Research Article
BibTex RIS Cite

Tarım Atıklarından Aktif Karbon Üretimi ve Atıksudan Boya Giderimi: Karakterizasyon, Kinetik ve Denge Çalışmaları

Year 2024, , 1269 - 1281, 07.11.2024
https://doi.org/10.18016/ksutarimdoga.vi.1477888

Abstract

Tarım atıkları, sürdürülebilir ve çevre dostu atık yönetimi açısından büyük bir potansiyele sahiptir. Bu çalışmada, tarım atıklarından pamuk sapları kullanılarak aktif karbon adsorbenti üretilmiştir. Bu adsorbent ile atık sudan tehlikeli bir boyar madde olan malahit yeşilinin adsorpsiyon prosesi ile giderilmesi incelenmiştir. Adsorbentin BET, SEM ve FT-IR analizleri ile karakterizasyonu yapılmıştır. Adsorpsiyon etkinliğini belirlemek için boya konsantrasyonu ve pH gibi değişkenlerin optimizasyonu gerçekleştirilmiştir. Malahit yeşili adsorpsiyonunun doğası hakkında daha iyi bir anlayış elde etmek için kinetik ve denge çalışmaları yapılmıştır. Yapılan çalışmalar sonucunda, yalancı ikinci dereceden kinetik modelin adsorpsiyon sürecini en iyi şekilde temsil ettiği, Langmuir izoterminin ise denge özellikleri için en uygun model olduğu belirlenmiştir. Langmuir izoterm verilerine dayanarak, maksimum adsorpsiyon kapasitesi (qmax) 69.06 mg g⁻¹ olarak belirlenmiştir. Bu çalışma, atık pamuk saplarından üretilen adsorbanın çevre dostu, ekonomik ve etkili bir su arıtım malzemesi olarak potansiyelini ortaya koymaktadır.

References

  • Abate, G. Y., Alene, A. N., Habte, A. T., & Getahun, D. M. (2020). Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent. Environmental Systems Research, 9(1), 29. https://doi.org/10.1186/s40068-020-00191-4
  • Açin Ok, R., & Kutluay, S. (2023). Designing novel perlite-Fe3O4@SiO2@8-HQ-5-SA as a promising magnetic nanoadsorbent for competitive adsorption of multicomponent VOCs. Chemosphere, 338, 139636. https://doi.org/10.1016/j.chemosphere.2023.139636
  • Adeleye, A. T., Bahar, M. M., Megharaj, M., & Rahman, M. M. (2023). Recent developments and mechanistic insights on adsorption technology for micro- and nanoplastics removal in aquatic environments. Journal of Water Process Engineering, 53, 103777. https://doi.org/10.1016/ j.jwpe.2023.103777
  • Adeyi, A. A., Jamil, S. N. A. M., Abdullah, L. C., & Choong, T. S. Y. (2019). Adsorption of Malachite Green Dye from Liquid Phase Using Hydrophilic Thiourea-Modified Poly(acrylonitrile- co -acrylic acid): Kinetic and Isotherm Studies. Journal of Chemistry, 2019, 1–14. https://doi.org/10.1155/ 2019/4321475
  • Aftab, A., Aziz, R., Ghaffar, A., Rafiq, M. T., Feng, Y., Saqib, Z., Rafiq, M. K., & Awan, M. A. (2023). Occurrence, source identification and ecological risk assessment of heavy metals in water and sediments of Uchalli lake – Ramsar site, Pakistan. Environmental Pollution, 334, 122117. https://doi.org/10.1016/j.envpol.2023.122117
  • Alorabi, A. Q. (2021). Effective Removal of Malachite Green from Aqueous Solutions Using Magnetic Nanocomposite: Synthesis, Characterization, and Equilibrium Study. Adsorption Science & Technology, 2021, 1–15. https://doi.org/ 10.1155/2021/2359110
  • Arora, C., Kumar, P., Soni, S., Mittal, J., Mittal, A., & Singh, B. (2020). Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon. DESALINATION AND WATER TREATMENT, 195, 341–352. https://doi.org/10.5004/dwt.2020.25897
  • Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H., & Yu, G. (2016). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34(6), 1091–1102. https://doi.org/10.1016/j.biotechadv.2016.06.007
  • Crist, E., Mora, C., & Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356(6335), 260–264. https://doi.org/10.1126/science.aal2011
  • de Souza, C. C., de Souza, L. Z. M., Yılmaz, M., de Oliveira, M. A., da Silva Bezerra, A. C., da Silva, E. F., Dumont, M. R., & Machado, A. R. T. (2022). Activated carbon of Coriandrum sativum for adsorption of methylene blue: Equilibrium and kinetic modeling. Cleaner Materials, 3, 100052. https://doi.org/10.1016/j.clema.2022.100052
  • Deniz, F., & Yildiz, H. (2019). Bioremediation potential of a widespread industrial biowaste as renewable and sustainable biosorbent for synthetic dye pollution. International Journal of Phytoremediation, 21(3), 259–267. https://doi.org/ 10.1080/15226514.2018.1524451
  • Doherty, A.-C., Lee, C.-S., Meng, Q., Sakano, Y., Noble, A. E., Grant, K. A., Esposito, A., Gobler, C. J., & Venkatesan, A. K. (2023). Contribution of household and personal care products to 1,4-dioxane contamination of drinking water. Current Opinion in Environmental Science & Health, 31, 100414. https://doi.org/10.1016/j.coesh.2022.100414
  • Elwardany, R. E., Shokry, H., Mustafa, A. A., & Ali, A. E. (2023). Influence of the prepared activated carbon on cellulose acetate for malachite green dye removal from aqueous solution. Macromolecular Research, 31(11), 1043–1060. https://doi.org/ 10.1007/s13233-023-00187-w
  • Erdoğan, O., & Sağlan, Z. (2023). Antifungal activity of local isolates of Beauveria bassiana (Balsamo) Vuillemin against Verticillium dahliae Kleb. causing wilt disease of cotton. Egyptian Journal of Biological Pest Control, 33(1), 52. https://doi.org/10.1186/s41938-023-00684-1
  • Fawzy, M. A., Darwish, H., Alharthi, S., Al-Zaban, M. I., Noureldeen, A., & Hassan, S. H. A. (2022). Process optimization and modeling of Cd2+ biosorption onto the free and immobilized Turbinaria ornata using Box–Behnken experimental design. Scientific Reports, 12(1), 3256. https://doi.org/10.1038/s41598-022-07288-z
  • Feuzer-Matos, A. J., Testolin, R. C., Pimentel-Almeida, W., Radetski-Silva, R., Deomar-Simões, M. J., Poyer-Radetski, L., Ariente-Neto, R., Batista-Barwinski, M. J., Somensi, C. A., & Radetski, C. M. (2022). Treatment of Wastewater Containing New and Non-biodegradable Textile Dyes: Efficacy of Combined Advanced Oxidation and Adsorption Processes. Water, Air, & Soil Pollution, 233(7), 273. https://doi.org/10.1007/s11270-022-05751-1
  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–470.
  • Fuente, A. M., Pulgar, G., González, F., Pesquera, C., & Blanco, C. (2001). Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation. Applied Catalysis A: General, 208(1–2), 35–46. https://doi.org/10.1016/S0926-860X(00)00699-2
  • Ho, Y. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689. https://doi.org/ 10.1016/j.jhazmat.2005.12.043
  • Imessaoudene, A., Cheikh, S., Hadadi, A., Hamri, N., Bollinger, J.-C., Amrane, A., Tahraoui, H., Manseri, A., & Mouni, L. (2023). Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies. Separations, 10(1), 57. https://doi.org/ 10.3390/separations10010057
  • Jawad, E., & Khadim, L. (2022). Study of Adsorption for Fast Green and Malachite Green Dyes on the Activated Surface. Egyptian Journal of Chemistry, 0–0. https://doi.org/10.21608/ejchem.2022.130851. 5758
  • Ji, Q., Li, H., & Zhang, J. (2020). Preparation and characterization of bio-based activated carbon from fish scales. BioResources, 16(1), 614–621. https://doi.org/10.15376/biores.16.1.614-621
  • Kaouah, F., Boumaza, S., Berrama, T., Trari, M., & Bendjama, Z. (2013). Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. Journal of Cleaner Production, 54, 296–306. https://doi.org/10.1016/j.jclepro.2013.04.038
  • Kausar, A., Zohra, S. T., Ijaz, S., Iqbal, M., Iqbal, J., Bibi, I., Nouren, S., El Messaoudi, N., & Nazir, A. (2023). Cellulose-based materials and their adsorptive removal efficiency for dyes: A review. International Journal of Biological Macromolecules, 224, 1337–1355. https://doi.org/ 10.1016/j.ijbiomac.2022.10.220
  • Khan, J. A., & Jabin, S. (2023). Nanocomposites for the removal of pharmaceuticals in drinking water sources. Içinde Nanocomposites-Advanced Materials for Energy and Environmental Aspects (ss. 469–494). Elsevier. https://doi.org/10.1016/ B978-0-323-99704-1.00019-9
  • Kumari, R., Singh, V., & Ravi Kant, C. (2023). Enhanced performance of activated carbon-based supercapacitor derived from waste soybean oil with coffee ground additives. Materials Chemistry and Physics, 305, 127882. https://doi.org/10.1016/ j.matchemphys.2023.127882
  • Kutluay, S., Baytar, O., & Şahin, Ö. (2019a). Adsorption kinetics, equilibrium and thermodynamics of gas-phase toluene onto char produced from almond shells. Research on Engineering Structures and Materials. https://doi.org/10.17515/resm2019.73en1122
  • Kutluay, S., Baytar, O., & Şahin, Ö. (2019b). Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds. Journal of Environmental Chemical Engineering, 7(2), 102947. https://doi.org/10.1016/j.jece.2019.102947
  • Lagergren, S. (1898). About the theory of so-called adsorptıon of soluble substances. K Sven Vetenskapsakad Handl., 24, 1–39.
  • Li, C., Wang, X., Meng, D., & Zhou, L. (2018). Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. International Journal of Biological Macromolecules, 107, 1871–1878. https://doi.org/10.1016/j.ijbiomac.2017.10.058
  • Liu, Q.-S., Zheng, T., Li, N., Wang, P., & Abulikemu, G. (2010). Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science, 256(10), 3309–3315. https://doi.org/10.1016/j.apsusc.2009.12.025
  • Liu, S., Sang, S., Wang, T., Du, Y., Jia, J., & Fang, H. (2018). The effects of CO 2 on organic groups in bituminous coal and high-rank coal via Fourier transform infrared spectroscopy. Energy Exploration & Exploitation, 36(6), 1566–1592. https://doi.org/10.1177/0144598718764752
  • Liu, X.-J., Li, M.-F., & Singh, S. K. (2021). Manganese-modified lignin biochar as adsorbent for removal of methylene blue. Journal of Materials Research and Technology, 12, 1434–1445. https://doi.org/10.1016/ j.jmrt.2021.03.076
  • Malik, K., Salama, E.-S., Kim, T. H., & Li, X. (2020). Enhanced ethanol production by Saccharomyces cerevisiae fermentation post acidic and alkali chemical pretreatments of cotton stalk lignocellulose. International Biodeterioration & Biodegradation, 147, 104869. https://doi.org/ 10.1016/j.ibiod.2019.104869
  • Mohammad, M., Maitra, S., & Dutta, B. K. (2018). Comparison of Activated Carbon and Physic Seed Hull for the Removal of Malachite Green Dye from Aqueous Solution. Water, Air, & Soil Pollution, 229(2), 45. https://doi.org/10.1007/s11270-018-3686-4
  • Nasab, S. G., Semnani, A., Teimouri, A., Yazd, M. J., Isfahani, T. M., & Habibollahi, S. (2019). Decolorization of crystal violet from aqueous solutions by a novel adsorbent chitosan/nanodiopside using response surface methodology and artificial neural network-genetic algorithm. International Journal of Biological Macromolecules, 124, 429–443. https://doi.org/ 10.1016/j.ijbiomac.2018.11.148
  • Ni’mah, Y. L., Pertiwi, A. C., & Suprapto, S. (2024). Adsorption of Cu(II) on silica gel synthesized from chemical bottle glass waste: Response surface methodology-Box Behnken design optimization. South African Journal of Chemical Engineering, 48, 55–62. https://doi.org/10.1016/j.sajce.2024.01.007
  • Pack, E. C., Lee, H. G., Jeong, H., Lee, J., Jang, D. Y., Kim, H. S., Lee, S. H., Lim, K. M., & Choi, D. (2023). Tiered human health risk assessment of antibacterial quaternary ammonium compounds (QACs) in dishwashing detergents. Regulatory Toxicology and Pharmacology, 137, 105306. https://doi.org/10.1016/j.yrtph.2022.105306
  • Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021
  • Philip, J. (2023). Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science, 311, 102810. https://doi.org/10.1016/ j.cis.2022.102810
  • Piryaei, M., & Abolghasemi, M. M. (2022). Hierarchically Synthesis of Nanoflakes of Molybdenum Disulfide on Electrochemically Anodized Pencil Lead for Determination Trace Amounts of Phenolic Compounds in Water Samples. Polycyclic Aromatic Compounds, 1–10. https://doi.org/10.1080/10406638.2022.2127798
  • Rodríguez-Bolaña, C., Pérez-Parada, A., Tesitore, G., Goyenola, G., Kröger, A., Pacheco, M., Gérez, N., Berton, A., Zinola, G., Gil, G., Mangarelli, A., Pequeño, F., Besil, N., Niell, S., Heinzen, H., & Teixeira de Mello, F. (2023). Multicompartmental monitoring of legacy and currently used pesticides in a subtropical lake used as a drinking water source (Laguna del Cisne, Uruguay). Science of The Total Environment, 874, 162310. https://doi.org/ 10.1016/j.scitotenv.2023.162310
  • Roy, S., & Rhim, J.-W. (2019). Melanin-Mediated Synthesis of Copper Oxide Nanoparticles and Preparation of Functional Agar/CuO NP Nanocomposite Films. Journal of Nanomaterials, 2019, 1–10. https://doi.org/10.1155/2019/2840517
  • Şahin, Ö., Saka, C., Ceyhan, A. A., & Baytar, O. (2016). The pyrolysis process of biomass by two-stage chemical activation with different methodology and iodine adsorption. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(12), 1756–1762. https://doi.org/10.1080/ 15567036.2014.956195
  • Saleh, T. A., & Ali, I. (2018). Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye and heavy metals. Journal of Environmental Chemical Engineering, 6(4), 5361–5368. https://doi.org/10.1016/j.jece.2018.08.033
  • Sevilla, M., Alam, N., & Mokaya, R. (2010). Enhancement of Hydrogen Storage Capacity of Zeolite-Templated Carbons by Chemical Activation. The Journal of Physical Chemistry C, 114(25), 11314–11319. https://doi.org/10.1021/jp102464e
  • Shahat, A., Kubra, K. T., & El-marghany, A. (2023). Equilibrium, thermodynamic and kinetic modeling of triclosan adsorption on mesoporous carbon nanosphere: Optimization using Box-Behnken design. Journal of Molecular Liquids, 383, 122166. https://doi.org/10.1016/j.molliq.2023.122166
  • Sharifi Pajaie, S. H., Archin, S., & Asadpour, G. (2018). Optimization of Process Parameters by Response Surface Methodology for Methylene Blue Removal Using Cellulose Dusts. Civil Engineering Journal, 4(3), 620. https://doi.org/10.28991/cej-0309121
  • Song, J. Y., Bhadra, B. N., & Jhung, S. H. (2017). Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon. Microporous and Mesoporous Materials, 243, 221–228. https://doi.org/10.1016/j.micromeso.2017.02.024
  • Stjepanović, M., Velić, N., Galić, A., Kosović, I., Jakovljević, T., & Habuda-Stanić, M. (2021). From Waste to Biosorbent: Removal of Congo Red from Water by Waste Wood Biomass. Water, 13(3), 279. https://doi.org/10.3390/w13030279
  • Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017a). Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry, 2017, 1–10. https://doi.org/ 10.1155/2017/8404965
  • Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017b). Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry, 2017, 1–10. https://doi.org/ 10.1155/2017/8404965
  • Teğin, Ş. Ö., Şahin, Ö., Baytar, O., & İzgi, M. S. (2020). Preparation and characterization of activated carbon from almond shell by microwave-assisted using ZnCl2 activator. International Journal of Chemistry and Technology, 4(2), 130–137. https://doi.org/10.32571/ijct.747943
  • Teo, S. H., Ng, C. H., Islam, A., Abdulkareem-Alsultan, G., Joseph, C. G., Janaun, J., Taufiq-Yap, Y. H., Khandaker, S., Islam, G. J., Znad, H., & Awual, M. R. (2022). Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review. Journal of Cleaner Production, 332, 130039. https://doi.org/10.1016/ j.jclepro.2021.130039
  • Uddin, M. K., & Nasar, A. (2020). Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Scientific Reports, 10(1), 7983. https://doi.org/ 10.1038/s41598-020-64745-3
  • Uğur, T., & Bayhan, E. (2023). Güneydoğu Anadolu Bölgesi’nde pamuk ekiliş alanlarındaki yaprakpireleri (Hemiptera:Cicadellidae) ile birlikte avcı böceklerin belirlenmesi. Türkiye Biyolojik Mücadele Dergisi. https://doi.org/10.31019/ tbmd.1200190
  • Uma, Banerjee, S., & Sharma, Y. C. (2013). Equilibrium and kinetic studies for removal of malachite green from aqueous solution by a low cost activated carbon. Journal of Industrial and Engineering Chemistry, 19(4), 1099–1105. https://doi.org/10.1016/j.jiec.2012.11.030
  • United Nations. (2019). World Population Prospects 2019 Highlights.
  • Valencia, A., Muñiz-Valencia, R., Ceballos-Magaña, S. G., Rojas-Mayorga, C. K., Bonilla-Petriciolet, A., González, J., & Aguayo-Villarreal, I. A. (2022). Cyclohexane and benzene separation by fixed-bed adsorption on activated carbons prepared from coconut shell. Environmental Technology & Innovation, 25, 102076. https://doi.org/10.1016/ j.eti.2021.102076
  • Valli Nachiyar, C., Rakshi, A. D., Sandhya, S., Britlin Deva Jebasta, N., & Nellore, J. (2023). Developments in treatment technologies of dye-containing effluent: A review. Case Studies in Chemical and Environmental Engineering, 7, 100339. https://doi.org/10.1016/j.cscee.2023.100339
  • Vargas, A. M. M., Cazetta, A. L., Kunita, M. H., Silva, T. L., & Almeida, V. C. (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168(2), 722–730. https://doi.org/10.1016/j.cej.2011.01.067
  • Wang, Q., Oluwaseyi Fagbohun, E., Zhu, H., Hussain, A., Wang, F., & Cui, Y. (2023). One-step synthesis of magnetic asphalt-based activated carbon with high specific surface area and adsorption performance for methylene blue. Separation and Purification Technology, 124205. https://doi.org/10.1016/j.seppur.2023.124205
  • Weber, W. J., & Morris, J. C. (1963a). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430
  • Weber, W. J., & Morris, J. C. (1963b). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430
  • Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2–3), 366–373. https://doi.org/10.1016/j.cej.2009.01.014
  • Yağmur, H. K., & Kaya, İ. (2021). Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. Journal of Molecular Structure, 1232, 130071. https://doi.org/10.1016/ j.molstruc.2021.130071
  • Yao, F., Ye, G., Peng, W., Zhao, G., Wang, X., Wang, Y., Zhu, W., Jiao, Y., Huang, H., & Ye, D. (2023). Preparation of activated biochar with adjustable pore structure by hydrothermal carbonization for efficient adsorption of VOCs and its practical application prospects. Journal of Environmental Chemical Engineering, 11(2), 109611. https://doi.org/10.1016/j.jece.2023.109611
  • Yildiz, H., Gülşen, H., Şahin, Ö., Baytar, O., & Kutluay, S. (2023). Novel adsorbent for malachite green from okra stalks waste: synthesis, kinetics and equilibrium studies. International Journal of Phytoremediation, 1–13. https://doi.org/10.1080/ 15226514.2023.2243621
  • Yıldız, H., Gülşen, H., Şahin, Ö., Baytar, O., & Kutluay, S. (2022). Atık biyokütleden (Tütün Sapı) Mikrodalga Destekli İmpregnasyon Yöntemi ile Aktif Karbon Sentezi ve Karakterizasyonu. Harran Üniversitesi Mühendislik Dergisi. https://doi.org/ 10.46578/humder.1076166
  • Yildiz, Hakan. (2024). The production of a novel adsorbent from forest waste (Platanus orientalis L.) for dye adsorption: Adsorption process optimization and experimental design. Materials Science and Engineering: B, 304, 117366. https://doi.org/ 10.1016/j.mseb.2024.117366
  • Yildiz, Hakan, Dolas, H., Baytar, O., & Şahin, O. (2024). Bioeconomic transformation of bio-oil production wastes: a novel adsorbent material for toxic dye adsorption and optimization of process parameters. The Journal of The Textile Institute, 1–12. https://doi.org/10.1080/00405000.2024. 2352677
  • Yildiz, Hakan, & Yuksel, A. Y. (2023). Novel Adsorbent for Methylene Blue from Waste Fish Scales (Cyprinus Carpio): Kinetics and Equilibrium Studies. Environmental Engineering and Management Journal, 22(6), 1073–1080. https://doi.org/10.30638/eemj.2023.088
  • Yıldız, D., Demir, I., & Demiral, H. (2023). Adsorption of malachite green on to poplar sawdust activated carbon. Separation Science and Technology, 58(12), 2099–2114. https://doi.org/10.1080/01496395 .2023. 2240492
  • Zaini, M. S. M., Arshad, M., & Syed-Hassan, S. S. A. (2023). Adsorption Isotherm and Kinetic Study of Methane on Palm Kernel Shell-Derived Activated Carbon. Journal of Bioresources and Bioproducts, 8(1), 66–77. https://doi.org/10.1016/j.jobab. 2022.11.002
  • Zhang, G., Lei, B., Chen, S., Xie, H., & Zhou, G. (2021). Activated carbon adsorbents with micro-mesoporous structure derived from waste biomass by stepwise activation for toluene removal from air. Journal of Environmental Chemical Engineering, 9(4), 105387. https://doi.org/10.1016/j.jece. 2021.105387
  • Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352–365. https://doi.org/10.1016/ j.envpol.2019.05.072

Activated Carbon Production from Agricultural Wastes and Dye Removal from Wastewater: Characterization, Kinetic and Equilibrium Studies

Year 2024, , 1269 - 1281, 07.11.2024
https://doi.org/10.18016/ksutarimdoga.vi.1477888

Abstract

Agricultural wastes have a great potential for sustainable and environmentally friendly waste management. In this study, activated carbon adsorbent was produced using cotton stalks from agricultural wastes. With this adsorbent, the removal of malachite green, a hazardous dyestuff, from wastewater by the adsorption process was investigated. The adsorbent was characterized by BET, SEM, and FT-IR analysis. Optimization of variables such as dye concentration and pH were carried out to determine the adsorption efficiency. Kinetic and equilibrium studies were carried out to obtain a better understanding of the nature of malachite green adsorption. As a result of the studies, it was determined that the pseudo-second-order kinetic model best represents the adsorption process, while the Langmuir isotherm is the most suitable model for equilibrium properties. Based on the Langmuir isotherm data, the maximum adsorption capacity (qmax) was determined as 69.06 mg g-¹. This study reveals the potential of adsorbent produced from waste cotton stalks as an environmentally friendly, economical, and effective water treatment material.

References

  • Abate, G. Y., Alene, A. N., Habte, A. T., & Getahun, D. M. (2020). Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent. Environmental Systems Research, 9(1), 29. https://doi.org/10.1186/s40068-020-00191-4
  • Açin Ok, R., & Kutluay, S. (2023). Designing novel perlite-Fe3O4@SiO2@8-HQ-5-SA as a promising magnetic nanoadsorbent for competitive adsorption of multicomponent VOCs. Chemosphere, 338, 139636. https://doi.org/10.1016/j.chemosphere.2023.139636
  • Adeleye, A. T., Bahar, M. M., Megharaj, M., & Rahman, M. M. (2023). Recent developments and mechanistic insights on adsorption technology for micro- and nanoplastics removal in aquatic environments. Journal of Water Process Engineering, 53, 103777. https://doi.org/10.1016/ j.jwpe.2023.103777
  • Adeyi, A. A., Jamil, S. N. A. M., Abdullah, L. C., & Choong, T. S. Y. (2019). Adsorption of Malachite Green Dye from Liquid Phase Using Hydrophilic Thiourea-Modified Poly(acrylonitrile- co -acrylic acid): Kinetic and Isotherm Studies. Journal of Chemistry, 2019, 1–14. https://doi.org/10.1155/ 2019/4321475
  • Aftab, A., Aziz, R., Ghaffar, A., Rafiq, M. T., Feng, Y., Saqib, Z., Rafiq, M. K., & Awan, M. A. (2023). Occurrence, source identification and ecological risk assessment of heavy metals in water and sediments of Uchalli lake – Ramsar site, Pakistan. Environmental Pollution, 334, 122117. https://doi.org/10.1016/j.envpol.2023.122117
  • Alorabi, A. Q. (2021). Effective Removal of Malachite Green from Aqueous Solutions Using Magnetic Nanocomposite: Synthesis, Characterization, and Equilibrium Study. Adsorption Science & Technology, 2021, 1–15. https://doi.org/ 10.1155/2021/2359110
  • Arora, C., Kumar, P., Soni, S., Mittal, J., Mittal, A., & Singh, B. (2020). Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon. DESALINATION AND WATER TREATMENT, 195, 341–352. https://doi.org/10.5004/dwt.2020.25897
  • Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H., & Yu, G. (2016). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34(6), 1091–1102. https://doi.org/10.1016/j.biotechadv.2016.06.007
  • Crist, E., Mora, C., & Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356(6335), 260–264. https://doi.org/10.1126/science.aal2011
  • de Souza, C. C., de Souza, L. Z. M., Yılmaz, M., de Oliveira, M. A., da Silva Bezerra, A. C., da Silva, E. F., Dumont, M. R., & Machado, A. R. T. (2022). Activated carbon of Coriandrum sativum for adsorption of methylene blue: Equilibrium and kinetic modeling. Cleaner Materials, 3, 100052. https://doi.org/10.1016/j.clema.2022.100052
  • Deniz, F., & Yildiz, H. (2019). Bioremediation potential of a widespread industrial biowaste as renewable and sustainable biosorbent for synthetic dye pollution. International Journal of Phytoremediation, 21(3), 259–267. https://doi.org/ 10.1080/15226514.2018.1524451
  • Doherty, A.-C., Lee, C.-S., Meng, Q., Sakano, Y., Noble, A. E., Grant, K. A., Esposito, A., Gobler, C. J., & Venkatesan, A. K. (2023). Contribution of household and personal care products to 1,4-dioxane contamination of drinking water. Current Opinion in Environmental Science & Health, 31, 100414. https://doi.org/10.1016/j.coesh.2022.100414
  • Elwardany, R. E., Shokry, H., Mustafa, A. A., & Ali, A. E. (2023). Influence of the prepared activated carbon on cellulose acetate for malachite green dye removal from aqueous solution. Macromolecular Research, 31(11), 1043–1060. https://doi.org/ 10.1007/s13233-023-00187-w
  • Erdoğan, O., & Sağlan, Z. (2023). Antifungal activity of local isolates of Beauveria bassiana (Balsamo) Vuillemin against Verticillium dahliae Kleb. causing wilt disease of cotton. Egyptian Journal of Biological Pest Control, 33(1), 52. https://doi.org/10.1186/s41938-023-00684-1
  • Fawzy, M. A., Darwish, H., Alharthi, S., Al-Zaban, M. I., Noureldeen, A., & Hassan, S. H. A. (2022). Process optimization and modeling of Cd2+ biosorption onto the free and immobilized Turbinaria ornata using Box–Behnken experimental design. Scientific Reports, 12(1), 3256. https://doi.org/10.1038/s41598-022-07288-z
  • Feuzer-Matos, A. J., Testolin, R. C., Pimentel-Almeida, W., Radetski-Silva, R., Deomar-Simões, M. J., Poyer-Radetski, L., Ariente-Neto, R., Batista-Barwinski, M. J., Somensi, C. A., & Radetski, C. M. (2022). Treatment of Wastewater Containing New and Non-biodegradable Textile Dyes: Efficacy of Combined Advanced Oxidation and Adsorption Processes. Water, Air, & Soil Pollution, 233(7), 273. https://doi.org/10.1007/s11270-022-05751-1
  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–470.
  • Fuente, A. M., Pulgar, G., González, F., Pesquera, C., & Blanco, C. (2001). Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation. Applied Catalysis A: General, 208(1–2), 35–46. https://doi.org/10.1016/S0926-860X(00)00699-2
  • Ho, Y. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689. https://doi.org/ 10.1016/j.jhazmat.2005.12.043
  • Imessaoudene, A., Cheikh, S., Hadadi, A., Hamri, N., Bollinger, J.-C., Amrane, A., Tahraoui, H., Manseri, A., & Mouni, L. (2023). Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies. Separations, 10(1), 57. https://doi.org/ 10.3390/separations10010057
  • Jawad, E., & Khadim, L. (2022). Study of Adsorption for Fast Green and Malachite Green Dyes on the Activated Surface. Egyptian Journal of Chemistry, 0–0. https://doi.org/10.21608/ejchem.2022.130851. 5758
  • Ji, Q., Li, H., & Zhang, J. (2020). Preparation and characterization of bio-based activated carbon from fish scales. BioResources, 16(1), 614–621. https://doi.org/10.15376/biores.16.1.614-621
  • Kaouah, F., Boumaza, S., Berrama, T., Trari, M., & Bendjama, Z. (2013). Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. Journal of Cleaner Production, 54, 296–306. https://doi.org/10.1016/j.jclepro.2013.04.038
  • Kausar, A., Zohra, S. T., Ijaz, S., Iqbal, M., Iqbal, J., Bibi, I., Nouren, S., El Messaoudi, N., & Nazir, A. (2023). Cellulose-based materials and their adsorptive removal efficiency for dyes: A review. International Journal of Biological Macromolecules, 224, 1337–1355. https://doi.org/ 10.1016/j.ijbiomac.2022.10.220
  • Khan, J. A., & Jabin, S. (2023). Nanocomposites for the removal of pharmaceuticals in drinking water sources. Içinde Nanocomposites-Advanced Materials for Energy and Environmental Aspects (ss. 469–494). Elsevier. https://doi.org/10.1016/ B978-0-323-99704-1.00019-9
  • Kumari, R., Singh, V., & Ravi Kant, C. (2023). Enhanced performance of activated carbon-based supercapacitor derived from waste soybean oil with coffee ground additives. Materials Chemistry and Physics, 305, 127882. https://doi.org/10.1016/ j.matchemphys.2023.127882
  • Kutluay, S., Baytar, O., & Şahin, Ö. (2019a). Adsorption kinetics, equilibrium and thermodynamics of gas-phase toluene onto char produced from almond shells. Research on Engineering Structures and Materials. https://doi.org/10.17515/resm2019.73en1122
  • Kutluay, S., Baytar, O., & Şahin, Ö. (2019b). Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds. Journal of Environmental Chemical Engineering, 7(2), 102947. https://doi.org/10.1016/j.jece.2019.102947
  • Lagergren, S. (1898). About the theory of so-called adsorptıon of soluble substances. K Sven Vetenskapsakad Handl., 24, 1–39.
  • Li, C., Wang, X., Meng, D., & Zhou, L. (2018). Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. International Journal of Biological Macromolecules, 107, 1871–1878. https://doi.org/10.1016/j.ijbiomac.2017.10.058
  • Liu, Q.-S., Zheng, T., Li, N., Wang, P., & Abulikemu, G. (2010). Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science, 256(10), 3309–3315. https://doi.org/10.1016/j.apsusc.2009.12.025
  • Liu, S., Sang, S., Wang, T., Du, Y., Jia, J., & Fang, H. (2018). The effects of CO 2 on organic groups in bituminous coal and high-rank coal via Fourier transform infrared spectroscopy. Energy Exploration & Exploitation, 36(6), 1566–1592. https://doi.org/10.1177/0144598718764752
  • Liu, X.-J., Li, M.-F., & Singh, S. K. (2021). Manganese-modified lignin biochar as adsorbent for removal of methylene blue. Journal of Materials Research and Technology, 12, 1434–1445. https://doi.org/10.1016/ j.jmrt.2021.03.076
  • Malik, K., Salama, E.-S., Kim, T. H., & Li, X. (2020). Enhanced ethanol production by Saccharomyces cerevisiae fermentation post acidic and alkali chemical pretreatments of cotton stalk lignocellulose. International Biodeterioration & Biodegradation, 147, 104869. https://doi.org/ 10.1016/j.ibiod.2019.104869
  • Mohammad, M., Maitra, S., & Dutta, B. K. (2018). Comparison of Activated Carbon and Physic Seed Hull for the Removal of Malachite Green Dye from Aqueous Solution. Water, Air, & Soil Pollution, 229(2), 45. https://doi.org/10.1007/s11270-018-3686-4
  • Nasab, S. G., Semnani, A., Teimouri, A., Yazd, M. J., Isfahani, T. M., & Habibollahi, S. (2019). Decolorization of crystal violet from aqueous solutions by a novel adsorbent chitosan/nanodiopside using response surface methodology and artificial neural network-genetic algorithm. International Journal of Biological Macromolecules, 124, 429–443. https://doi.org/ 10.1016/j.ijbiomac.2018.11.148
  • Ni’mah, Y. L., Pertiwi, A. C., & Suprapto, S. (2024). Adsorption of Cu(II) on silica gel synthesized from chemical bottle glass waste: Response surface methodology-Box Behnken design optimization. South African Journal of Chemical Engineering, 48, 55–62. https://doi.org/10.1016/j.sajce.2024.01.007
  • Pack, E. C., Lee, H. G., Jeong, H., Lee, J., Jang, D. Y., Kim, H. S., Lee, S. H., Lim, K. M., & Choi, D. (2023). Tiered human health risk assessment of antibacterial quaternary ammonium compounds (QACs) in dishwashing detergents. Regulatory Toxicology and Pharmacology, 137, 105306. https://doi.org/10.1016/j.yrtph.2022.105306
  • Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021
  • Philip, J. (2023). Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science, 311, 102810. https://doi.org/10.1016/ j.cis.2022.102810
  • Piryaei, M., & Abolghasemi, M. M. (2022). Hierarchically Synthesis of Nanoflakes of Molybdenum Disulfide on Electrochemically Anodized Pencil Lead for Determination Trace Amounts of Phenolic Compounds in Water Samples. Polycyclic Aromatic Compounds, 1–10. https://doi.org/10.1080/10406638.2022.2127798
  • Rodríguez-Bolaña, C., Pérez-Parada, A., Tesitore, G., Goyenola, G., Kröger, A., Pacheco, M., Gérez, N., Berton, A., Zinola, G., Gil, G., Mangarelli, A., Pequeño, F., Besil, N., Niell, S., Heinzen, H., & Teixeira de Mello, F. (2023). Multicompartmental monitoring of legacy and currently used pesticides in a subtropical lake used as a drinking water source (Laguna del Cisne, Uruguay). Science of The Total Environment, 874, 162310. https://doi.org/ 10.1016/j.scitotenv.2023.162310
  • Roy, S., & Rhim, J.-W. (2019). Melanin-Mediated Synthesis of Copper Oxide Nanoparticles and Preparation of Functional Agar/CuO NP Nanocomposite Films. Journal of Nanomaterials, 2019, 1–10. https://doi.org/10.1155/2019/2840517
  • Şahin, Ö., Saka, C., Ceyhan, A. A., & Baytar, O. (2016). The pyrolysis process of biomass by two-stage chemical activation with different methodology and iodine adsorption. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(12), 1756–1762. https://doi.org/10.1080/ 15567036.2014.956195
  • Saleh, T. A., & Ali, I. (2018). Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye and heavy metals. Journal of Environmental Chemical Engineering, 6(4), 5361–5368. https://doi.org/10.1016/j.jece.2018.08.033
  • Sevilla, M., Alam, N., & Mokaya, R. (2010). Enhancement of Hydrogen Storage Capacity of Zeolite-Templated Carbons by Chemical Activation. The Journal of Physical Chemistry C, 114(25), 11314–11319. https://doi.org/10.1021/jp102464e
  • Shahat, A., Kubra, K. T., & El-marghany, A. (2023). Equilibrium, thermodynamic and kinetic modeling of triclosan adsorption on mesoporous carbon nanosphere: Optimization using Box-Behnken design. Journal of Molecular Liquids, 383, 122166. https://doi.org/10.1016/j.molliq.2023.122166
  • Sharifi Pajaie, S. H., Archin, S., & Asadpour, G. (2018). Optimization of Process Parameters by Response Surface Methodology for Methylene Blue Removal Using Cellulose Dusts. Civil Engineering Journal, 4(3), 620. https://doi.org/10.28991/cej-0309121
  • Song, J. Y., Bhadra, B. N., & Jhung, S. H. (2017). Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon. Microporous and Mesoporous Materials, 243, 221–228. https://doi.org/10.1016/j.micromeso.2017.02.024
  • Stjepanović, M., Velić, N., Galić, A., Kosović, I., Jakovljević, T., & Habuda-Stanić, M. (2021). From Waste to Biosorbent: Removal of Congo Red from Water by Waste Wood Biomass. Water, 13(3), 279. https://doi.org/10.3390/w13030279
  • Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017a). Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry, 2017, 1–10. https://doi.org/ 10.1155/2017/8404965
  • Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017b). Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Chemistry, 2017, 1–10. https://doi.org/ 10.1155/2017/8404965
  • Teğin, Ş. Ö., Şahin, Ö., Baytar, O., & İzgi, M. S. (2020). Preparation and characterization of activated carbon from almond shell by microwave-assisted using ZnCl2 activator. International Journal of Chemistry and Technology, 4(2), 130–137. https://doi.org/10.32571/ijct.747943
  • Teo, S. H., Ng, C. H., Islam, A., Abdulkareem-Alsultan, G., Joseph, C. G., Janaun, J., Taufiq-Yap, Y. H., Khandaker, S., Islam, G. J., Znad, H., & Awual, M. R. (2022). Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review. Journal of Cleaner Production, 332, 130039. https://doi.org/10.1016/ j.jclepro.2021.130039
  • Uddin, M. K., & Nasar, A. (2020). Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Scientific Reports, 10(1), 7983. https://doi.org/ 10.1038/s41598-020-64745-3
  • Uğur, T., & Bayhan, E. (2023). Güneydoğu Anadolu Bölgesi’nde pamuk ekiliş alanlarındaki yaprakpireleri (Hemiptera:Cicadellidae) ile birlikte avcı böceklerin belirlenmesi. Türkiye Biyolojik Mücadele Dergisi. https://doi.org/10.31019/ tbmd.1200190
  • Uma, Banerjee, S., & Sharma, Y. C. (2013). Equilibrium and kinetic studies for removal of malachite green from aqueous solution by a low cost activated carbon. Journal of Industrial and Engineering Chemistry, 19(4), 1099–1105. https://doi.org/10.1016/j.jiec.2012.11.030
  • United Nations. (2019). World Population Prospects 2019 Highlights.
  • Valencia, A., Muñiz-Valencia, R., Ceballos-Magaña, S. G., Rojas-Mayorga, C. K., Bonilla-Petriciolet, A., González, J., & Aguayo-Villarreal, I. A. (2022). Cyclohexane and benzene separation by fixed-bed adsorption on activated carbons prepared from coconut shell. Environmental Technology & Innovation, 25, 102076. https://doi.org/10.1016/ j.eti.2021.102076
  • Valli Nachiyar, C., Rakshi, A. D., Sandhya, S., Britlin Deva Jebasta, N., & Nellore, J. (2023). Developments in treatment technologies of dye-containing effluent: A review. Case Studies in Chemical and Environmental Engineering, 7, 100339. https://doi.org/10.1016/j.cscee.2023.100339
  • Vargas, A. M. M., Cazetta, A. L., Kunita, M. H., Silva, T. L., & Almeida, V. C. (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168(2), 722–730. https://doi.org/10.1016/j.cej.2011.01.067
  • Wang, Q., Oluwaseyi Fagbohun, E., Zhu, H., Hussain, A., Wang, F., & Cui, Y. (2023). One-step synthesis of magnetic asphalt-based activated carbon with high specific surface area and adsorption performance for methylene blue. Separation and Purification Technology, 124205. https://doi.org/10.1016/j.seppur.2023.124205
  • Weber, W. J., & Morris, J. C. (1963a). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430
  • Weber, W. J., & Morris, J. C. (1963b). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430
  • Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2–3), 366–373. https://doi.org/10.1016/j.cej.2009.01.014
  • Yağmur, H. K., & Kaya, İ. (2021). Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. Journal of Molecular Structure, 1232, 130071. https://doi.org/10.1016/ j.molstruc.2021.130071
  • Yao, F., Ye, G., Peng, W., Zhao, G., Wang, X., Wang, Y., Zhu, W., Jiao, Y., Huang, H., & Ye, D. (2023). Preparation of activated biochar with adjustable pore structure by hydrothermal carbonization for efficient adsorption of VOCs and its practical application prospects. Journal of Environmental Chemical Engineering, 11(2), 109611. https://doi.org/10.1016/j.jece.2023.109611
  • Yildiz, H., Gülşen, H., Şahin, Ö., Baytar, O., & Kutluay, S. (2023). Novel adsorbent for malachite green from okra stalks waste: synthesis, kinetics and equilibrium studies. International Journal of Phytoremediation, 1–13. https://doi.org/10.1080/ 15226514.2023.2243621
  • Yıldız, H., Gülşen, H., Şahin, Ö., Baytar, O., & Kutluay, S. (2022). Atık biyokütleden (Tütün Sapı) Mikrodalga Destekli İmpregnasyon Yöntemi ile Aktif Karbon Sentezi ve Karakterizasyonu. Harran Üniversitesi Mühendislik Dergisi. https://doi.org/ 10.46578/humder.1076166
  • Yildiz, Hakan. (2024). The production of a novel adsorbent from forest waste (Platanus orientalis L.) for dye adsorption: Adsorption process optimization and experimental design. Materials Science and Engineering: B, 304, 117366. https://doi.org/ 10.1016/j.mseb.2024.117366
  • Yildiz, Hakan, Dolas, H., Baytar, O., & Şahin, O. (2024). Bioeconomic transformation of bio-oil production wastes: a novel adsorbent material for toxic dye adsorption and optimization of process parameters. The Journal of The Textile Institute, 1–12. https://doi.org/10.1080/00405000.2024. 2352677
  • Yildiz, Hakan, & Yuksel, A. Y. (2023). Novel Adsorbent for Methylene Blue from Waste Fish Scales (Cyprinus Carpio): Kinetics and Equilibrium Studies. Environmental Engineering and Management Journal, 22(6), 1073–1080. https://doi.org/10.30638/eemj.2023.088
  • Yıldız, D., Demir, I., & Demiral, H. (2023). Adsorption of malachite green on to poplar sawdust activated carbon. Separation Science and Technology, 58(12), 2099–2114. https://doi.org/10.1080/01496395 .2023. 2240492
  • Zaini, M. S. M., Arshad, M., & Syed-Hassan, S. S. A. (2023). Adsorption Isotherm and Kinetic Study of Methane on Palm Kernel Shell-Derived Activated Carbon. Journal of Bioresources and Bioproducts, 8(1), 66–77. https://doi.org/10.1016/j.jobab. 2022.11.002
  • Zhang, G., Lei, B., Chen, S., Xie, H., & Zhou, G. (2021). Activated carbon adsorbents with micro-mesoporous structure derived from waste biomass by stepwise activation for toluene removal from air. Journal of Environmental Chemical Engineering, 9(4), 105387. https://doi.org/10.1016/j.jece. 2021.105387
  • Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352–365. https://doi.org/10.1016/ j.envpol.2019.05.072
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section RESEARCH ARTICLE
Authors

Hakan Yıldız 0000-0002-2181-7226

Early Pub Date August 15, 2024
Publication Date November 7, 2024
Submission Date May 3, 2024
Acceptance Date June 6, 2024
Published in Issue Year 2024

Cite

APA Yıldız, H. (2024). Tarım Atıklarından Aktif Karbon Üretimi ve Atıksudan Boya Giderimi: Karakterizasyon, Kinetik ve Denge Çalışmaları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(6), 1269-1281. https://doi.org/10.18016/ksutarimdoga.vi.1477888

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149