Bazı Yabancı Otların Plum Pox Virüs T ile Ilgili Çalışmalarda Indikatör Bitki Olarak Kullanım Potansiyelinin Belirlenmesi
Year 2024,
, 1087 - 1094, 17.09.2024
Cemile Temur Çınar
,
Elif Dertli
,
Yasin Kaya
,
Doğan Işık
Abstract
Plum pox virus (PPV)’ün neden olduğu şarka hastalığı, sert çekirdekli meyvelerin en önemli ve en yıkıcı viral hastalığıdır. PPV, Türkiye'de sert çekirdekli meyve yetiştiriciliği yapılan bazı bölgelerdeki bahçelerde oldukça yaygındır ve ciddi bir sorun teşkil etmektedir. Ülkemize özgü bir ırk olan PPV-T (Turkey) ilk olarak kayısı, şeftali ve erikte ağaçlarında tespit edilmiştir. Virüsler obligat parazit organizmalar oldukları için yapay besin ortamlarda kültüre alınamazlar. Bu nedenle deneysel ortamda çalışma yapabilmek için canlı bir konukçuya ihtiyaç vardır. Yabancı otlar bitki virüs hastalıkları açısından değerlendirildiğinde virüslerin ve vektörlerinin doğal yada alternatif konukçusu olabilir ki buda yabancı otların virüs epidemiyolojisinin doğal bir unsuru olduğunu göstermektedir. Bu projede Türkiye’nin yerli ırkı kabul edilen PPV-T ile ilgili araştırmalarda kullanılabilecek en uygun indikatör yabancı ot konukçunun belirlenmesi amaçlanmıştır. İndikatör bitki olarak kullanılacak Chenopodium album ve Amaranthus retroflexus yabancı otlarının üç yaprağına PPV-T mekanik inokülasyonla uygulanmıştır. Her bir uygulama için 10 bitki kullanılmıştır. PPV-T inokulasyonu yapılmamış bitkiler kontrol bitkisi olarak kullanılmıştır. Simtom gelişimini takiben inokülasyon yapılmış ve kontrol bitkileri RT-PCR testi ile analiz yapılmıştır. Kullanılan üç bitkinin ikisinde simptomolojik gözlemler ve RT-PCR sonucunda PPV-T inokulasyonunun başarılı olduğu belirlenmiştir (C. album (10 bitkiden 6'sı) ve A. retroflexus (10 bitkinin tamamı).
References
- Adkins S., & Rosskopf E.N. (2002). Key West nightshade, a new experimental host for plant viruses. Plant Diseases. 86, 1310-1314.
- Aguiar R.W.S., Alves G.B., Queiroz A.P., Nascimento I.R., & Lima M.F. (2018). Evaluation of weeds as virus reservoirs in watermelon crops. Planta Daninha 36, 1-10.
- APG III, (2009): An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Botanical Journal of the Linnean Society. 161(3), 105–121.
- Asala S., Alegbejo M.D., Kashina B.D., Banwo O.O., & Shinggu C.P. (2014). Viruses in weeds in Dioscorea yam fields in Nigeria. African Crop Science Journal, 22(2), 109–115.
- Atanasoff D. (1932): Plum Pox. A New Virus Disease. Annals University of Sofía. Faculty of Agriculture and Silviculture. 11, 49-69
- Bajwa A.A, Zulfiqar U., & Sadia S. (2019). A global perspective on the biology, impact, and management of Chenopodium album and Chenopodium murale: two troublesome agricultural and environmental weeds.
Environmental Science and Pollution Research 26, 5357–5371. https://doi.org/10.1007/s11356-018-04104-y.
- Candresse T., Cambra M., Dallot S., Lanneau M., Asensio M., Gorris M., Revers F., Macquaire G., Olmos A., & Boscia D. (1998). Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of plum pox potyvirus. Phytopathology. 88, 198–204.
- Chen G., Pan H., Xie W., Wang S., Wu Q., Fang Y., & Shi X. (2013). Virus infection of a weed increases vector attraction to and vector fitness on the weed. Scientific Reports. 3, 2253; DOI:10.1038/ srep02253.
- Chirkov S., Sheveleva A., Ivanov P., & Zakubanskiy A. (2018). Analysis of genetic diversity of Russian sour cherry plum pox virus isolates provides evidence of a new strain. Plant Diseases 102, 569–575.
- Christie S.R., & Crawford W.E. (1978). Plant virus range of Nicotiana benthamiana. Plant Disease. Reports. 62, 20-22.
- Decroocq, V., Salvador, B., Sicard, O., Glasa, M., Cosson, P., Svanella-Dumas, L., Revers, F., García, J.A. and Candresse, T. (2009) The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol. Plant–Microbe Interact. 22, 1302–1311.
- Desvignes J.C., (1999). Virus diseases of fruit trees. Ed. Centre Technique Interprofessionnel des Fruits et Legumes (CTIFL), Paris, France,115-118.
- Eşitmez B., & Işik D. (2016). Kayseri ili elma bahçelerinde görülen yabancı ot türlerinin belirlenmesi. Meyve Bilimi, 3(1), 1-9.
- Feltner K.C. (1970). The ten worst weeds of field crops. 5. Pigweed. Crops and Soils, 23, 13-14.
- García J.A., Glasa M., Cambra M., & Candresse T. (2014). Plum pox virus and sharka: a model potyvirus and a major disease. Molecular Plant Pathology. 15(3), 226–241. http://dx.doi.org/ 10.1111/mpp.12083.
- Giusti L. (1970). El genero Chenopodium en Argentina: I. Numeros de cromosomas. Darwiniana 16, 98–105.
Hervás M., Ciordia S., Navajas R., García J.A., & Martínez-Turiño S., (2020). Common and Strain-Specific Post-Translational Modifications of the Potyvirus Plum pox virus Coat Protein in Different Hosts. Viruses, 12, 308.
- Ilardi V., & Nicola-Negri E.D. (2011). Genetically engineered resistance to Plum pox virus infection in herbaceous and stone fruit hosts, GM Crops, 2(1), 24-33.
- Kerlan C., & Dunez J. (1979). Biological and serological differentiation of strains of sharka virus. In: Annales de Phytopathologie. Institut National de la Recherche Agronomique, 241–250.
- Llácer G. (2006). Hosts and symptoms of Plum pox virus: Herbaceous hosts. Bulletin OEPP/EPPO Bulletin, 36, 227–228.
- Martínez-Turiño, S.; Calvo, M.; Bedoya, L.C.; Zhao, M.; García, J.A. (2021). Virus-Host Jumping Can Be Boosted by Adaptation to a Bridge Plant Species. Microorganisms, 9, 805. https://doi.org/ 10.3390/ microorganisms9040805.
- Milusheva S., & Rankova Z., (2002). Plum pox potyvirus detection in weed species under field conditions. Acta Horticulturae, 577, 283–287.
- Morca, A.F., Coşkan, S., Çelik, A., (2021). Determination of Plum pox virus and Molecular Characterization of Partial Coat Protein Gene in Burdur Province. KSU J. Agric Nat 24 (4), 805-814. DOI:
10.18016/ksutarimdoga.vi.767409.
- Morca, A.F., Coşkan, S., Akbaş, B., (2022). Detection, Characterization, and Monitoring of Plum pox virus in Zonguldak Province. KSU J. Agric Nat 25 (6), 1369-1377. https://doi.org/10.18016/ ksutarimdoga.vi.1015786.
- Morvan G., & Chastellière M.G. (1980). An evaluation of herbaceous hosts of sharka (plum pox). Acta
Phytopathologica Academiae Scientiarum Hungarica. 15(1–4), 297–302.
- Papayiannis L.C., Katis N.I., Idris A.M., & Brown J.K. (2011). Identification of weed hosts of Tomato yellow leaf curl virus in Cyprus. Plant Disease. 95(2), 120-5.
- Prajapat R., Marwal A., & Gaur R.K. (2014). Begomovirus associated with alternative host weeds: a critical appraisal, Archives of Phytopathology and Plant Protection, 47, 2.
- Quacquarelli A., & Avgelis A. (1975). Nicotiana benthamiana Domin, as host for plant viruses. Phytopathology. Mediterr.14, 36-39.
- Read A.F. (1994). The evolution of virulence. Trends Microbiology. 2, 73-76.
- Sacristán S., Fraile A., Malpica J.M., & García-Arenal F. (2005). An analysis of host adaptation and its relationship with virulence in Cucumber mosaic virus. Phytopathology, 95, 827-833.
- Sáenz P, Cervera M.T., Dallot S., Quiot L., Quiot J.B., Riechmann J.L., García J.A. (2000) Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K(1). Journal of General Virology, 81(Pt 3), 557-66. doi: 10.1099/0022-1317-81-3-557. PMID: 10675393.
- Scholthof K.G., Adkins S., Czosnek H., Palukaitis P., Jacquot E., Hohn T., Hohn B., Saunders K., Candresse T., Ahlquist P., Hemenway C., & Foster G. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology. 12, 938–954.
- Sedhain N.P., Bag S., Morgan K., Carter R., Triana P., Whitaker J., Kemerait R.C., & Roberts P.M. (2021). Natural host range, incidence on overwintering cotton and diversity of cotton leafroll dwarf virus in Georgia USA. Crop Protection, 144.
- Sheveleva A., Osipov G., Gasanova T., Ivanov P., & Chirkov S. (2021). Plum Pox Virus Strain C Isolates Can Reduce Sour Cherry Productivity. Plants, 10, 232.
Determination of The Potential of Some Weeds to be Used as An Indicator Plant in Studies On Plumpox virus-T
Year 2024,
, 1087 - 1094, 17.09.2024
Cemile Temur Çınar
,
Elif Dertli
,
Yasin Kaya
,
Doğan Işık
Abstract
Sharka is the most destructive viral disease of Prunus species caused by the plum pox virus (PPV). A unique strain of PPV has been identified from Turkey and named as PPV-Turkey (PPV-T). Being obligate parasitic organisms, viruses cannot be cultured in artificial nutrient media. Weeds play a significant role in virus ecology and epidemiology as they serve as alternative hosts for plant viruses and food for virus vectors. This study investigated the indicator potential of some weeds (such as Chenopodium album and Amaranthus retroflexus) for PPV-T. C. album and A. retroflexus plants were inoculated by dusting three leaves on each 3-week-old plant. A homogeneous group of 10 plants grown singly in pots was inoculated with PPV-T. Mock- and non-inoculated plants were used as negative controls. Inoculated plants were monitored daily for symptom development. The PPV-T inoculated leaves were tested by reverse transcription-polymerase chain reaction (RT-PCR) following the appearance of symptoms. The results of the indicator test revealed that C. album (6 out of 10 plants) and A. retroflexus (10 plants) reacted with the infection. Initially, this indicator reacted with local symptoms, and later symptoms of systemic infection occurred.
References
- Adkins S., & Rosskopf E.N. (2002). Key West nightshade, a new experimental host for plant viruses. Plant Diseases. 86, 1310-1314.
- Aguiar R.W.S., Alves G.B., Queiroz A.P., Nascimento I.R., & Lima M.F. (2018). Evaluation of weeds as virus reservoirs in watermelon crops. Planta Daninha 36, 1-10.
- APG III, (2009): An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Botanical Journal of the Linnean Society. 161(3), 105–121.
- Asala S., Alegbejo M.D., Kashina B.D., Banwo O.O., & Shinggu C.P. (2014). Viruses in weeds in Dioscorea yam fields in Nigeria. African Crop Science Journal, 22(2), 109–115.
- Atanasoff D. (1932): Plum Pox. A New Virus Disease. Annals University of Sofía. Faculty of Agriculture and Silviculture. 11, 49-69
- Bajwa A.A, Zulfiqar U., & Sadia S. (2019). A global perspective on the biology, impact, and management of Chenopodium album and Chenopodium murale: two troublesome agricultural and environmental weeds.
Environmental Science and Pollution Research 26, 5357–5371. https://doi.org/10.1007/s11356-018-04104-y.
- Candresse T., Cambra M., Dallot S., Lanneau M., Asensio M., Gorris M., Revers F., Macquaire G., Olmos A., & Boscia D. (1998). Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of plum pox potyvirus. Phytopathology. 88, 198–204.
- Chen G., Pan H., Xie W., Wang S., Wu Q., Fang Y., & Shi X. (2013). Virus infection of a weed increases vector attraction to and vector fitness on the weed. Scientific Reports. 3, 2253; DOI:10.1038/ srep02253.
- Chirkov S., Sheveleva A., Ivanov P., & Zakubanskiy A. (2018). Analysis of genetic diversity of Russian sour cherry plum pox virus isolates provides evidence of a new strain. Plant Diseases 102, 569–575.
- Christie S.R., & Crawford W.E. (1978). Plant virus range of Nicotiana benthamiana. Plant Disease. Reports. 62, 20-22.
- Decroocq, V., Salvador, B., Sicard, O., Glasa, M., Cosson, P., Svanella-Dumas, L., Revers, F., García, J.A. and Candresse, T. (2009) The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol. Plant–Microbe Interact. 22, 1302–1311.
- Desvignes J.C., (1999). Virus diseases of fruit trees. Ed. Centre Technique Interprofessionnel des Fruits et Legumes (CTIFL), Paris, France,115-118.
- Eşitmez B., & Işik D. (2016). Kayseri ili elma bahçelerinde görülen yabancı ot türlerinin belirlenmesi. Meyve Bilimi, 3(1), 1-9.
- Feltner K.C. (1970). The ten worst weeds of field crops. 5. Pigweed. Crops and Soils, 23, 13-14.
- García J.A., Glasa M., Cambra M., & Candresse T. (2014). Plum pox virus and sharka: a model potyvirus and a major disease. Molecular Plant Pathology. 15(3), 226–241. http://dx.doi.org/ 10.1111/mpp.12083.
- Giusti L. (1970). El genero Chenopodium en Argentina: I. Numeros de cromosomas. Darwiniana 16, 98–105.
Hervás M., Ciordia S., Navajas R., García J.A., & Martínez-Turiño S., (2020). Common and Strain-Specific Post-Translational Modifications of the Potyvirus Plum pox virus Coat Protein in Different Hosts. Viruses, 12, 308.
- Ilardi V., & Nicola-Negri E.D. (2011). Genetically engineered resistance to Plum pox virus infection in herbaceous and stone fruit hosts, GM Crops, 2(1), 24-33.
- Kerlan C., & Dunez J. (1979). Biological and serological differentiation of strains of sharka virus. In: Annales de Phytopathologie. Institut National de la Recherche Agronomique, 241–250.
- Llácer G. (2006). Hosts and symptoms of Plum pox virus: Herbaceous hosts. Bulletin OEPP/EPPO Bulletin, 36, 227–228.
- Martínez-Turiño, S.; Calvo, M.; Bedoya, L.C.; Zhao, M.; García, J.A. (2021). Virus-Host Jumping Can Be Boosted by Adaptation to a Bridge Plant Species. Microorganisms, 9, 805. https://doi.org/ 10.3390/ microorganisms9040805.
- Milusheva S., & Rankova Z., (2002). Plum pox potyvirus detection in weed species under field conditions. Acta Horticulturae, 577, 283–287.
- Morca, A.F., Coşkan, S., Çelik, A., (2021). Determination of Plum pox virus and Molecular Characterization of Partial Coat Protein Gene in Burdur Province. KSU J. Agric Nat 24 (4), 805-814. DOI:
10.18016/ksutarimdoga.vi.767409.
- Morca, A.F., Coşkan, S., Akbaş, B., (2022). Detection, Characterization, and Monitoring of Plum pox virus in Zonguldak Province. KSU J. Agric Nat 25 (6), 1369-1377. https://doi.org/10.18016/ ksutarimdoga.vi.1015786.
- Morvan G., & Chastellière M.G. (1980). An evaluation of herbaceous hosts of sharka (plum pox). Acta
Phytopathologica Academiae Scientiarum Hungarica. 15(1–4), 297–302.
- Papayiannis L.C., Katis N.I., Idris A.M., & Brown J.K. (2011). Identification of weed hosts of Tomato yellow leaf curl virus in Cyprus. Plant Disease. 95(2), 120-5.
- Prajapat R., Marwal A., & Gaur R.K. (2014). Begomovirus associated with alternative host weeds: a critical appraisal, Archives of Phytopathology and Plant Protection, 47, 2.
- Quacquarelli A., & Avgelis A. (1975). Nicotiana benthamiana Domin, as host for plant viruses. Phytopathology. Mediterr.14, 36-39.
- Read A.F. (1994). The evolution of virulence. Trends Microbiology. 2, 73-76.
- Sacristán S., Fraile A., Malpica J.M., & García-Arenal F. (2005). An analysis of host adaptation and its relationship with virulence in Cucumber mosaic virus. Phytopathology, 95, 827-833.
- Sáenz P, Cervera M.T., Dallot S., Quiot L., Quiot J.B., Riechmann J.L., García J.A. (2000) Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K(1). Journal of General Virology, 81(Pt 3), 557-66. doi: 10.1099/0022-1317-81-3-557. PMID: 10675393.
- Scholthof K.G., Adkins S., Czosnek H., Palukaitis P., Jacquot E., Hohn T., Hohn B., Saunders K., Candresse T., Ahlquist P., Hemenway C., & Foster G. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology. 12, 938–954.
- Sedhain N.P., Bag S., Morgan K., Carter R., Triana P., Whitaker J., Kemerait R.C., & Roberts P.M. (2021). Natural host range, incidence on overwintering cotton and diversity of cotton leafroll dwarf virus in Georgia USA. Crop Protection, 144.
- Sheveleva A., Osipov G., Gasanova T., Ivanov P., & Chirkov S. (2021). Plum Pox Virus Strain C Isolates Can Reduce Sour Cherry Productivity. Plants, 10, 232.