dinçer, S. (2011). Hastane Atık Sularıyla Kontamine Edilen Deniz Suyundan İzole Edilen Gram Negatif Bakterilerin Sefalosporin Grubu Antibiyotiklere Karşı Direnç Düzeyleri. Türk Mikrobiyoloji Cemiyeti Dergisi, 41(1), 18-21. https://doi.org/10.5222/TMCD. 2011. 018.
  • Amoureux, L., Bador, J., Fardeheb, S., Mabille, Cç, Couchot, C., Massip, C., Salignon, A.L., Berlie, G., Varin, V., & Neuwirth, C. (2013). Detection of Achromobacter xylosoxidans in Hospital, Domestic, and Outdoor Environmental Samples and Comparison with Human Clinical Isolates, Applied and Environmental Microbiology, 79(23), 7142-7149, https://doi.org/10.1128/AEM.02293-13.
  • Baquero, F., Martínez, J.L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology 19, 260–265. https://doi.org/10.1016/j.copbio.2008. 05.006.
  • Bouki, C., Venieri, D., & Diamadopoulos, E. (2013). Detection and the fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicology and Environmental Safety, 91, 1–9. https://doi.org/10.1016/j.ecoenv.2013.01.016.
  • Bungau, S., Mirela Tit, D., Fodor, K., Cioca, G., Agop, M., Iovan, C., Nistor Cseppento, D.C., Bumbu, A., & Bustea, C. (2018). Aspects regarding the pharmaceutical waste management in Romania. Sustainability. 10, 2788. https://doi.org/10.3390/ su10082788.
  • Clinical Laboratory Standards Institute. (2009). Performance standards for antimicrobial susceptibility testing. 19th edition. Supplement M100-S19:Wayne, PA: Clinical Laboratory Standards Institute.
  • Cornejova, T., Venglovsky, J., Gregova, G., Kmetova, M., & Kmet, V. (2015). Extended specttrum beta-lactamases in Escherichia coli from municipal wastewater. Annals of Agricultural and Environmental Medicine, 22(3), 447-450. https:// doi.org/10.5604/12321966.1167710.
  • Davies, J. & Davies, D. (2010). Origins and evolution of antibiotic resistance, Microbiology and Molecular Biology Reviews, 74, 417–433. https:// doi.org/10.1128/MMBR.00016-10.
  • Dehshiri, M., Khoramrooz, S.S., Zoladl, M., Khosravani, S.A., Parhizgari, N., Motazedian, M.H., Jahedi, S., Sharifi, A. (2018). The frequency of Klebsiella pneumonia encoding genes for CTX-M, TEM-1 and SHV-1 extended-spectrum beta lactamases enzymes isolated from urinary tract infection. Annals of Clinical Microbiology and Antimicrobials, 17(1), 4. https://doi.org/10.1186/ s12941-018-0256-y.
  • Edelstein, M., Pimkin, M., Palagin, I., Edelstein, I., & Stratchounski, L. (2003).Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrobial Agents and Chemotherapy, 47(12), 3724-32. https://doi.org/10.1128/AAC.47.12.3724-3732.2003.
  • Gatica, J. & Cytryn, E. (2013). Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environmental Science and Pollution Research, 20, 3529–3538. https://doi.org/ 10.1007/s11356-013-1505-4.
  • Huemer, M., Shambat, S.M., Brugger, S.D., & Zinkernagel, A.S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perpectives. EMBO Reports, 21(12), e51034. https://doi.org/10.15252/embr.202051034.
  • Ike, Y., Tanimoto, K., Tomita, H., Takeuchi, K., & Fujimoto, S. (1998). Efficient Transfer of the Pheromone-Independent Enterococcus faecium Plasmid pMG1 (Gmr)(65.1 Kilobases) to Enterococcus Strains during Broth Mating. Journal of Bacteriology, 180(18), 4886-92, https://doi.org/10.1128/JB.180.18.4886-4892.1998.
  • Khorshidtalab, M. (2016). Atık Sulardan Litik Bakteriyofaj İzolasyonu ve Karakterizasyonu (Tez no 452525). [Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Sağlık Bilimleri Enstitüsü Tıbbi Mikrobiyoloji Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Larsson, D.G.J. & Flach, C.F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257-269, https://doi.org/ 10.1038/s41579-021-00649-x.
  • Lepuschitz, S., Schill, S., Stoeger A., Pekard-Amenitsch, S., Huhulescu, S., Inreiter, N., Hartl, R., Kerschner, H., Sorschag, S., Springer, B., Brisse, S., Allerberger, F., Mach, R.L., & Ruppitsch, W. (2019). Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. Science of The Total Environment, 662, 227–235. https://doi.org/10.1016/j.scitotenv. 2019.01.179.
  • Li, D., Yang, M., Hu, J., Zhang, J., Liu, R., Gu, X., Zhang, Y., & Wang, Z. (2009). Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and receiving river. Environmental Microbiology, 11(6), 1506-1517. https://doi.org/10.1111/j.1462-2920.2009.01878.x.
  • Machado, E., Canto´n, R., Baquero, F., Gala´n, J.C., Rolla´n, A., Peixe, L., & Coque, T.M. (2005). Integron Content of Extended-Spectrum-Lactamase-Producing 74 Escherichia coli Strains over 12 Years in a Single Hospital in Madrid, Spain. Antimicrobial Agents and Chemotherapy, 49(5), 1823-1829. https://doi.org/10.1128/AAC. 49.5.1823-1829.2005.
  • Nakamoto, S., Sakamoto, M., Sugimura, K., Honmura, Y., Yamamoto, Y., Goda, N., Tamaki, H., & Burioka, N. (2017). Environmental Distribution and Drug Susceptibility of Achromobacter Xylosoxidans Isolated from Outdoor and Indoor Environments. Yonago Acta Medica, 60(1), 67-70.
  • Nayar, R., Shukla, I., & Sultan, A. (2014). Epidemiology, Prevalence and Identification of Citrobacter Species in Clinical Specimens in a Tertiary Care Hospital in India. Internaitonal Journal of Scientific and Research Publications, 4(4), 1-6.
  • Popova, A.V., Zhilenkov, E.L., Myakinina, V.P., Krasilnikova, V.M., & Volozhantsev, N.V. (2012). Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiology Letters, 332(1), 40–46.
  • Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sanchez-Melsio, A., Borrego, C.M., Barcelo, D., & Balcazar, J.L. (2015).Occurence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234-42. https://doi.org/10.1016/j.watres.2014.11.021.
  • Tarek, M.H. & Garner, E. (2022) A proposed framework for the identification of indicator genes for monitoring antibiotic resistance in wastewater: Insights from metagenomic sequencing. Science of The Total Environment, 12;158698. https://doi.org/ 10.1016/j.scitotenv.2022.158698.
  • Tariq, A., Haque, A., Ali, A., Bashir, S., Habeeb, M.A., Salman, M., & Sarwar, Y. (2012). Molecular profiling of antimicrobial resistance and integron association of multidrug-resistant clinical isolates of Shigella species from Faisalabad, Pakistan. Canadian Journal of Microbiology, 58(9), 1047-54. https://doi.org/10.1139/w2012-085.
  • Trivedi, M.K., Branton, A., Trivedi, D., Nayak, G., Mondal, S.C., & Jana, S. (2015). Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen. Journal of Clinical and Medical Genomics, 3, 129, https://doi.org/10.4172/2472-128X.1000129.
  • Xu, J., Xu Y, Wang, H., Guo, C., Qui, H., H, Y., Zhang, Y., Li, X., & Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379-85. https://doi.org/ 10.1016/j.chemosphere.2014.02.040.
  • Yang, Y., Li, B., Zo S., Fang, H.H.P., & Zhang, T. (2014). Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Research 62, 97-106. https:// doi.org/10.1016/j.watres.2014.05.019.
  • Yan, J.J., Hsueh, P.R., Lu, J.J., Chang, F.Y., Ko, W.C., & Wu, J.J. (2006). Characterization of acquired β-lactamases and their genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: the prevalence of unusual integrons. Journal of Antimicrobial Chemotherapy, 58(3), 530–536. https://doi.org/ 10.1093/jac/dkl266.

Atık Sulardan İzole Edilen Gram Negatif Bakterilerin Antibiyotik Direnç Profillerinin Belirlenmesi

Year 2024, , 520 - 527, 30.06.2024
https://doi.org/10.18016/ksutarimdoga.vi.1248203

Abstract

İnsan ve hayvanlardaki enfeksiyonların tedavisinde ve endüstride çeşitli amaçlarla yer alan antibiyotiklerin kullanımının artması çevresel ortamlarda antibiyotiğe dirençli bakterilerin ve direnç genlerinin daha sık tespit edilmesine neden olmaktadır. Su kenarındaki yerleşim yerlerinde atık sular arıtma işleminden sonra yakındaki sulara boşaltılmaktadır. Bunun sonucunda, sular patojen ve dirençli mikroorganizmalarla kirlenerek insan sağlığı için büyük bir tehlike oluşturmaktadır. Bu çalışmada, Trabzon şehir merkezinden alınan atık su örneklerinden Gram negatif bakteriler izole edilerek antibiyotik direnç profillerinin belirlenmesi amaçlanmıştır. Atık sulardan alınan örnekler triptik soy agar ve eozin metilen mavisi besiyerlerine ekim yapılarak üreyen mikroorganizmalar analiz edilmiştir. Çalışmaya Gram negatif 36 bakteri izolatı dahil edilmiştir. Bakterilerdeki direnç disk difüzyon yöntemi ile araştırılmıştır. Antimikrobiyal direnç saptanan mikroorganizmalar MALDI-TOF MS ve BD Phoenix otomatize mikrobiyoloji sistemi ile tanımlanarak otomatize sistem ile direnç profilleri çıkarılmıştır. Dirençli bakterilerde blaSHV, blaTEM, blaOXA, blaCTX-M, integraz 1, integraz 2 ve integron varlığı PZR yöntemi ile araştırılarak bu genlerin aktarım mekanizmaları transformasyon ve konjugasyon deneyleri ile incelenmiştir. Ayrıca, antibiyotiklere dirençli izolatlarda Genişlemiş Spektrumlu Beta Laktamaz (GSBL) üretimi çift disk sinerji testi ile araştırılmıştır. Sonuç olarak bu çalışmada 14 izolatta antibiyotik direnci olduğu, bir izolatta GSBL ve blaoxa varlığı tespit edilmiştir. İki izolatın plazmit taşıdığı ve bir izolatın ampisilin direncinin konjugatif plazmitle, kanamisin direncinin ise konjugatif olmayan bir plazmitle transforme olduğu belirlenmiştir. Direnç taşıyan bazı izolatlarda plazmit varlığının tespit edilmesi; antibiyotik direncinin atık sularda bulunan bakteriler arasında yayılabileceğini ve canlılar üzerinde olumsuz etkiler olabileceğini düşündürmektedir.

References

  • Akkan, T., Kaya, A., & Dinçer, S. (2011). Hastane Atık Sularıyla Kontamine Edilen Deniz Suyundan İzole Edilen Gram Negatif Bakterilerin Sefalosporin Grubu Antibiyotiklere Karşı Direnç Düzeyleri. Türk Mikrobiyoloji Cemiyeti Dergisi, 41(1), 18-21. https://doi.org/10.5222/TMCD. 2011. 018.
  • Amoureux, L., Bador, J., Fardeheb, S., Mabille, Cç, Couchot, C., Massip, C., Salignon, A.L., Berlie, G., Varin, V., & Neuwirth, C. (2013). Detection of Achromobacter xylosoxidans in Hospital, Domestic, and Outdoor Environmental Samples and Comparison with Human Clinical Isolates, Applied and Environmental Microbiology, 79(23), 7142-7149, https://doi.org/10.1128/AEM.02293-13.
  • Baquero, F., Martínez, J.L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology 19, 260–265. https://doi.org/10.1016/j.copbio.2008. 05.006.
  • Bouki, C., Venieri, D., & Diamadopoulos, E. (2013). Detection and the fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicology and Environmental Safety, 91, 1–9. https://doi.org/10.1016/j.ecoenv.2013.01.016.
  • Bungau, S., Mirela Tit, D., Fodor, K., Cioca, G., Agop, M., Iovan, C., Nistor Cseppento, D.C., Bumbu, A., & Bustea, C. (2018). Aspects regarding the pharmaceutical waste management in Romania. Sustainability. 10, 2788. https://doi.org/10.3390/ su10082788.
  • Clinical Laboratory Standards Institute. (2009). Performance standards for antimicrobial susceptibility testing. 19th edition. Supplement M100-S19:Wayne, PA: Clinical Laboratory Standards Institute.
  • Cornejova, T., Venglovsky, J., Gregova, G., Kmetova, M., & Kmet, V. (2015). Extended specttrum beta-lactamases in Escherichia coli from municipal wastewater. Annals of Agricultural and Environmental Medicine, 22(3), 447-450. https:// doi.org/10.5604/12321966.1167710.
  • Davies, J. & Davies, D. (2010). Origins and evolution of antibiotic resistance, Microbiology and Molecular Biology Reviews, 74, 417–433. https:// doi.org/10.1128/MMBR.00016-10.
  • Dehshiri, M., Khoramrooz, S.S., Zoladl, M., Khosravani, S.A., Parhizgari, N., Motazedian, M.H., Jahedi, S., Sharifi, A. (2018). The frequency of Klebsiella pneumonia encoding genes for CTX-M, TEM-1 and SHV-1 extended-spectrum beta lactamases enzymes isolated from urinary tract infection. Annals of Clinical Microbiology and Antimicrobials, 17(1), 4. https://doi.org/10.1186/ s12941-018-0256-y.
  • Edelstein, M., Pimkin, M., Palagin, I., Edelstein, I., & Stratchounski, L. (2003).Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrobial Agents and Chemotherapy, 47(12), 3724-32. https://doi.org/10.1128/AAC.47.12.3724-3732.2003.
  • Gatica, J. & Cytryn, E. (2013). Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environmental Science and Pollution Research, 20, 3529–3538. https://doi.org/ 10.1007/s11356-013-1505-4.
  • Huemer, M., Shambat, S.M., Brugger, S.D., & Zinkernagel, A.S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perpectives. EMBO Reports, 21(12), e51034. https://doi.org/10.15252/embr.202051034.
  • Ike, Y., Tanimoto, K., Tomita, H., Takeuchi, K., & Fujimoto, S. (1998). Efficient Transfer of the Pheromone-Independent Enterococcus faecium Plasmid pMG1 (Gmr)(65.1 Kilobases) to Enterococcus Strains during Broth Mating. Journal of Bacteriology, 180(18), 4886-92, https://doi.org/10.1128/JB.180.18.4886-4892.1998.
  • Khorshidtalab, M. (2016). Atık Sulardan Litik Bakteriyofaj İzolasyonu ve Karakterizasyonu (Tez no 452525). [Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Sağlık Bilimleri Enstitüsü Tıbbi Mikrobiyoloji Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Larsson, D.G.J. & Flach, C.F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257-269, https://doi.org/ 10.1038/s41579-021-00649-x.
  • Lepuschitz, S., Schill, S., Stoeger A., Pekard-Amenitsch, S., Huhulescu, S., Inreiter, N., Hartl, R., Kerschner, H., Sorschag, S., Springer, B., Brisse, S., Allerberger, F., Mach, R.L., & Ruppitsch, W. (2019). Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. Science of The Total Environment, 662, 227–235. https://doi.org/10.1016/j.scitotenv. 2019.01.179.
  • Li, D., Yang, M., Hu, J., Zhang, J., Liu, R., Gu, X., Zhang, Y., & Wang, Z. (2009). Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and receiving river. Environmental Microbiology, 11(6), 1506-1517. https://doi.org/10.1111/j.1462-2920.2009.01878.x.
  • Machado, E., Canto´n, R., Baquero, F., Gala´n, J.C., Rolla´n, A., Peixe, L., & Coque, T.M. (2005). Integron Content of Extended-Spectrum-Lactamase-Producing 74 Escherichia coli Strains over 12 Years in a Single Hospital in Madrid, Spain. Antimicrobial Agents and Chemotherapy, 49(5), 1823-1829. https://doi.org/10.1128/AAC. 49.5.1823-1829.2005.
  • Nakamoto, S., Sakamoto, M., Sugimura, K., Honmura, Y., Yamamoto, Y., Goda, N., Tamaki, H., & Burioka, N. (2017). Environmental Distribution and Drug Susceptibility of Achromobacter Xylosoxidans Isolated from Outdoor and Indoor Environments. Yonago Acta Medica, 60(1), 67-70.
  • Nayar, R., Shukla, I., & Sultan, A. (2014). Epidemiology, Prevalence and Identification of Citrobacter Species in Clinical Specimens in a Tertiary Care Hospital in India. Internaitonal Journal of Scientific and Research Publications, 4(4), 1-6.
  • Popova, A.V., Zhilenkov, E.L., Myakinina, V.P., Krasilnikova, V.M., & Volozhantsev, N.V. (2012). Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiology Letters, 332(1), 40–46.
  • Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sanchez-Melsio, A., Borrego, C.M., Barcelo, D., & Balcazar, J.L. (2015).Occurence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234-42. https://doi.org/10.1016/j.watres.2014.11.021.
  • Tarek, M.H. & Garner, E. (2022) A proposed framework for the identification of indicator genes for monitoring antibiotic resistance in wastewater: Insights from metagenomic sequencing. Science of The Total Environment, 12;158698. https://doi.org/ 10.1016/j.scitotenv.2022.158698.
  • Tariq, A., Haque, A., Ali, A., Bashir, S., Habeeb, M.A., Salman, M., & Sarwar, Y. (2012). Molecular profiling of antimicrobial resistance and integron association of multidrug-resistant clinical isolates of Shigella species from Faisalabad, Pakistan. Canadian Journal of Microbiology, 58(9), 1047-54. https://doi.org/10.1139/w2012-085.
  • Trivedi, M.K., Branton, A., Trivedi, D., Nayak, G., Mondal, S.C., & Jana, S. (2015). Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen. Journal of Clinical and Medical Genomics, 3, 129, https://doi.org/10.4172/2472-128X.1000129.
  • Xu, J., Xu Y, Wang, H., Guo, C., Qui, H., H, Y., Zhang, Y., Li, X., & Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379-85. https://doi.org/ 10.1016/j.chemosphere.2014.02.040.
  • Yang, Y., Li, B., Zo S., Fang, H.H.P., & Zhang, T. (2014). Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Research 62, 97-106. https:// doi.org/10.1016/j.watres.2014.05.019.
  • Yan, J.J., Hsueh, P.R., Lu, J.J., Chang, F.Y., Ko, W.C., & Wu, J.J. (2006). Characterization of acquired β-lactamases and their genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: the prevalence of unusual integrons. Journal of Antimicrobial Chemotherapy, 58(3), 530–536. https://doi.org/ 10.1093/jac/dkl266.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Microbiology (Other)
Journal Section RESEARCH ARTICLE
Authors

Merve Cora 0000-0002-5956-9133

İnci Durukan 0000-0002-9789-4738

Gülşen Uluçam Atay 0000-0002-8524-9096

Ali Osman Kılıç 0000-0002-5506-0866

Early Pub Date March 11, 2024
Publication Date June 30, 2024
Submission Date February 7, 2023
Acceptance Date July 6, 2023
Published in Issue Year 2024

Cite

APA Cora, M., Durukan, İ., Uluçam Atay, G., Kılıç, A. O. (2024). Atık Sulardan İzole Edilen Gram Negatif Bakterilerin Antibiyotik Direnç Profillerinin Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(3), 520-527. https://doi.org/10.18016/ksutarimdoga.vi.1248203

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149