Research Article
BibTex RIS Cite

Salix aegyptiaca L. Köklerinin Kimyasal Bileşimi ve Biyolojik Aktivitesinin Araştırılması

Year 2024, , 1237 - 1248, 07.11.2024
https://doi.org/10.18016/ksutarimdoga.vi.1402758

Abstract

Salix aegyptiaca'nın kök ekstraktı, verim yüzdesi, toplam kondense tanen konsantrasyonu, antimikrobiyal, antioksidan aktivite ve LC-MS/MS kullanılarak kimyasal bileşiminin belirlenmesi için kullanılmıştır. Kök ekstraksiyonu su, etanol ve metanol ile gerçekleştirildi. Hızlandırılmış solvent ekstraksiyonu (ASE), konvansiyonel ekstraksiyon (CE) ve mikrodalga ekstraksiyonu (ME), araştırma sırasında uygulanan ekstraksiyon yöntemleriydi. Fenoliklerin LC-MS/MS ile tespit edilmesi için metanol ekstraktı kullanıldı. Kök ekstraktlarının antioksidan aktiviteleri ve toplam kondanse tanen miktarları UV-Vis spektrofotometre cihazında sırasıyla 517 nm ve 580 nm olarak ölçülmüştür. Antimikrobiyal aktivite için disk difüzyon yöntemi kullanıldı. Maksimum ekstraksiyon verimi (%17.2) metanolde ASE tekniği ile elde edilirken, minimum ekstraksiyon verimliliği (%9.1) konvansiyonel ekstraksiyon tekniği ile elde edildi. Üçlü ölçümle toplam kondense tanen analizi sonucu 35.14 mg/L bulundu. ASE tekniği kullanıldığında metanol ekstraktı Candida albicans ATCC 10231'e karşı maksimum inhibitör bölge (26 mm) olmuştur. Bununla birlikte, su ekstraktında geleneksel ekstrasitasyonla Staphylococcus aureus Cowan 1'e karşı minimum inhibitör bölge (11 mm) elde edilmiştir. En yüksek ve en düşük DPPH giderme aktivitesi sırasıyla metanol (ASE) (%98.8) ve etanol (%97.5) ekstraktında belirlendi. LC-MS/MS kullanılarak maksimum kinik asit miktarları (63895 µg/g) keşfedildi.

Supporting Institution

Kahramanmaraş Sütçü İmam Üniversitesi

Project Number

2014/2-60 YLS

Thanks

Bu çalışmayı destekleyen Kahramanmaraş Sütçü İmam Üniversitesine Teşekkürler ederim.

References

  • Akiyama, H., Fujii, K., Yamasaki, O., Oono, T., & Iwatsuki, K. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of antimicrobial chemotherapy, 48(4), 487-491.
  • Ali, M. R., & Aboud, A. S. (2017). Antimicrobial Activities of Aqueous and Methanolic Extracts from Salvia officinalis and Salix acmophylla Used in the treatment of wound infection isolates. Ibn AL-Haitham Journal For Pure and Applied Science, 23(3), 25-39.
  • Al-Kadum, LSA., Mahmoud, SS., & Ahmad, SA. (2008). Study of antimicrobial activity of Salix acmophylla extracts in the growth of pathogenic bacteria. Iraqi Journal for Biotechnology 7(1), 38–59.
  • Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., & Weil, J. A. (2004). Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry, 84(4), 551-562.
  • Aneja, K. R., & Joshi, R. (2009). Antimicrobial activity of Amomum subulatum and Elettaria cardamomum against dental caries-causing microorganisms. Ethnobotanical Leaflets, 13, 840-859.
  • Ateş, D. A., & Turgay, Ö. (2003). Antimicrobial activities of various medicinal and commercial plant extracts. Turkish Journal of Biology, 27(3), 157-162.
  • Badr Q, Ismael., M, HA., Hero, MI., Yaseen AR, Goran., Ali MK, Galalaey., Ali, Göçeri., Shilan, SA., & Halat, Khalid. (2019). Phytochemical Profile and Antifungal Effect of (Quercus infectoria Oliv.) Plant Root Extract on Several Candida Spices. International Journal of Scientific Engineering Research 9(3).
  • Bharathi, V., Priya, A. S., & Firdous, S. J. (2011). Antibacterial activity of stem extracts of Ocimum basilicum. Journal of Chemical, Biological and Physical Sciences (JCBPS), 2(1), 298.
  • Bonjar, G. S., Aghighi, S., & Nik, A. K. (2004). Antibacterial and antifungal survey in plants used in indigenous herbal-medicine of southeast regions of Iran. Journal of Biological Sciences, 4(3), 405-412.
  • Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317-333.
  • Christenhusz, M. J., & Byng, J. W. (2016). The number of known plant species in the world and its annual increase. Phytotaxa, 261(3), 201-217.
  • Clinical and Laboratory Standards Institute (CLSI), (2020). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-32 Edition. CLSI document M07-A9. Wayne, PA.
  • Comlekcioglu, N., Efe, L., & Karaman, S. (2013). Comparison of different extraction methods for the determination of indican precursor from four Isatis spp. by HPLC-UV. EJBS, 7(1), 21-26.
  • Coneac, G., Gafiţanu, E., Hădărugă, D. I., Hădărugă, N. G., Pînzaru, I. A., Bandur, G., & Gruia, A. (2008). Flavonoid contents of propolis from the west side of Romania and correlation with the antioxidant activity. Chem. Bull. Politehnica Univ. (Timisoara), 53, 56-60.
  • Cooper, R., & Nicola, G. (2014). Natural products chemistry: sources, separations, and structures. CRC press. Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian journal of chemistry, 10, S1193-S1199.
  • Digrak, M., Alma, M. H., & Ilçim, A. (2001). Antibacterial and antifungal activities of Turkish medicinal plants. Pharmaceutical Biology, 39(5), 346-350.
  • Duh, P. D., Tu, Y. Y., & Yen, G. C. (1999). Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT-Food Science and Technology, 32(5), 269-277.
  • Enayat, S., & Banerjee, S. (2009). Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chemistry, 116(1), 23-28.
  • Enayat, S., Ceyhan, M. Ş., Başaran, A. A., Gürsel, M., & Banerjee, S. (2013). Anticarcinogenic effects of the ethanolic extract of Salix aegyptiaca in colon cancer cells: involvement of Akt/PKB and MAPK pathways. Nutrition and Cancer, 65(7), 1045-1058.
  • Ertas, A., Yilmaz, M. A., & Firat, M. (2015). Chemical profile by LC–MS/MS, GC/MS and antioxidant activities of the essential oils and crude extracts of two Euphorbia species. Natural product research, 29(6), 529-534.
  • Ertürk, Ö. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia, 61, 275-278.
  • ESCOP, (1997). Salicis cortex – Willow bark. in ESCOP monographs; fascicule 4. European Scientific Cooperatives on phytotherapy; Exeter.
  • Göçeri, A., Demirtaş, İ., Alma, M. H., Adem, Ş., Kasra, Z. A., Gül, F., & Uzun, A. (2022). Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula longipedunculata Peşmen. Grasas y Aceites, 73(1), e450-e450.
  • Göçeri, A., Kireçci, E., & Alma, M. H. (2020). Ferula Longipedunculata Peşmen Türünün Antimikrobiyal Aktivitesinin Belirlenmesi. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 19-24.
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of toxicology, 94(3), 651-715.
  • Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
  • Gülçın, İ., Oktay, M., Kıreçcı, E., & Küfrevıoğlu, Ö. İ. (2003). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food chemistry, 83(3), 371-382.
  • Hatano, T., Edamatsu, R., Hiramatsu, M., MORI, A., Fujita, Y., Yasuhara, T., & OKUDA, T. (1989). Effects of the interaction of tannins with co-existing substances. VI.: effects of tannins and related polyphenols on superoxide anion radical, and on 1, 1-Diphenyl-2-picrylhydrazyl radical. Chemical and pharmaceutical bulletin, 37(8), 2016-2021.
  • Ho, C. T., Osawa, T., Huang, M. T., & Rosen, R. T. (1994). Food phytochemicals for cancer prevention II: teas, spices, and herbs. American Chemical Society.
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), 1841-1856.
  • Hussain, H., Badawy, A., Elshazly, A., Elsayed, A., Krohn, K., Riaz, M., & Schulz, B. (2011). Chemical constituents and antimicrobial activity of Salix subserrata. Records of Natural Products, 5(2), 133.
  • Hussien, NN. (2013). Antimicrobial effect of Silver nanoparticales produced by bark of Salix alba on growth of two species of humans pathogenic bacteria. Journal of the college of basic education, 19(80), 603-611.
  • Isebrands, J. G., & Richardson, J. (2014). Poplars and willows: trees for society and the environment. CABI.
  • Karagecili, H., İzol, E., Kirecci, E., & Gulcin, İ. (2023). Determination of antioxidant, anti-alzheimer, antidiabetic, antiglaucoma and antimicrobial effects of zivzik pomegranate (punica granatum)—a chemical profiling by LC-MS/MS. Life, 13(3), 735.
  • Karaogul, E., Altuntaş, E., & Alma, M. H. (2017). Tanenlerin quercus türlerinde sınıflandırılması ve kantitatif analizi. Harran Üniversitesi Mühendislik Dergisi, 2(3), 17-24.
  • Karaoğul, E., Kirecci, E., & Alma, M. H. (2016). Determination of phenolic compounds from Turkish kermes oak (Quercus coccifera L.) roots by high performance liquid chromatography; its antimicrobial activities. Fresenius Environmental Bulletin, 25(7), 2356-2363.
  • Karaoğul, E., Parlar, P., Parlar, H., & Alma, M. H. (2016). Enrichment of the glycyrrhizic acid from licorice roots (Glycyrrhiza glabra L.) by isoelectric focused adsorptive bubble chromatography. Journal of Analytical Methods in Chemistry.
  • Karawya, M. S., Ammar, N. M., Hifnawy, M. S., Al-Okbi, S. Y., Mohamed, D. A., & El-Anssary, A. A. (2010). Phytochemical study and evaluation of the anti-inflammatory activity of some medicinal plants growing in Egypt. Med J Islamic World Acad Sci, 18(4), 139-150.
  • Kaye, K. S., Engemann, J. J., Fraimow, H. S., & Abrutyn, E. (2004). Pathogens resistant to antimicrobial agents: epidemiology, molecular mechanisms, and clinical management. Infectious Disease Clinics, 18(3), 467-511.
  • Kuzovkina, Y. A., & Vietto, L. (2014). An update on the cultivar registration of Populus and Salix (Salicaceae). Skvortsovia, 1(2), 133-148.
  • Laghari, A. Q., Memon, S., Nelofar, A., & Laghari, A. H. (2011). Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia. American Journal of Analytical Chemistry, 2(08), 871.
  • Mahdi, J. G., Mahdi, A. J., Mahdi, A. J., & Bowen, I. D. (2006). The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell proliferation, 39(2), 147-155.
  • Mostafa, I., Abbas, H. A., Ashour, M. L., Yasri, A., El-Shazly, A. M., Wink, M., & Sobeh, M. (2020). Polyphenols from Salix tetrasperma impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Molecules, 25(6), 1341.
  • Nahrstedt, A., Schmidt, M., Jäggi, R., Metz, J., & Khayyal, M. T. (2007). Willow bark extract: the contribution of polyphenols to the overall effect. WMW Wiener Medizinische Wochenschrift, 157(13), 348-351.
  • OO, A. & Adeniyi, B. A. (2008). The antibacterial activity of leaf extracts of Eucalyptus camaldulensis (Myrtaceae). Journal of Applied Sciences Research, 4(11), 1410-1413.
  • Otshudi, A. L., Apers, S., Pieters, L., Claeys, M., Pannecouque, C., De Clercq, E., & Foriers, A. (2005). Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. Journal of Ethnopharmacology, 102(1), 89-94.
  • Palombo, E. A., & Semple, S. J. (2001). Antibacterial activity of traditional Australian medicinal plants. Journal of ethnopharmacology, 77(2-3), 151-157.
  • Panizzi, L., Caponi, C., Catalano, S., Cioni, P. L., & Morelli, I. (2002). In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. Journal of ethnopharmacology, 79(2), 165-168.
  • Parekh, J., Jadeja, D., & Chanda, S. (2005). Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turkish Journal of Biology, 29(4), 203-210.
  • Prince, L., & Prabakaran, P. (2011). Antifungal activity of medicinal plants against plant pathogenic fungus Colletotrichum falcatum. Asian Journal of Plant Science and Research, 1(1), 84-87.
  • Proestos, C., Chorianopoulos, N., Nychas, G. J., & Komaitis, M. (2005). RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. Journal of agricultural and food chemistry, 53(4), 1190-1195.
  • Qin, F., & Sun, H. X. (2005). Immunosuppressive activity of Pollen Typhae ethanol extract on the immune responses in mice. Journal of ethnopharmacology, 102(3), 424-429.
  • Rabbani, M., Sajjadi, S. E., Rahimi, F. (2010). Anxiolytic effect of flowers of Salix aegyptiaca L. in mouse model of anxiety. Journal of Complementary and Integrative Medicine, 7(1), 1-10
  • Sanz, M. L., Martínez-Castro, I., & Moreno-Arribas, M. V. (2008). Identification of the origin of commercial enological tannins by the analysis of monosaccharides and polyalcohols. Food Chemistry, 111(3), 778-783.
  • Savcı, A., Koçpınar, E. F., Alan, Y., Kürşat, M. (2020). Nepeta transcaucasica Grossh.(kaf pisikotu) Estraktının HPLC ile Fenolik Madde İçeriğinin Tayini, Antimikrobiyal, Antioksidan ve DNA Koruyucu Aktivitelerinin Belirlenmesi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 8(2), 797-803.
  • Shabir, G., Anwar, F., Sultana, B., Khalid, Z. M., Afzal, M., Khan, Q. M., & Ashrafuzzaman, M. (2011). Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. Molecules, 16(9), 7302-7319.
  • Shahidi Bonjar, G. H. (2004). Evaluation of antibacterial of Iranian medicinal plants against Micrococcus lateus, Serattia marcescens, Klebsiella pneumonia and Bordetella bronchoseptica. Asian J Plant Sci, 3, 82-86.
  • Sonboli, A., Mojarrad, M., Ebrahimi, S. N., & Enayat, S. (2010). Free radical scavenging activity and total phenolic content of methanolic extracts from male inflorescence of Salix aegyptiaca grown in Iran. Iranian Journal of Pharmaceutical Research: IJPR, 9(3), 293-300.
  • Sulaiman, G. M., Hussien, N. N., Marzoog, T. R., & Awad, H. A. (2013). Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of Salix alba. Am. J. Biochem. Biotechnol, 9(1), 41-46.
  • Taslimi, P. Akıncıoplu, H, Gülçin, İ. (2017). Synephrine and phenylephri acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase enzyr and molecular toxicology, 31(11), e21973.
  • Tawfeek, N., Mahmoud, M. F., Hamdan, D. I., Sobeh, M., Farrag, N., Wink, M., & El-Shazly, A. M. (2021). Phytochemistry, pharmacology and medicinal uses of plants of the genus Salix: An updated review. Frontiers in pharmacology, 12, 593856.
  • Thadeo, M., Azevedo, A. A., & Meira, R. M. (2014). Foliar anatomy of neotropical Salicaceae: potentially useful characters for taxonomy. Plant Systematics and Evolution, 300, 2073-2089.
  • Tsuchiya, H., Sato, M., Miyazaki, T., Fujiwara, S., Tanigaki, S., Ohyama, M., & Iinuma, M. (1996). Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. Journal of ethnopharmacology, 50(1), 27-34.
  • Yavuz, S., & Öztürk, D. (2023). Investigation of Potential Nutritive Values of Some Tree Leaves and Its Extracts by Using In Vitro Gas Production. KSU J. Agric Nat 26(2), 459-469.
  • Yu, H. G., Huang, J. A., Yang, Y. N., Huang, H., Luo, H. S., Yu, J. P., & Schmitz, F. (2002). The effects of acetylsalicylic acid on proliferation, apoptosis, and invasion of cyclooxygenase‐2 negative colon cancer cells. European journal of clinical investigation, 32(11), 838-846.
  • Zhang, M., Liu, W. X., Zheng, M. F., Xu, Q. L., Wan, F. H., Wang, J., & Tan, J. W. (2013). Bioactive quinic acid derivatives from Ageratina adenophora. Molecules, 18(11), 14096-14104.
  • Zhang, X. D., Liu, X. Q., Kim, Y. H., & Whang, W. K. (2014). Chemical constituents and their acetyl cholinesterase inhibitory and antioxidant activities from leaves of Acanthopanax henryi: potential complementary source against Alzheimer’s disease. Archives of pharmacal research, 37, 606-616.
  • Zidorn, C., Schubert, B., & Stuppner, H. (2005). Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochemical systematics and ecology, 33(9), 855-872.

Investigation of Chemical Composition and Biological Activity of Salix aegyptiaca L. Roots

Year 2024, , 1237 - 1248, 07.11.2024
https://doi.org/10.18016/ksutarimdoga.vi.1402758

Abstract

The root of Salix aegyptiaca L. was extracted using their yield percentage, total condensed tannin concentration, antimicrobial, antioxidant activity and to determine chemical composition by LC-MS/MS. The root extraction was carried out together with water, ethanol and methanol. Accelerated solvent extraction (ASE), conventional extraction (CE), and microwave extraction (ME) were the extraction methods applied during the investigation. The LC-MS/MS methanol extract was used to detect phenolics. The antioxidant activities and total condensed tannin concentrations of root extracts have been done by UV-visible spectroscopy from 517 to 580 nm, severally. The disk diffusion method was used for antimicrobial activity. The maximum extraction yield (17.2%) was obtained in methanol by the ASE technique whereas, the conventional extraction technique obtained the minimum extraction efficiency (9.1%). By triplicate measurement, the total condensed tannin analysis result was found 35.14 mg/L. Using the ASE technique, the methanol extract was the maximum inhibitory zone (26 mm) against Candida albicans ATCC 10231. However, in water extract by conventional extraction, a minimum inhibitory zone (11 mm) was obtained against Staphylococcus aureus Cowan 1. The highest and lowest DPPH scavenging activity was determined in methanol (ASE) (98.8%) and ethanol (97.5%) extract respectively. The maximum amounts of quinic acid (63895 µg/g) were discovered using LC-MS/MS.

Project Number

2014/2-60 YLS

References

  • Akiyama, H., Fujii, K., Yamasaki, O., Oono, T., & Iwatsuki, K. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of antimicrobial chemotherapy, 48(4), 487-491.
  • Ali, M. R., & Aboud, A. S. (2017). Antimicrobial Activities of Aqueous and Methanolic Extracts from Salvia officinalis and Salix acmophylla Used in the treatment of wound infection isolates. Ibn AL-Haitham Journal For Pure and Applied Science, 23(3), 25-39.
  • Al-Kadum, LSA., Mahmoud, SS., & Ahmad, SA. (2008). Study of antimicrobial activity of Salix acmophylla extracts in the growth of pathogenic bacteria. Iraqi Journal for Biotechnology 7(1), 38–59.
  • Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., & Weil, J. A. (2004). Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry, 84(4), 551-562.
  • Aneja, K. R., & Joshi, R. (2009). Antimicrobial activity of Amomum subulatum and Elettaria cardamomum against dental caries-causing microorganisms. Ethnobotanical Leaflets, 13, 840-859.
  • Ateş, D. A., & Turgay, Ö. (2003). Antimicrobial activities of various medicinal and commercial plant extracts. Turkish Journal of Biology, 27(3), 157-162.
  • Badr Q, Ismael., M, HA., Hero, MI., Yaseen AR, Goran., Ali MK, Galalaey., Ali, Göçeri., Shilan, SA., & Halat, Khalid. (2019). Phytochemical Profile and Antifungal Effect of (Quercus infectoria Oliv.) Plant Root Extract on Several Candida Spices. International Journal of Scientific Engineering Research 9(3).
  • Bharathi, V., Priya, A. S., & Firdous, S. J. (2011). Antibacterial activity of stem extracts of Ocimum basilicum. Journal of Chemical, Biological and Physical Sciences (JCBPS), 2(1), 298.
  • Bonjar, G. S., Aghighi, S., & Nik, A. K. (2004). Antibacterial and antifungal survey in plants used in indigenous herbal-medicine of southeast regions of Iran. Journal of Biological Sciences, 4(3), 405-412.
  • Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317-333.
  • Christenhusz, M. J., & Byng, J. W. (2016). The number of known plant species in the world and its annual increase. Phytotaxa, 261(3), 201-217.
  • Clinical and Laboratory Standards Institute (CLSI), (2020). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-32 Edition. CLSI document M07-A9. Wayne, PA.
  • Comlekcioglu, N., Efe, L., & Karaman, S. (2013). Comparison of different extraction methods for the determination of indican precursor from four Isatis spp. by HPLC-UV. EJBS, 7(1), 21-26.
  • Coneac, G., Gafiţanu, E., Hădărugă, D. I., Hădărugă, N. G., Pînzaru, I. A., Bandur, G., & Gruia, A. (2008). Flavonoid contents of propolis from the west side of Romania and correlation with the antioxidant activity. Chem. Bull. Politehnica Univ. (Timisoara), 53, 56-60.
  • Cooper, R., & Nicola, G. (2014). Natural products chemistry: sources, separations, and structures. CRC press. Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian journal of chemistry, 10, S1193-S1199.
  • Digrak, M., Alma, M. H., & Ilçim, A. (2001). Antibacterial and antifungal activities of Turkish medicinal plants. Pharmaceutical Biology, 39(5), 346-350.
  • Duh, P. D., Tu, Y. Y., & Yen, G. C. (1999). Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT-Food Science and Technology, 32(5), 269-277.
  • Enayat, S., & Banerjee, S. (2009). Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chemistry, 116(1), 23-28.
  • Enayat, S., Ceyhan, M. Ş., Başaran, A. A., Gürsel, M., & Banerjee, S. (2013). Anticarcinogenic effects of the ethanolic extract of Salix aegyptiaca in colon cancer cells: involvement of Akt/PKB and MAPK pathways. Nutrition and Cancer, 65(7), 1045-1058.
  • Ertas, A., Yilmaz, M. A., & Firat, M. (2015). Chemical profile by LC–MS/MS, GC/MS and antioxidant activities of the essential oils and crude extracts of two Euphorbia species. Natural product research, 29(6), 529-534.
  • Ertürk, Ö. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia, 61, 275-278.
  • ESCOP, (1997). Salicis cortex – Willow bark. in ESCOP monographs; fascicule 4. European Scientific Cooperatives on phytotherapy; Exeter.
  • Göçeri, A., Demirtaş, İ., Alma, M. H., Adem, Ş., Kasra, Z. A., Gül, F., & Uzun, A. (2022). Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula longipedunculata Peşmen. Grasas y Aceites, 73(1), e450-e450.
  • Göçeri, A., Kireçci, E., & Alma, M. H. (2020). Ferula Longipedunculata Peşmen Türünün Antimikrobiyal Aktivitesinin Belirlenmesi. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 19-24.
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of toxicology, 94(3), 651-715.
  • Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
  • Gülçın, İ., Oktay, M., Kıreçcı, E., & Küfrevıoğlu, Ö. İ. (2003). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food chemistry, 83(3), 371-382.
  • Hatano, T., Edamatsu, R., Hiramatsu, M., MORI, A., Fujita, Y., Yasuhara, T., & OKUDA, T. (1989). Effects of the interaction of tannins with co-existing substances. VI.: effects of tannins and related polyphenols on superoxide anion radical, and on 1, 1-Diphenyl-2-picrylhydrazyl radical. Chemical and pharmaceutical bulletin, 37(8), 2016-2021.
  • Ho, C. T., Osawa, T., Huang, M. T., & Rosen, R. T. (1994). Food phytochemicals for cancer prevention II: teas, spices, and herbs. American Chemical Society.
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), 1841-1856.
  • Hussain, H., Badawy, A., Elshazly, A., Elsayed, A., Krohn, K., Riaz, M., & Schulz, B. (2011). Chemical constituents and antimicrobial activity of Salix subserrata. Records of Natural Products, 5(2), 133.
  • Hussien, NN. (2013). Antimicrobial effect of Silver nanoparticales produced by bark of Salix alba on growth of two species of humans pathogenic bacteria. Journal of the college of basic education, 19(80), 603-611.
  • Isebrands, J. G., & Richardson, J. (2014). Poplars and willows: trees for society and the environment. CABI.
  • Karagecili, H., İzol, E., Kirecci, E., & Gulcin, İ. (2023). Determination of antioxidant, anti-alzheimer, antidiabetic, antiglaucoma and antimicrobial effects of zivzik pomegranate (punica granatum)—a chemical profiling by LC-MS/MS. Life, 13(3), 735.
  • Karaogul, E., Altuntaş, E., & Alma, M. H. (2017). Tanenlerin quercus türlerinde sınıflandırılması ve kantitatif analizi. Harran Üniversitesi Mühendislik Dergisi, 2(3), 17-24.
  • Karaoğul, E., Kirecci, E., & Alma, M. H. (2016). Determination of phenolic compounds from Turkish kermes oak (Quercus coccifera L.) roots by high performance liquid chromatography; its antimicrobial activities. Fresenius Environmental Bulletin, 25(7), 2356-2363.
  • Karaoğul, E., Parlar, P., Parlar, H., & Alma, M. H. (2016). Enrichment of the glycyrrhizic acid from licorice roots (Glycyrrhiza glabra L.) by isoelectric focused adsorptive bubble chromatography. Journal of Analytical Methods in Chemistry.
  • Karawya, M. S., Ammar, N. M., Hifnawy, M. S., Al-Okbi, S. Y., Mohamed, D. A., & El-Anssary, A. A. (2010). Phytochemical study and evaluation of the anti-inflammatory activity of some medicinal plants growing in Egypt. Med J Islamic World Acad Sci, 18(4), 139-150.
  • Kaye, K. S., Engemann, J. J., Fraimow, H. S., & Abrutyn, E. (2004). Pathogens resistant to antimicrobial agents: epidemiology, molecular mechanisms, and clinical management. Infectious Disease Clinics, 18(3), 467-511.
  • Kuzovkina, Y. A., & Vietto, L. (2014). An update on the cultivar registration of Populus and Salix (Salicaceae). Skvortsovia, 1(2), 133-148.
  • Laghari, A. Q., Memon, S., Nelofar, A., & Laghari, A. H. (2011). Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia. American Journal of Analytical Chemistry, 2(08), 871.
  • Mahdi, J. G., Mahdi, A. J., Mahdi, A. J., & Bowen, I. D. (2006). The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell proliferation, 39(2), 147-155.
  • Mostafa, I., Abbas, H. A., Ashour, M. L., Yasri, A., El-Shazly, A. M., Wink, M., & Sobeh, M. (2020). Polyphenols from Salix tetrasperma impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Molecules, 25(6), 1341.
  • Nahrstedt, A., Schmidt, M., Jäggi, R., Metz, J., & Khayyal, M. T. (2007). Willow bark extract: the contribution of polyphenols to the overall effect. WMW Wiener Medizinische Wochenschrift, 157(13), 348-351.
  • OO, A. & Adeniyi, B. A. (2008). The antibacterial activity of leaf extracts of Eucalyptus camaldulensis (Myrtaceae). Journal of Applied Sciences Research, 4(11), 1410-1413.
  • Otshudi, A. L., Apers, S., Pieters, L., Claeys, M., Pannecouque, C., De Clercq, E., & Foriers, A. (2005). Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. Journal of Ethnopharmacology, 102(1), 89-94.
  • Palombo, E. A., & Semple, S. J. (2001). Antibacterial activity of traditional Australian medicinal plants. Journal of ethnopharmacology, 77(2-3), 151-157.
  • Panizzi, L., Caponi, C., Catalano, S., Cioni, P. L., & Morelli, I. (2002). In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. Journal of ethnopharmacology, 79(2), 165-168.
  • Parekh, J., Jadeja, D., & Chanda, S. (2005). Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turkish Journal of Biology, 29(4), 203-210.
  • Prince, L., & Prabakaran, P. (2011). Antifungal activity of medicinal plants against plant pathogenic fungus Colletotrichum falcatum. Asian Journal of Plant Science and Research, 1(1), 84-87.
  • Proestos, C., Chorianopoulos, N., Nychas, G. J., & Komaitis, M. (2005). RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. Journal of agricultural and food chemistry, 53(4), 1190-1195.
  • Qin, F., & Sun, H. X. (2005). Immunosuppressive activity of Pollen Typhae ethanol extract on the immune responses in mice. Journal of ethnopharmacology, 102(3), 424-429.
  • Rabbani, M., Sajjadi, S. E., Rahimi, F. (2010). Anxiolytic effect of flowers of Salix aegyptiaca L. in mouse model of anxiety. Journal of Complementary and Integrative Medicine, 7(1), 1-10
  • Sanz, M. L., Martínez-Castro, I., & Moreno-Arribas, M. V. (2008). Identification of the origin of commercial enological tannins by the analysis of monosaccharides and polyalcohols. Food Chemistry, 111(3), 778-783.
  • Savcı, A., Koçpınar, E. F., Alan, Y., Kürşat, M. (2020). Nepeta transcaucasica Grossh.(kaf pisikotu) Estraktının HPLC ile Fenolik Madde İçeriğinin Tayini, Antimikrobiyal, Antioksidan ve DNA Koruyucu Aktivitelerinin Belirlenmesi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 8(2), 797-803.
  • Shabir, G., Anwar, F., Sultana, B., Khalid, Z. M., Afzal, M., Khan, Q. M., & Ashrafuzzaman, M. (2011). Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. Molecules, 16(9), 7302-7319.
  • Shahidi Bonjar, G. H. (2004). Evaluation of antibacterial of Iranian medicinal plants against Micrococcus lateus, Serattia marcescens, Klebsiella pneumonia and Bordetella bronchoseptica. Asian J Plant Sci, 3, 82-86.
  • Sonboli, A., Mojarrad, M., Ebrahimi, S. N., & Enayat, S. (2010). Free radical scavenging activity and total phenolic content of methanolic extracts from male inflorescence of Salix aegyptiaca grown in Iran. Iranian Journal of Pharmaceutical Research: IJPR, 9(3), 293-300.
  • Sulaiman, G. M., Hussien, N. N., Marzoog, T. R., & Awad, H. A. (2013). Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of Salix alba. Am. J. Biochem. Biotechnol, 9(1), 41-46.
  • Taslimi, P. Akıncıoplu, H, Gülçin, İ. (2017). Synephrine and phenylephri acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase enzyr and molecular toxicology, 31(11), e21973.
  • Tawfeek, N., Mahmoud, M. F., Hamdan, D. I., Sobeh, M., Farrag, N., Wink, M., & El-Shazly, A. M. (2021). Phytochemistry, pharmacology and medicinal uses of plants of the genus Salix: An updated review. Frontiers in pharmacology, 12, 593856.
  • Thadeo, M., Azevedo, A. A., & Meira, R. M. (2014). Foliar anatomy of neotropical Salicaceae: potentially useful characters for taxonomy. Plant Systematics and Evolution, 300, 2073-2089.
  • Tsuchiya, H., Sato, M., Miyazaki, T., Fujiwara, S., Tanigaki, S., Ohyama, M., & Iinuma, M. (1996). Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. Journal of ethnopharmacology, 50(1), 27-34.
  • Yavuz, S., & Öztürk, D. (2023). Investigation of Potential Nutritive Values of Some Tree Leaves and Its Extracts by Using In Vitro Gas Production. KSU J. Agric Nat 26(2), 459-469.
  • Yu, H. G., Huang, J. A., Yang, Y. N., Huang, H., Luo, H. S., Yu, J. P., & Schmitz, F. (2002). The effects of acetylsalicylic acid on proliferation, apoptosis, and invasion of cyclooxygenase‐2 negative colon cancer cells. European journal of clinical investigation, 32(11), 838-846.
  • Zhang, M., Liu, W. X., Zheng, M. F., Xu, Q. L., Wan, F. H., Wang, J., & Tan, J. W. (2013). Bioactive quinic acid derivatives from Ageratina adenophora. Molecules, 18(11), 14096-14104.
  • Zhang, X. D., Liu, X. Q., Kim, Y. H., & Whang, W. K. (2014). Chemical constituents and their acetyl cholinesterase inhibitory and antioxidant activities from leaves of Acanthopanax henryi: potential complementary source against Alzheimer’s disease. Archives of pharmacal research, 37, 606-616.
  • Zidorn, C., Schubert, B., & Stuppner, H. (2005). Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochemical systematics and ecology, 33(9), 855-872.
There are 68 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry
Journal Section RESEARCH ARTICLE
Authors

Maaroof Abdalrahman Rasul 0009-0003-9241-957X

Ali Göçeri 0000-0002-1218-6696

Shno Abdalqadır Sofi 0009-0001-5596-3141

Mehmet Hakkı Alma 0000-0001-6323-7230

Ekrem Kireçci 0000-0001-9446-8584

Mustafa Abdullah Yılmaz 0000-0002-4090-7227

Project Number 2014/2-60 YLS
Early Pub Date August 15, 2024
Publication Date November 7, 2024
Submission Date December 10, 2023
Acceptance Date February 8, 2024
Published in Issue Year 2024

Cite

APA Rasul, M. A., Göçeri, A., Sofi, S. A., Alma, M. H., et al. (2024). Investigation of Chemical Composition and Biological Activity of Salix aegyptiaca L. Roots. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(6), 1237-1248. https://doi.org/10.18016/ksutarimdoga.vi.1402758

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149