Araştırma Makalesi
BibTex RIS Kaynak Göster

Bakır Oksit Nanopartikülü Etkisinde Kalan Memelilerde (Rattus norvegicus var. albinos) Bazı Metabolik Tepkilerin Incelenmesi

Yıl 2020, , 304 - 315, 30.04.2020
https://doi.org/10.18016/ksutarimdoga.vi.632772

Öz

Bu
çalışmada, dişi sıçanlara 14 gün boyunca oral gavaj ile farklı dozlarda
(kontrol (0), 0.5, 5, 50 mg/kg/gün) CuO nanopartikülü (NP) verildi. Bunu takiben
böbrek, beyin ve ince bağırsak dokularında ATPaz aktiviteleri ve beyin
dokusunda asetilkolinesteraz (AChE) aktivitesi ölçüldü. Ayrıca, karaciğerde
farklı glutatyon formları (toplam GSH, rGSH, GGSG) ve lipit peroksidasyonu
ürünü olan TBARS (tiyobarbitürik asit reaktif maddeleri) düzeyleri de ölçüldü.
Diğer yandan, dokularda CuO NP birikimi bir transmisyon elektron mikroskobu
(TEM) yardımıyla görüntülendi. Sonuçlar, beyin AChE aktivitesinde anlamlı
(P<0.05) azalmalar olduğunu göstermiştir. Beyin ve ince bağırsak ATPaz
aktiviteleri istatistiksel olarak anlamlı değişimler göstermezken (P>0.05),
böbrek ATPaz aktivitesinde istatiksel olarak (P
˂0.05) anlamlı azalışlar olmuştur. Farklı glutatyon
formlarının düzeyleri en yüksek doz haricinde anlamlı bir şekilde değişmemiştir.
Benzer şekilde, TBARS düzeyleri sadece en yüksek dozda istatiksel olarak
anlamlı (P<0.05) artışlar göstermiştir. TEM görüntüleri CuO NP'lerin sıçan
dokularda birikebileceğini göstermiş olup, bu görüntüler sıçanlarda enzimatik
ve enzimatik olmayan biyobelirteçlerde meydana gelen değişikliklerin dokularda
CuO NP birikmesinden kaynaklandığını vurgulamıştır.
 

Destekleyen Kurum

Çukurova Üniversitesi

Proje Numarası

FDK-2017-8197

Teşekkür

Bu çalışmanın verilerinin bir kısmı Çukurova Üniversitesi Araştırma Fonu tarafından desteklenen projeye (FDK-2017-8197) aittir. Fizikçi hocam Prof. Dr. Cebrail Gümüş’e nanopartikül karakterizasyonu konusunda ve Doktora Tez Danışmanım Prof. Dr. Hasan. B. İla’ya desteklerinden dolayı çok teşekkür ederim.

Kaynakça

  • Atkinson A, Gatemby AO, Lowe, AG 1973. The Determination of Inorganic Ortophosphate in Biological Systems. Biochimica Et Biophysica Acta 320: 195-204.
  • Auffan M, Flahaut E, Thill A, Mouchet F, Carriere M, Gauthier L, Bottero JY 2011. Ecotoxicology: Nanoparticle reactivity and living organisms. In Nanoethics and Nanotoxicology (pp. 325-357). Springer, Berlin, Heidelberg.
  • Atli G, Canli M 2011. Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology 20: 1861-1869.
  • Bahadar H, Maqbool F, Niaz K, Abdollahi M 2016. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomed J 20(1): 1-11.
  • Canli M, Stagg RM 1996. The effects of in vivo exposure to cadmium, copper and zinc on the activities of gill ATPases in the Norway lobster, Nephrops norvegicus. Arch. Environ. Contam. Toxicol. 31: 494-501.
  • Canli EG, Atli G, Canli M 2017. Response of the antioxidant enzymes of the erythrocyte and alterations in the serum biomarkers in rats following oral administration of nanoparticles. Environ. Toxicol. Phar. 50: 145-150.
  • Canli EG, Canli M 2017. Effects of aluminum, copper, and titanium nanoparticles on some blood parameters in Wistar rats. Turk. J. Zool. 41: 259-266.
  • Canli E.G, Dogan A, Canli M 2018. Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environ. Toxicol. Phar. 62: 181-187.
  • Canli EG, Ila HB, Canli M 2019a. Responses of biomarkers belonging to different metabolic systems of rats following oral administration of aluminium nanoparticle. Environ. Toxicol. Pharma. 69: 72-79.
  • Canli EG, Ila HB, Canli M 2019b. Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al2O3, CuO, TiO2). Environ. Sci. Pollut. Res. 26(1): 938-945.
  • Chen Z, Zhou D, Wang Y, Zhao L, Hu G, Liu J, Jia, G 2019. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. J. App. Toxicol. 39(4): 590-602.
  • Chichova M, Shkodrova M, Vasileva P, Kirilova K, Doncheva-Stoimenova D (2014). Influence of silver nanoparticles on the activity of rat liver mitochondrial ATPase. J. Nanopart. Res. 16: 1-14.
  • Ciftci H, Turk M, Tamer U, Karahan S, Menemen Y 2013. Silver nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turk. J. Biol. 37(5): 573-581.
  • De Jong WH, Borm PJ 2008. Drug delivery and nanoparticles: applications and Hazards. Int. J. Nanomed. 3(2): 133-149.
  • Durmaz M, Sevgiler Y, Uner N 2006. Tissue-specific antioxidative and neurotoxic responses to diazinon in Oreochromis niloticus. Pestic. Biochem. Phys. 84: 215-226.
  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95.
  • Elnagar AMB, Ibrahim A, Soliman AM 2018. Histopathological effects of titanium dioxide nanoparticles and the possible protective role of N-acetylcysteine on the testes of male albino rats. Int. J. Fertil. Steril. 12(3): 249-256.
  • Ema M, Hougaard KS, Kishimoto A, Honda K 2016. Reproductive and Developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 10: 391-412.
  • Frasco MF, Fournier D, Carvalho F, Guilhermino L 2005. Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers 10(5): 360-375.
  • Griffith OW 1980. Determination of glutathione and glutathione disulfide using glutathione-reductase and 2-vinylpyridine. Analytical Biochemistry 106: 207-212.
  • Guo D, Bi H, Wang D, Wu Q 2013. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells. Int. J. Biochem. Cell. Biol. 45: 1849-1859.
  • Gurr JR, Wang AS, Chen CH, Jan KY 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1-2): 66-73.
  • Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ 2007. What do we (need to) know about the kinetic properties of nanoparticles in the body?. Regulatory Toxicol. Pharma. 49(3): 217-229.
  • Hidalgo MC, Exposito A, Palma JM, de la Higuera M 2002. Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). Int. J Biochem. Cell. Biol. 34: 183-193.
  • Hong F, Si W, Zhao X, Wang L, Zhou Y, Chen M, Ge Y, Zhang Q, Wang Y, Zhang J 2015. TiO2 nanoparticle exposure decreases spermatogenesis via biochemical dysfunctions in the testis of male mice. J. Agric. Food. Chem. 63: 7084-7092.
  • Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X 2019. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 75: 40-53.
  • Howarth C, Gleeson P, Attwell D 2012. Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood. Flow. Metab. 32: 1222-1232.
  • Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N 2015. Titaniumdioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. J. Appl. Toxicol. 35: 1122-1132.
  • Janrao KK, Gadhave MV, Banerjee SK, Gaikwad DD 2014. Nanoparticle induced nanotoxicity: an overview. Asian Journal of Biomedical and Pharmaceutical Sciences 4(32): 1-7.
  • Jia X, Wang S, Zhou L, Sun L 201). The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale research letters 12(1): 478-492.
  • Kanak EG, Dogan Z, Eroglu A, Atli G, Canli M 2014. Effects of fish size on the response of antioxidant systems of Oreochromis niloticus following metal exposures. Fish. Physiol. Biochem. 40: 1083-1091.
  • Kumari M, Rajak S, Singh SP, Kumari SI, Kumar PU, Murty USN, Mahboob M, Grover P, Rahman MF 2012. Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats. J. Nanosci. Nanotechno. 12: 2149-2159.
  • Lei R, Yang B, Wu C, Liao M, Ding R, Wang Q 2015. Mitochondrial dysfunction and oxidative damage in the liver and kidney of rats following exposure to copper nanoparticles for five consecutive days. Toxicol. Res. 4(2): 351-364.
  • Lowry OH, Rosebrough NJ, Farra NJ, Randall RJ 1951. Protein Measurementswith the Folin Phenol Reagent. J. Biol. Chem. 193: 265-275.
  • Meena R, Paulraj R 2012. Oxidative stress mediated cytotoxicity of TiO2 nano anatase in liver and kidney of Wistar rat. Toxicol. Environ. Chem. 94(1): 146-163.
  • Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M 2013. Different biokinetics of nanomedicines linking to their toxicity; an overview. DARU Journal of Pharmaceutical 21: 14-18.
  • M'rad I, Jeljeli M, Rihane N, Hilber P, Sakly M, Amara S 2018. Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. Excli. J. 17: 200-210.
  • Ohkawa H, Ohishi N, Yagi K 1979. Assay for lipid peroxides in animal tissues bythiobarbituric acid reaction. Anal. Biochem. 95: 351-358.
  • Park EJ, Sim J, Kim Y, Han BS, Yoon C, Lee S, Cho MH, Kim JH 2015.A 13-week repeated-dose oral toxicity and bioaccumulation of aluminum oxide nanoparticles in mice. Arch. Toxicol. 89: 371-379.
  • Pena-Llopis S, Pena JB, Sancho E, Fernandez-Vega C, Ferrando MD 2001. Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere 45: 671-681.
  • Piner P, Uner N 2012. Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus. Environ. Toxicol. Phar. 33: 414-420.
  • Rizk MZ, Ali SA, Hamed MA, El-Rigal NS, Aly HF, Salah HH 2017. Toxicity of titanium dioxide nanoparticles: effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice. Biomed. Pharmacotherapy 90: 466-472.
  • Rohner F, Ernst FO, Arnold M, Hibe M, Biebinger R, Ehrensperger F, Pratsinis SE, Langhans W, Hurrell RF, Zimmermann MB 2007. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137: 614-619.
  • Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS 2014. Effects of sub-Acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem. Toxicol. 37: 336-347.
  • Silva-Herdade AS, Saldanha C 2013. Effects of acetylcholine on an animal model of inflammation. Clinical Hemorheology and Microcirculation 53: 209-2016.
  • Singh SP, Kumari M, Kumari SI, Rahman MF, Mahboob M, Grover P 2013. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J. Appl. Toxicol. 33: 1165-1179.
  • Tang T, Zhang Z, Zhu X 2019. Toxic Effects of TiO2 NPs on Zebrafish. Int. J.Environ. Res. Pub. Health. 16(4): 523-537.
  • Vasic VM, Colovic MB, Krstic DZ 2009. Mechanism of Na+/K+-ATPase and Mg2+-ATPase inhibition by metal ions and complexes. Hem. Ind. 63: 499-509.
  • Wang F, Gao F, Lan MB, Yuan HH, Huang YP, Liu JW 2009. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol in Vitro 23: 808-815.
  • Winston GW 1991. Oxidants and Antioxidants in Aquatic Animals. Comp. Biochem. Physiol. C-Pharma. Toxicol. Endocrin 100: 173-176.
  • Yang L, Watts DJ 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158(2): 122-132.
  • Yilmaz M, Rencuzogullari E, Canli M 2015. The effects of cyfluthrin on some biomarkers in the liver and kidney of Wistar rats. Environ. Sci. Pollut. Res. 22: 4747-4752.
  • Yilmaz M, Rencuzogullari E, Canli M 2017. Investigations on the effects ofetoxazole in the liver and kidney of Wistar rats. Environ. Sci. Pollut. Res. 24: 19635-19639.
  • Yu XH, Zhao XY, Ze YG, Wang L, Liu D, Hong J, Xu BQ, Lin A, Zhang C, Zhao Y, Li BY, Hong FS 2014. Changes of serum parameters of TiO2 nanoparticle-induced atherosclerosis in mice. J. Hazard. Mat. 280: 364-371.
  • Zhou Y, Hong F, Wang L 2017. Titanium dioxide nanoparticle-induced cytotoxicity and the underlying mechanism in mouse myocardial cells. J. Nano. Res. 19(11): 356-369.

Investigation of Some Metabolic Responses in Mammals (Rattus norvegicus var. albinos) Exposed to Copper Oxide Nanoparticles

Yıl 2020, , 304 - 315, 30.04.2020
https://doi.org/10.18016/ksutarimdoga.vi.632772

Öz

In this study, different doses (control (0), 0.5, 5,
50 mg/kg b.w./day) of CuO nanoparticle (NP) were administered to female rats
via oral gavage for 14 days.  Following
the exposures, the activities of ATPases in the kidney, brain and small
intestine and activity of acetylcholinesterase (AChE) in the brain were
measured. Levels of different glutathione forms (total GSH, rGSH, GGSG) and
TBARS (thiobarbituric acid reactive substances) were also measured in the liver
of rats.  The accumulation of CuO NPs in
the tissues were demonstrated following capture of tissue images by a
transmission electron microscope (TEM). Data demonstrated that activity of AChE
in the brain decreased significantly (P<0.05). ATPase activity in the brain
and small intestine did not change significantly (P>0.05), though there were
significant decreases (P<0.05) in ATPase activity in the kidney. Levels of
glutathione forms did not change significantly, except the highest dose.
Similarly, levels of TBARS increased significantly (P<0.05) at the highest
dose. TEM images showed that CuO NPs were able to accumulate in the tissues,
emphasizing occurred alterations in enzymatic and non-enzymatic biomarkers were
due to CuO NP accumulation in the tissues. 

Proje Numarası

FDK-2017-8197

Kaynakça

  • Atkinson A, Gatemby AO, Lowe, AG 1973. The Determination of Inorganic Ortophosphate in Biological Systems. Biochimica Et Biophysica Acta 320: 195-204.
  • Auffan M, Flahaut E, Thill A, Mouchet F, Carriere M, Gauthier L, Bottero JY 2011. Ecotoxicology: Nanoparticle reactivity and living organisms. In Nanoethics and Nanotoxicology (pp. 325-357). Springer, Berlin, Heidelberg.
  • Atli G, Canli M 2011. Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology 20: 1861-1869.
  • Bahadar H, Maqbool F, Niaz K, Abdollahi M 2016. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomed J 20(1): 1-11.
  • Canli M, Stagg RM 1996. The effects of in vivo exposure to cadmium, copper and zinc on the activities of gill ATPases in the Norway lobster, Nephrops norvegicus. Arch. Environ. Contam. Toxicol. 31: 494-501.
  • Canli EG, Atli G, Canli M 2017. Response of the antioxidant enzymes of the erythrocyte and alterations in the serum biomarkers in rats following oral administration of nanoparticles. Environ. Toxicol. Phar. 50: 145-150.
  • Canli EG, Canli M 2017. Effects of aluminum, copper, and titanium nanoparticles on some blood parameters in Wistar rats. Turk. J. Zool. 41: 259-266.
  • Canli E.G, Dogan A, Canli M 2018. Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environ. Toxicol. Phar. 62: 181-187.
  • Canli EG, Ila HB, Canli M 2019a. Responses of biomarkers belonging to different metabolic systems of rats following oral administration of aluminium nanoparticle. Environ. Toxicol. Pharma. 69: 72-79.
  • Canli EG, Ila HB, Canli M 2019b. Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al2O3, CuO, TiO2). Environ. Sci. Pollut. Res. 26(1): 938-945.
  • Chen Z, Zhou D, Wang Y, Zhao L, Hu G, Liu J, Jia, G 2019. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. J. App. Toxicol. 39(4): 590-602.
  • Chichova M, Shkodrova M, Vasileva P, Kirilova K, Doncheva-Stoimenova D (2014). Influence of silver nanoparticles on the activity of rat liver mitochondrial ATPase. J. Nanopart. Res. 16: 1-14.
  • Ciftci H, Turk M, Tamer U, Karahan S, Menemen Y 2013. Silver nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turk. J. Biol. 37(5): 573-581.
  • De Jong WH, Borm PJ 2008. Drug delivery and nanoparticles: applications and Hazards. Int. J. Nanomed. 3(2): 133-149.
  • Durmaz M, Sevgiler Y, Uner N 2006. Tissue-specific antioxidative and neurotoxic responses to diazinon in Oreochromis niloticus. Pestic. Biochem. Phys. 84: 215-226.
  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95.
  • Elnagar AMB, Ibrahim A, Soliman AM 2018. Histopathological effects of titanium dioxide nanoparticles and the possible protective role of N-acetylcysteine on the testes of male albino rats. Int. J. Fertil. Steril. 12(3): 249-256.
  • Ema M, Hougaard KS, Kishimoto A, Honda K 2016. Reproductive and Developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 10: 391-412.
  • Frasco MF, Fournier D, Carvalho F, Guilhermino L 2005. Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers 10(5): 360-375.
  • Griffith OW 1980. Determination of glutathione and glutathione disulfide using glutathione-reductase and 2-vinylpyridine. Analytical Biochemistry 106: 207-212.
  • Guo D, Bi H, Wang D, Wu Q 2013. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells. Int. J. Biochem. Cell. Biol. 45: 1849-1859.
  • Gurr JR, Wang AS, Chen CH, Jan KY 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1-2): 66-73.
  • Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ 2007. What do we (need to) know about the kinetic properties of nanoparticles in the body?. Regulatory Toxicol. Pharma. 49(3): 217-229.
  • Hidalgo MC, Exposito A, Palma JM, de la Higuera M 2002. Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). Int. J Biochem. Cell. Biol. 34: 183-193.
  • Hong F, Si W, Zhao X, Wang L, Zhou Y, Chen M, Ge Y, Zhang Q, Wang Y, Zhang J 2015. TiO2 nanoparticle exposure decreases spermatogenesis via biochemical dysfunctions in the testis of male mice. J. Agric. Food. Chem. 63: 7084-7092.
  • Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X 2019. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 75: 40-53.
  • Howarth C, Gleeson P, Attwell D 2012. Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood. Flow. Metab. 32: 1222-1232.
  • Hu H, Guo Q, Wang C, Ma X, He H, Oh Y, Feng Y, Wu Q, Gu N 2015. Titaniumdioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. J. Appl. Toxicol. 35: 1122-1132.
  • Janrao KK, Gadhave MV, Banerjee SK, Gaikwad DD 2014. Nanoparticle induced nanotoxicity: an overview. Asian Journal of Biomedical and Pharmaceutical Sciences 4(32): 1-7.
  • Jia X, Wang S, Zhou L, Sun L 201). The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale research letters 12(1): 478-492.
  • Kanak EG, Dogan Z, Eroglu A, Atli G, Canli M 2014. Effects of fish size on the response of antioxidant systems of Oreochromis niloticus following metal exposures. Fish. Physiol. Biochem. 40: 1083-1091.
  • Kumari M, Rajak S, Singh SP, Kumari SI, Kumar PU, Murty USN, Mahboob M, Grover P, Rahman MF 2012. Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats. J. Nanosci. Nanotechno. 12: 2149-2159.
  • Lei R, Yang B, Wu C, Liao M, Ding R, Wang Q 2015. Mitochondrial dysfunction and oxidative damage in the liver and kidney of rats following exposure to copper nanoparticles for five consecutive days. Toxicol. Res. 4(2): 351-364.
  • Lowry OH, Rosebrough NJ, Farra NJ, Randall RJ 1951. Protein Measurementswith the Folin Phenol Reagent. J. Biol. Chem. 193: 265-275.
  • Meena R, Paulraj R 2012. Oxidative stress mediated cytotoxicity of TiO2 nano anatase in liver and kidney of Wistar rat. Toxicol. Environ. Chem. 94(1): 146-163.
  • Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M 2013. Different biokinetics of nanomedicines linking to their toxicity; an overview. DARU Journal of Pharmaceutical 21: 14-18.
  • M'rad I, Jeljeli M, Rihane N, Hilber P, Sakly M, Amara S 2018. Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. Excli. J. 17: 200-210.
  • Ohkawa H, Ohishi N, Yagi K 1979. Assay for lipid peroxides in animal tissues bythiobarbituric acid reaction. Anal. Biochem. 95: 351-358.
  • Park EJ, Sim J, Kim Y, Han BS, Yoon C, Lee S, Cho MH, Kim JH 2015.A 13-week repeated-dose oral toxicity and bioaccumulation of aluminum oxide nanoparticles in mice. Arch. Toxicol. 89: 371-379.
  • Pena-Llopis S, Pena JB, Sancho E, Fernandez-Vega C, Ferrando MD 2001. Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere 45: 671-681.
  • Piner P, Uner N 2012. Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus. Environ. Toxicol. Phar. 33: 414-420.
  • Rizk MZ, Ali SA, Hamed MA, El-Rigal NS, Aly HF, Salah HH 2017. Toxicity of titanium dioxide nanoparticles: effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice. Biomed. Pharmacotherapy 90: 466-472.
  • Rohner F, Ernst FO, Arnold M, Hibe M, Biebinger R, Ehrensperger F, Pratsinis SE, Langhans W, Hurrell RF, Zimmermann MB 2007. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137: 614-619.
  • Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS 2014. Effects of sub-Acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem. Toxicol. 37: 336-347.
  • Silva-Herdade AS, Saldanha C 2013. Effects of acetylcholine on an animal model of inflammation. Clinical Hemorheology and Microcirculation 53: 209-2016.
  • Singh SP, Kumari M, Kumari SI, Rahman MF, Mahboob M, Grover P 2013. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J. Appl. Toxicol. 33: 1165-1179.
  • Tang T, Zhang Z, Zhu X 2019. Toxic Effects of TiO2 NPs on Zebrafish. Int. J.Environ. Res. Pub. Health. 16(4): 523-537.
  • Vasic VM, Colovic MB, Krstic DZ 2009. Mechanism of Na+/K+-ATPase and Mg2+-ATPase inhibition by metal ions and complexes. Hem. Ind. 63: 499-509.
  • Wang F, Gao F, Lan MB, Yuan HH, Huang YP, Liu JW 2009. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol in Vitro 23: 808-815.
  • Winston GW 1991. Oxidants and Antioxidants in Aquatic Animals. Comp. Biochem. Physiol. C-Pharma. Toxicol. Endocrin 100: 173-176.
  • Yang L, Watts DJ 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158(2): 122-132.
  • Yilmaz M, Rencuzogullari E, Canli M 2015. The effects of cyfluthrin on some biomarkers in the liver and kidney of Wistar rats. Environ. Sci. Pollut. Res. 22: 4747-4752.
  • Yilmaz M, Rencuzogullari E, Canli M 2017. Investigations on the effects ofetoxazole in the liver and kidney of Wistar rats. Environ. Sci. Pollut. Res. 24: 19635-19639.
  • Yu XH, Zhao XY, Ze YG, Wang L, Liu D, Hong J, Xu BQ, Lin A, Zhang C, Zhao Y, Li BY, Hong FS 2014. Changes of serum parameters of TiO2 nanoparticle-induced atherosclerosis in mice. J. Hazard. Mat. 280: 364-371.
  • Zhou Y, Hong F, Wang L 2017. Titanium dioxide nanoparticle-induced cytotoxicity and the underlying mechanism in mouse myocardial cells. J. Nano. Res. 19(11): 356-369.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Esin Gülnaz Canlı 0000-0002-0132-3712

Proje Numarası FDK-2017-8197
Yayımlanma Tarihi 30 Nisan 2020
Gönderilme Tarihi 14 Ekim 2019
Kabul Tarihi 5 Aralık 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Canlı, E. G. (2020). Bakır Oksit Nanopartikülü Etkisinde Kalan Memelilerde (Rattus norvegicus var. albinos) Bazı Metabolik Tepkilerin Incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 23(2), 304-315. https://doi.org/10.18016/ksutarimdoga.vi.632772

Cited By

METAL OKSİT NANOPARTİKÜLLERİN GENOTOKSİK ETKİLERİ
International Journal of Advances in Engineering and Pure Sciences
Yasemin SAYGILI
https://doi.org/10.7240/jeps.875709

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149