Research Article
BibTex RIS Cite

Diyarbakır İlinde Yetişen Badem Ağaçlarından Endofit ve Epifit Bakteri Türlerinin İzolasyonu ve Bitki Gelişimini Teşvik Eden Mekanizmalarının Karakterizasyonu

Year 2020, , 641 - 654, 30.06.2020
https://doi.org/10.18016/ksutarimdoga.vi.659802

Abstract

Bu çalışmanın amacı, sağlıklı badem ağaçlarından izole edilen bitki gelişimini teşvik eden endofit ve epifit bakteri (PGPB) türlerin tanılanması ve bitki gelişimini teşvik eden mekanizmalarının belirlemektir. MALDI-TOF tanılama analizleri sonucu, 19 izolat Gram-negatif Serratia, Pseudomonas, Ochrobactrum ve Enterobacter, 26 izolat ise Gram-pozitif Bacillus ve Arthrobacter cinsine dahil türler olarak teşhis edilmiştir. Test edilen izolatlardan, 46 izolat siderofor, 45 izolat amonyak üretiminde pozitif, 35 izolat ise fosforu değişen oranlarda çözebilme yeteneğinde olurken, bakterilerin tamamı 5.48-127.81 µg/ml konsantrasyon aralığında IAA üretmişlerdir. Pseudomonas spp and Enterobacter cloacae izolatları siderofor, Serratia marcescens izolatları fosforu çözme, Enterobacter cloacae izolatları IAA üretme, Bacillus spp ise amonyak üretme etkinliğinin yüksek düzeylerde olduğu görülmüştür. Aynı türe bağlı endofit bakteri izolatları epifit bakteri izolatlarına kıyasla bu mekanizmaları daha düşük düzeyde teşvik ettiği belirlenmiştir. Elde edilen sonuçlar yüksek düzeyde siderofor, amonyak, IAA üretimi ile fosfor çözme gibi bitki gelişimini teşvik edici özellikleri sahip PGPB izolatlarının ekonomik öneme sahip kültür bitkilerin yetiştiriciliğinde biyolojik gübre olarak kullanılmada potansiyeline sahip olduğunu göstermiştir.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı

Project Number

MKU BAP-16444

Thanks

Bu çalışma Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı tarafından finansal olarak desteklenmiştir (Proje Numarası: MKU BAP-16444).

References

  • Ahemad M, Kibret M 2014. Mechanisms and Applications of Plant Growth Promoting Rhizobacteria: Current Perspective. Journal of King Saud University-Science, 26: 1-20.
  • Araujo FF, Henning AA, Hungria M 2005. Phytohormones and Antibiotics Produced by Bacillus subtilis and Their Effects on Seed Pathogenic Fungi and on Soybean Root Development. World Journal of Microbiology and Biotechnology, 21(8-9): 1639-1645.
  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK 2012. PGPR for Protection of Plant Health Under Saline Conditions. In: Maheshwari DK (ed.) Bacteria in Agrobiology: Stress management, pp. 239-258. Bernal G, Illanes A, Ciampi L 2002. Isolation and Partial Purification of a Metabolite From A Mutant Strain of Bacillus sp. With Antibiotic Activity Against Plant Pathogenic Agents. Electronic Journal of Biotechnology, (on line), 15 April 2002, 5 (1). Available from http://www.ejbiotechnology.info/content/vol5/issue1/full/4/
  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N 2014. Biofertilizers Function As Key Player In Sustainable Agriculture By Improving Soil Fertility, Plant Tolerance And Crop Productivity. Microb Cell Fact, 13: 66.
  • Cappuccino JC, Sherman N 1992. In Microbiology: A laboratory Manual, third ed. Benjamin Cummings Pub. Co, New York, pp. 125-179.
  • Fravel DR 1988. Role of Antibiosis in The Biocontrol Of Plant Disease. Annual Review of Phytopathology, 26: 75-91.
  • Glickman E, Dessaux Y 1995. A Critical Evaluation of The Specificity of Salkowski Reagent For Indole Compounds Produced by Phytopathogenic Bacteria. Applied and Environmental Microbiology, 61: 793–796.
  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V 2015. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. Journal of Microbial and Biochemical Technology, 7: 096-102.
  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10): 895-914.
  • Kumar P, Dubey RC, Maheshwari DK 2012. Bacillus strains Isolated From Rhizosphere Showed Plant Growth Promoting And Antagonistic Activity Against Phytopathogens. Microbiological Research, 167: 493–499.
  • Krebs B, Junge H, Ockhardt A, Hoding B, Heubner D, Erben, U 1993. Bacillus subtilis: An effective Biocontrol Agent. Pesticide Science, 37: 427429. Lelliot RA, Stead DE 1987. Methods For The Diagnosis Of Bacterial Diseases Of Plants. (T.F. Preece, Editor). In: Methods in Plant Pathology, Vol 2, Black well Scientific Publications. pp. 176-177, Oxford.
  • Leong J 1986. Siderophores: Their Biochemistry And Possible Role In The Biocontrol Of Plant Pathogens. Annual Review of Phytopathology, 24: 187-209.
  • Loper JE, Schroth MN 1986. Influence of Bacterial Sources Of Indole-3-Acetic Acid On Root Elongation Of Sugar Beet. Phytopathology, 76(4): 386–389.
  • Lugtenberg B, Kamilova F 2009. Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology 63: 541-556.
  • Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G 2010. Diversity of Bacterial Endophytes In Roots Of Mexican Husk Tomato Plants (Physalis ixocarpa) and Their Detection In The Rhizosphere. Genetics and Molecular Research, 9(4): 2372-2380.
  • Mehta PS, Negi KS, Ojha SN 2010. Native Plant Genetic Resources and Traditional Foods Of Uttarakhand Himalaya For Sustainable Food Security And Livelihood. Indian Journal of Natural Products and Resources, 1 (1): 89–96.
  • Nega A 2014. Review On Concepts in Biological Control Of Plant Pathogens. Journal of Biology, Agriculture and Healthcare, 4(27): 33-54.
  • Patten CL, Glick BR 2002. Role of Pseudomonas putida Indoleacetic Acid In Development Of The Host Plant Root System. Applied and Environmental Microbiology, 68(8): 3795-3801.
  • Pavlovic M, Konrad R, Iwobi AN, Sing A, Busch U, Huber I 2012. A Dual Approach Employing MALDI-TOF MS and Real-Time PCR for Fast Species Identification Within the Enterobacter cloacae complex. FEMS Microbiology Letters, 328: 46–53.
  • Rani MU, Reddy G 2011. Bacillus cereus and Enterobacter cancerogenus Screened For Their Efficient Plant Growth Promoting Traits Rhizobacteria (PGPR) and Antagonistic Traits Among Sixteen Bacterial Isolates From Rhizospheric Soils Of Pigeon Pea. African Journal of Microbiology Research, 5(15): 2090-2094.
  • Romero FM, Marina M, Pieckenstain FL 2014. The Communities Of Tomato (Solanum lycopersicum L.) Leaf Endophytic Bacteria, Analyzed by 16S-ribosomal RNA Gene Pyrosequencing. FEMS Microbiology Letters, 351(2): 187-194.
  • Rosenbluet M, Martinez-Romero E 2006. Bacterial Endophytes and Their Interactions with Hosts. Molecular Plant-Microbe Interactions, 19: 827–837.
  • Santoyo G, Moreno-Hagelsieb G, Carmen Orozco-Mosquedac M, Glick BR 2016. Plant Growth-Promoting Bacterial Endophytes. Microbiological Research 183: 92–99.
  • Saranraj P, Sivasakthivelan P, Sakthi SS 2013. Prevalence and Production Of Plant Growth Promoting Substance by Pseudomonas fluorescens Isolated From Paddy Rhizosphere Soil Of Cuddalore District, Tamil Nadu, India, African Journal of Basic and Applied Sciences, 5(2): 95-101.
  • Schwyn B, Neilands JB 1987. Universal Chemical Assay For Detection And Determination Of Siderophores. Analytical Biochemistry, 160: 47-56. Shi Y, Yang H, Zhang T, Sun J, Lou K 2014. Illumina-Based Analysis of Endophytic Bacterial Diversity and Space-Time Dynamics in Sugar Beet on The North Slope of Tianshan Mountain. Applied Microbiology and Biotechnology, 98(14): 6375-6385.
  • Singh N, Pandey P, Dubey RC, Maheshwari DK 2008. Biological Control Of Root Rot Fungus Macrophomina phaseolina and Growth Enhancement of Pinus roxburghii (Sarg.) by Rhizosphere Competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24: 1669-1679.
  • Sturz AV, Christie BR, Nowak J 2000. Bacterial Endophytes: Potential Role In Developing Sustainable Systems Of Crop Production. Critical Reviews in Plant Sciences, 19(1): 1-30.
  • Sujatha N, Ammani K 2013. Siderophore Production by the Isolates of Fluorescent Pseudomonads. International Journal of Current Research and Review, 5(20): 01-07.
  • Sülü SM, Bozkurt İA, Soylu S 2016. Bitki Büyüme Düzenleyici ve Biyolojik Mücadele Etmeni Olarak Bakteriyel Endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21: 103-111.
  • Tariq M, Hameed S, Yasmeen T, Zahid M 2014. Molecular Characterization and Identification of Plant Growth Promoting Endophytic Bacteria Isolated From the Root Nodules Of Pea (Pisum sativum L.). World Journal of Microbiology and Biotechnology, 30: 719-725.
  • Tjamos EC, Tjamos SE, Antoniou PP 2010. Biological Management of Plant Diseases: Highlights on Research and Application. Journal of Plant Pathology, 92: S17-S21.
  • Ullah A, Mushtaq H, Fahad S, Shah A, Chaudhary HJ 2017. Plant Growth Promoting Potential of Bacterial Endophytes in Novel Association with Olea ferruginea and Withania coagulans. Microbiology, 86(1): 119-127.
  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y, 2000. Phosphate-Solubilizing Microorganisms Associated with the Rhizosphere of Mangroves in a Semiarid Coastal Lagoon. Biology and Fertility of Soils, 30: 460–468.
  • Wang Y, Zeng Q, Zhang Z 2010. Antagonistic Bioactivity of An Endophytic Bacterium H6. African Journal of Biotechnology, 9(37): 6140-6145.
  • Wei G, Kloepper JW, Tuzun S 1996. Induced Systemic Resistance to Cucumber Diseases And Increased Plant Growth by Plant-Growth Promoting Rhizobacteria Under Field Conditions. Phytopathology, 86: 221–224.
  • Weller DM 1988. Biological Control of Soil Borne Plant Pathogens In The Rhizosphere With Bacteria. Annual Review of Phytopathology, 26: 379-407.

Prevalence and Characterization of Plant Growth Promoting Mechanisms of Endophytic and Epiphytic Bacterial Species Isolated from Almond Trees Growing in Diyarbakır Province of Turkey

Year 2020, , 641 - 654, 30.06.2020
https://doi.org/10.18016/ksutarimdoga.vi.659802

Abstract

The aims of this study were to identify endophytic and epiphytic plant growth promoting bacteria (PGPB) from healthy almond trees and to characterize plant growth promoting mechanisms. By using MALDI-TOF analyses, 19 Gram-negative isolates, belonging to Serratia, Pseudomonas, Ochrobactrum and Enterobacter genus and 26 Gram-positive isolates, belonging to Bacillus and Arthrobacter genus were identified. Among the tested bacterial isolates, 46 isolates were positive for siderophore production, 45 isolates for ammonium production, 35 isolates solubilized phosphorus varying ratios, and all isolates produced IAA between 5.48-127.81 µg/ml concentrations. Isolates of Pseudomonas spp and Enterobacter cloacae were found highly effective for siderophore production, S. marcescens for solubilisation of phosphorus, E. cloacae for IAA production, Bacillus spp for ammonia production. Bacterial isolates tested showed significant differences in siderophore, ammonia and IAA production and phosphorus solubilisation efficiency. It was found that the efficacies of endophytic bacterial isolates were lower compared to the same species of epiphytic bacterial isolates. Overall results suggest that use of the most efficient PGPB isolates have an excellent potential to be used as biofertilizer for cultivation of economically important crops.

Project Number

MKU BAP-16444

References

  • Ahemad M, Kibret M 2014. Mechanisms and Applications of Plant Growth Promoting Rhizobacteria: Current Perspective. Journal of King Saud University-Science, 26: 1-20.
  • Araujo FF, Henning AA, Hungria M 2005. Phytohormones and Antibiotics Produced by Bacillus subtilis and Their Effects on Seed Pathogenic Fungi and on Soybean Root Development. World Journal of Microbiology and Biotechnology, 21(8-9): 1639-1645.
  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK 2012. PGPR for Protection of Plant Health Under Saline Conditions. In: Maheshwari DK (ed.) Bacteria in Agrobiology: Stress management, pp. 239-258. Bernal G, Illanes A, Ciampi L 2002. Isolation and Partial Purification of a Metabolite From A Mutant Strain of Bacillus sp. With Antibiotic Activity Against Plant Pathogenic Agents. Electronic Journal of Biotechnology, (on line), 15 April 2002, 5 (1). Available from http://www.ejbiotechnology.info/content/vol5/issue1/full/4/
  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N 2014. Biofertilizers Function As Key Player In Sustainable Agriculture By Improving Soil Fertility, Plant Tolerance And Crop Productivity. Microb Cell Fact, 13: 66.
  • Cappuccino JC, Sherman N 1992. In Microbiology: A laboratory Manual, third ed. Benjamin Cummings Pub. Co, New York, pp. 125-179.
  • Fravel DR 1988. Role of Antibiosis in The Biocontrol Of Plant Disease. Annual Review of Phytopathology, 26: 75-91.
  • Glickman E, Dessaux Y 1995. A Critical Evaluation of The Specificity of Salkowski Reagent For Indole Compounds Produced by Phytopathogenic Bacteria. Applied and Environmental Microbiology, 61: 793–796.
  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V 2015. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. Journal of Microbial and Biochemical Technology, 7: 096-102.
  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10): 895-914.
  • Kumar P, Dubey RC, Maheshwari DK 2012. Bacillus strains Isolated From Rhizosphere Showed Plant Growth Promoting And Antagonistic Activity Against Phytopathogens. Microbiological Research, 167: 493–499.
  • Krebs B, Junge H, Ockhardt A, Hoding B, Heubner D, Erben, U 1993. Bacillus subtilis: An effective Biocontrol Agent. Pesticide Science, 37: 427429. Lelliot RA, Stead DE 1987. Methods For The Diagnosis Of Bacterial Diseases Of Plants. (T.F. Preece, Editor). In: Methods in Plant Pathology, Vol 2, Black well Scientific Publications. pp. 176-177, Oxford.
  • Leong J 1986. Siderophores: Their Biochemistry And Possible Role In The Biocontrol Of Plant Pathogens. Annual Review of Phytopathology, 24: 187-209.
  • Loper JE, Schroth MN 1986. Influence of Bacterial Sources Of Indole-3-Acetic Acid On Root Elongation Of Sugar Beet. Phytopathology, 76(4): 386–389.
  • Lugtenberg B, Kamilova F 2009. Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology 63: 541-556.
  • Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G 2010. Diversity of Bacterial Endophytes In Roots Of Mexican Husk Tomato Plants (Physalis ixocarpa) and Their Detection In The Rhizosphere. Genetics and Molecular Research, 9(4): 2372-2380.
  • Mehta PS, Negi KS, Ojha SN 2010. Native Plant Genetic Resources and Traditional Foods Of Uttarakhand Himalaya For Sustainable Food Security And Livelihood. Indian Journal of Natural Products and Resources, 1 (1): 89–96.
  • Nega A 2014. Review On Concepts in Biological Control Of Plant Pathogens. Journal of Biology, Agriculture and Healthcare, 4(27): 33-54.
  • Patten CL, Glick BR 2002. Role of Pseudomonas putida Indoleacetic Acid In Development Of The Host Plant Root System. Applied and Environmental Microbiology, 68(8): 3795-3801.
  • Pavlovic M, Konrad R, Iwobi AN, Sing A, Busch U, Huber I 2012. A Dual Approach Employing MALDI-TOF MS and Real-Time PCR for Fast Species Identification Within the Enterobacter cloacae complex. FEMS Microbiology Letters, 328: 46–53.
  • Rani MU, Reddy G 2011. Bacillus cereus and Enterobacter cancerogenus Screened For Their Efficient Plant Growth Promoting Traits Rhizobacteria (PGPR) and Antagonistic Traits Among Sixteen Bacterial Isolates From Rhizospheric Soils Of Pigeon Pea. African Journal of Microbiology Research, 5(15): 2090-2094.
  • Romero FM, Marina M, Pieckenstain FL 2014. The Communities Of Tomato (Solanum lycopersicum L.) Leaf Endophytic Bacteria, Analyzed by 16S-ribosomal RNA Gene Pyrosequencing. FEMS Microbiology Letters, 351(2): 187-194.
  • Rosenbluet M, Martinez-Romero E 2006. Bacterial Endophytes and Their Interactions with Hosts. Molecular Plant-Microbe Interactions, 19: 827–837.
  • Santoyo G, Moreno-Hagelsieb G, Carmen Orozco-Mosquedac M, Glick BR 2016. Plant Growth-Promoting Bacterial Endophytes. Microbiological Research 183: 92–99.
  • Saranraj P, Sivasakthivelan P, Sakthi SS 2013. Prevalence and Production Of Plant Growth Promoting Substance by Pseudomonas fluorescens Isolated From Paddy Rhizosphere Soil Of Cuddalore District, Tamil Nadu, India, African Journal of Basic and Applied Sciences, 5(2): 95-101.
  • Schwyn B, Neilands JB 1987. Universal Chemical Assay For Detection And Determination Of Siderophores. Analytical Biochemistry, 160: 47-56. Shi Y, Yang H, Zhang T, Sun J, Lou K 2014. Illumina-Based Analysis of Endophytic Bacterial Diversity and Space-Time Dynamics in Sugar Beet on The North Slope of Tianshan Mountain. Applied Microbiology and Biotechnology, 98(14): 6375-6385.
  • Singh N, Pandey P, Dubey RC, Maheshwari DK 2008. Biological Control Of Root Rot Fungus Macrophomina phaseolina and Growth Enhancement of Pinus roxburghii (Sarg.) by Rhizosphere Competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24: 1669-1679.
  • Sturz AV, Christie BR, Nowak J 2000. Bacterial Endophytes: Potential Role In Developing Sustainable Systems Of Crop Production. Critical Reviews in Plant Sciences, 19(1): 1-30.
  • Sujatha N, Ammani K 2013. Siderophore Production by the Isolates of Fluorescent Pseudomonads. International Journal of Current Research and Review, 5(20): 01-07.
  • Sülü SM, Bozkurt İA, Soylu S 2016. Bitki Büyüme Düzenleyici ve Biyolojik Mücadele Etmeni Olarak Bakteriyel Endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21: 103-111.
  • Tariq M, Hameed S, Yasmeen T, Zahid M 2014. Molecular Characterization and Identification of Plant Growth Promoting Endophytic Bacteria Isolated From the Root Nodules Of Pea (Pisum sativum L.). World Journal of Microbiology and Biotechnology, 30: 719-725.
  • Tjamos EC, Tjamos SE, Antoniou PP 2010. Biological Management of Plant Diseases: Highlights on Research and Application. Journal of Plant Pathology, 92: S17-S21.
  • Ullah A, Mushtaq H, Fahad S, Shah A, Chaudhary HJ 2017. Plant Growth Promoting Potential of Bacterial Endophytes in Novel Association with Olea ferruginea and Withania coagulans. Microbiology, 86(1): 119-127.
  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y, 2000. Phosphate-Solubilizing Microorganisms Associated with the Rhizosphere of Mangroves in a Semiarid Coastal Lagoon. Biology and Fertility of Soils, 30: 460–468.
  • Wang Y, Zeng Q, Zhang Z 2010. Antagonistic Bioactivity of An Endophytic Bacterium H6. African Journal of Biotechnology, 9(37): 6140-6145.
  • Wei G, Kloepper JW, Tuzun S 1996. Induced Systemic Resistance to Cucumber Diseases And Increased Plant Growth by Plant-Growth Promoting Rhizobacteria Under Field Conditions. Phytopathology, 86: 221–224.
  • Weller DM 1988. Biological Control of Soil Borne Plant Pathogens In The Rhizosphere With Bacteria. Annual Review of Phytopathology, 26: 379-407.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Zekiye Ceren Aktan 0000-0003-1031-8314

Soner Soylu 0000-0003-1002-8958

Project Number MKU BAP-16444
Publication Date June 30, 2020
Submission Date December 16, 2019
Acceptance Date February 24, 2020
Published in Issue Year 2020

Cite

APA Aktan, Z. C., & Soylu, S. (2020). Diyarbakır İlinde Yetişen Badem Ağaçlarından Endofit ve Epifit Bakteri Türlerinin İzolasyonu ve Bitki Gelişimini Teşvik Eden Mekanizmalarının Karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 23(3), 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802

Cited By























21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149