Research Article
BibTex RIS Cite

Effects of Exogenous Ascorbic Acid Application on Photosystem II Activity in Cucumber Plants under Salt Stress

Year 2021, , 757 - 765, 31.08.2021
https://doi.org/10.18016/ksutarimdoga.vi.732141

Abstract

The effects of the exogenous ascorbic acid application on photosystem II activity were investigated in salt-stressed (100 mM NaCl) cucumber (Cucumis sativus L.) cv. Beith Alpha through chlorophyll a fluorescence technique. Salt stress inhibited electron movements both in donor and acceptor site of photosystem II in cucumber leaves. In addition, salt application led to the decreased level of active reaction centers, the accumulation of the reduced reaction centers, the decreased ability of quinonA and plastoquinon to reduce and the increased thermal dissipation in cucumber leaves. Ascorbic acid, on the other hand, ameliorated the adverse effect of salt stress on electron movements in donor and acceptor site of photosystem II in cucumber plants. Moreover, ascorbic acid caused to the increased level of active reaction centers, the decreased level of accumulation of the reduced reaction centers, the increased ability of quinonA and plastoquinon to reduce and the decreased thermal dissipation in cucumber leaves. As a result, it might be concluded that ascorbic acid application improved salt tolerance in cucumber plants and it may be used for agricultural purposes.

References

  • Agarwal S, Shaheen R 2007. Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Braz J Plant Physiol 19: 149–161.
  • Ahmad P, Jhon R, Sarwat M, Umar S 2008a. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Produc 2(4): 353–366.
  • Ahmad P, Sarwat M, Sharma S 2008b. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3): 167–173.
  • Ahmad P, Jeleel CA, Azooz MM, Nabi G 2009. Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot Res Intern 2: 11–20.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S 2010a. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3): 161–175.
  • Ahmad P, Jaleel CA, Sharma S 2010b. Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 57: 509–517.
  • Ahmad P, Umar S, Sharma S 2010c. Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation.Springer, Dordrecht/Heidelberg/ London/New York, pp 99–10.
  • Ahmad P, Nabi G, Ashraf M 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77: 36–44.
  • Ahmad P, Umar S 2011. Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi.
  • Ashraf M 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Science 13: 17-42.
  • Ashraf M 2002. Salt tolerance of cotton some new advances. Critical Reviews in Plant Sciences 21: 1–30.
  • Ashraf M, Athar HR, Harris PJC, Kwon TR 2008. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy 97: 45–110.
  • Athar HR, Khan A, Ashraf M 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63: 224–231.
  • Azevedo-Neto D, Prisco J, Eneas J, De Abreu C, Gomes E 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize varieties. Environ. Exp. Bot. 56: 87-94.
  • Azzedine F, Gherroucha H, Baka M 2011. Improvement of salt tolerance in durum wheat by ascorbic acid application. J Stress Physiol Biochem 7: 27–37.
  • Beltagi MS 2008. Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea (Cicer arietinum L.) plants. Afr J Plant Sci 2: 118–123.
  • Billah M, Rohman MM, Hossain N, Shalim Uddin M 2017. Exogenous ascorbic acid improved tolerance in maize (Zea maize L.) by increasing antioxidant activity under salinity stress. African Journal of Agricultural Research 12: 1437–1446.
  • Bjorkman O, Demmig B, 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170: 489–504.
  • Conklin PL, Williams EH, Last RL 1996. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. USA 93: 9970–9974.
  • Davey MW, Mantagu MV, Dirk I, Maite S, Angelos K, Smirnoff N, Binenzie IJJ, Strain JJ, Favell D, Fletcher J 2000. Plant ascorbic acid chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food and Agri 80: 825–850.
  • De Tullio MC 2004. How does ascorbic acid prevent scurvy? A survey of the nonantioxidant functions of vitamin C. In: Asard H (ed) Vitamin C: its function and biochemistry in animals and plants. Garland Science/BIOS Scientific Publishers, London/New York, pp 176–190.
  • Dehghan G, Rezazadeh L, Habibi G 2011. Exogenous ascorbate improves antioxidant defense system and induces salinity tolerance in soybean seedlings. Acta Biol Szeged 55: 261–264.
  • Doğru A, Çakırlar H 2020a. Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Functional Plant Biology 47: 250–262.
  • Doğru A, Çakırlar H 2020b. Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes in winter rapeseeds leaves under cold acclimation conditions. Brazilian Journal of Botany 43: 11–20.
  • Doğru A 2019. Bazı arpa genotiplerinde kurşun toleransının klorofil a floresansı ile değerlendirilmesi. Bartın University International Journal of Natural and Applied Science 2(2): 228–238.
  • Doğru A, Canavar S 2020. Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri. Academic Platform Journal of Engineering and Science 8(1): 155–174.
  • Doğru A, Yılmaz Kaçar M 2019. A preliminary study on salt tolerance of some barley genotypes. SAU Journal of Science 23: 755–762.
  • Dolatabadian A, Saleh Jouneghani R 2009. Impact of Exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Not. Bot. Hort. Agrobot. Cluj 37(2): 165–172.
  • Flowers, T, Yeo A 1995. Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22: 875–884.
  • Foyer 2004. The role of ascorbic acid in defense networks and signaling in plants. In: Asard H (ed) Vitamin C: its function and biochemistry in animals and plants. Garland Science/BIOS Scienti fi c Publishers, London/New York, pp 73–91.
  • Foyer CH, Noctor G 2005a. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866–1875.
  • Foyer CH, Noctor G 2005b. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28: 1056–1071.
  • Fricke W, Peters WS 2002. The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiology 129: 374–388.
  • Georgieva K, Lichtenthaler HL 1999. Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. Journal of Plant Physiology 155: 416–423.
  • Hamada AM, Al-Hakimi AM 2009. Exogenous ascorbic acid or thiamine increases the resistance of sunflower and maize plants to salt stress. Acta Agron Hung 57: 335–347.
  • Hegazi AM, El-Shraiy AM, 2017. Stimulation of Photosynthetic Pigments, Anthocyanin, Antioxidant Enzymes in Salt Stressed Red Cabbage Plants by Ascorbic Acid and Potassium Silicate. Middle East Journal of Agriculture Research 6: 553–568.
  • Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E 2010. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61: 521–535.
  • Irfan M, Nabeela Ilyas M, Rahman KU 2019. Effects of ascorbic acid against salt stress on the morphological and physiological parameters of Solanum melongela L. Pure Appl. Biol. 8(2): 1425–1443.
  • Jajoo A 2013. Changes in Photosystem II in Response to Salt Stress P. Ahmad et al. (eds.), Ecophysiology and Responses of Plants under Salt Stress, Springer Science+Business Media, LLC 2013.
  • Kalaji MH, Pietkiewicz S 1993. Salinity effects on plant growth and other physiological processes. Acta Physiologia Plantarum 143: 89–124.
  • Kalaji MH, Guo P 2008. Chlorophyll fluorescence: a useful tool in barley plant breeding programs. Nova Publishers NY USA.
  • Kalaji MH, Govindjee Bosa K, Koscielniak J, Golaszewska KZ 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany 73: 64–72.
  • Khafagy MA, Arafa AA, El-Banna MF 2009. Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. Aust J Crop Sci 3: 257–267.
  • Li JM, Jin H 2007. Regulation of brassinosteroid signaling. Trends Plant Sci 12: 37–41.
  • Maxwell K, Johnson NG 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51: 659–668.
  • Mehta P, Allakhverdiev SI, Jajoo A 2010a. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105: 249–255.
  • Mehta P, Jajoo A, Mathur S, Bharti S 2010b. Chlorophyll a fl uorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48: 16–20.
  • Mittal N, Thakur S, Verma H, Kaur A 2018. Interactive effect of salinity and ascorbic acid on Brassica rapa L. plants. Global Journal of Biosicence and biotechnology 7(1): 27–29.
  • Mohamed MA, Matter MA, Saker MM 2010. Effect of salt stress on some defense mechanisms of transgenic and wild potato clones (Solanum tuberosum L.) grown in vitro. Nat Sci 12: 181–193.
  • Munir N, Aftab F 2011. Enhancement of salt tolerance in sugarcane by ascorbic acid pretreatment. Afr J Biotechnol 10: 18362–18370.
  • Munns R, James R, Läuchli A 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57(5): 1025–1043.
  • Noble CL, Halloran GM, West DW 1984. Identification and selection for salt tolerance in lucerne (Medicado sativa L.). Australian Journal of Agricultural Research 35: 239–252.
  • Panda SK, Upadhyay RK 2004. Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor. Biol Plant 48: 249–253.
  • Papageorgiou GC, Murata N 1995. The unusually stron stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem complex. Photosynthesis Research 44: 243–252.
  • Parida AK, Das AB, Mohanty P 2004. Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42: 213–226.
  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939–951.
  • Pereira WE, de Siqueira DL, Martinez CA, Puiatti M 2000. Gas exchange and chlorphyll fluorescence in four citrus rootstocks under aluminum stress. Journal of Plant Physiology 157: 513–520.
  • Sajid ZA, Aftab F 2009. Amelioration of salinity tolerance in Solanum tuberosum L. by exogenous application of ascorbic acid. In Vitro Cell. Dev. Biol. Plant 45(5): 540–549.
  • Shalata A, Neumann PM 2001. Exogenous ascorbic acid (Vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52: 2207–2211.
  • Shannon MC 1998. Adaptation of plants to salinity. Advances in Agronomy 60: 75–119.
  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K 2002 Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53: 1305–1319.
  • SPSS 2013. IBM SPSS Statistics 22.0 for Windows. Armonk, NY.
  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T 1999. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science 148: 131–138.
  • Wang-Pruski G, Schofield A 2012. Potato: Improving Crop Productivity and Abiotic Stress Tolerance. (Improving Crop Resistance to Abiotic Stress, First Edition. Ed. Tuteja N, Singh Gill S, Tiburcio AF, Tuteja R Published 2012 by Wiley-VCH Verlag GmbH, Co. KGaA.

Tuz Stresi Altındaki Hıyar Bitkilerinde Ekzojen Askorbik Asit Uygulamalarının Fotosistem II Aktivitesi Üzerindeki Etkileri

Year 2021, , 757 - 765, 31.08.2021
https://doi.org/10.18016/ksutarimdoga.vi.732141

Abstract

Tuz stresi (100 mM NaCl) altındaki Beith Alpha hıyar (Cucumis sativus L.) çeşidinde ekzojen askorbik asit uygulamasının fotosistem II aktivitesi üzerindeki etkileri klorofil a floresansı tekniği yardımıyla araştırılmıştır. Tuz stresi hıyar yapraklarında fotosistem II’nin hem donör hem de akseptör bölgesindeki elektron hareketlerini inhibe etmiştir. Ayrıca tuz stresinin hıyar bitkisinde aktif reaksiyon merkezi miktarını ve kinonA ile plastokinonun indirgenme yeteneğini azalttığı, indirgenmiş reaksiyon merkezlerinin birikimini ve termal disipasyon enerjisini artırdığı belirlenmiştir. Askorbik asit uygulaması ise hıyar bitkilerinde tuz stresinin fotosistem II’nin donör ve akseptör bölgesindeki elektron hareketleri üzerindeki olumsuz etkisini ortadan kaldırmıştır. Ek olarak askorbik asit uygulaması hıyar yapraklarındaki aktif reaksiyon merkezi miktarını ve kinonA ile plastokinonun indirgenme yeteneğini artırırken, indirgenmiş reaksiyon merkezi miktarını ve termal disipasyon enerjisini azaltmıştır. Sonuç olarak askorbik asidin hıyar yapraklarında tuz toleransını artırdığı ve bu yaklaşımın tarımsal amaçlarla kullanılabileceği söylenebilir.

References

  • Agarwal S, Shaheen R 2007. Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Braz J Plant Physiol 19: 149–161.
  • Ahmad P, Jhon R, Sarwat M, Umar S 2008a. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Produc 2(4): 353–366.
  • Ahmad P, Sarwat M, Sharma S 2008b. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3): 167–173.
  • Ahmad P, Jeleel CA, Azooz MM, Nabi G 2009. Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot Res Intern 2: 11–20.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S 2010a. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3): 161–175.
  • Ahmad P, Jaleel CA, Sharma S 2010b. Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 57: 509–517.
  • Ahmad P, Umar S, Sharma S 2010c. Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation.Springer, Dordrecht/Heidelberg/ London/New York, pp 99–10.
  • Ahmad P, Nabi G, Ashraf M 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77: 36–44.
  • Ahmad P, Umar S 2011. Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi.
  • Ashraf M 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Science 13: 17-42.
  • Ashraf M 2002. Salt tolerance of cotton some new advances. Critical Reviews in Plant Sciences 21: 1–30.
  • Ashraf M, Athar HR, Harris PJC, Kwon TR 2008. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy 97: 45–110.
  • Athar HR, Khan A, Ashraf M 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63: 224–231.
  • Azevedo-Neto D, Prisco J, Eneas J, De Abreu C, Gomes E 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize varieties. Environ. Exp. Bot. 56: 87-94.
  • Azzedine F, Gherroucha H, Baka M 2011. Improvement of salt tolerance in durum wheat by ascorbic acid application. J Stress Physiol Biochem 7: 27–37.
  • Beltagi MS 2008. Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea (Cicer arietinum L.) plants. Afr J Plant Sci 2: 118–123.
  • Billah M, Rohman MM, Hossain N, Shalim Uddin M 2017. Exogenous ascorbic acid improved tolerance in maize (Zea maize L.) by increasing antioxidant activity under salinity stress. African Journal of Agricultural Research 12: 1437–1446.
  • Bjorkman O, Demmig B, 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170: 489–504.
  • Conklin PL, Williams EH, Last RL 1996. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. USA 93: 9970–9974.
  • Davey MW, Mantagu MV, Dirk I, Maite S, Angelos K, Smirnoff N, Binenzie IJJ, Strain JJ, Favell D, Fletcher J 2000. Plant ascorbic acid chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food and Agri 80: 825–850.
  • De Tullio MC 2004. How does ascorbic acid prevent scurvy? A survey of the nonantioxidant functions of vitamin C. In: Asard H (ed) Vitamin C: its function and biochemistry in animals and plants. Garland Science/BIOS Scientific Publishers, London/New York, pp 176–190.
  • Dehghan G, Rezazadeh L, Habibi G 2011. Exogenous ascorbate improves antioxidant defense system and induces salinity tolerance in soybean seedlings. Acta Biol Szeged 55: 261–264.
  • Doğru A, Çakırlar H 2020a. Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Functional Plant Biology 47: 250–262.
  • Doğru A, Çakırlar H 2020b. Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes in winter rapeseeds leaves under cold acclimation conditions. Brazilian Journal of Botany 43: 11–20.
  • Doğru A 2019. Bazı arpa genotiplerinde kurşun toleransının klorofil a floresansı ile değerlendirilmesi. Bartın University International Journal of Natural and Applied Science 2(2): 228–238.
  • Doğru A, Canavar S 2020. Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri. Academic Platform Journal of Engineering and Science 8(1): 155–174.
  • Doğru A, Yılmaz Kaçar M 2019. A preliminary study on salt tolerance of some barley genotypes. SAU Journal of Science 23: 755–762.
  • Dolatabadian A, Saleh Jouneghani R 2009. Impact of Exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Not. Bot. Hort. Agrobot. Cluj 37(2): 165–172.
  • Flowers, T, Yeo A 1995. Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22: 875–884.
  • Foyer 2004. The role of ascorbic acid in defense networks and signaling in plants. In: Asard H (ed) Vitamin C: its function and biochemistry in animals and plants. Garland Science/BIOS Scienti fi c Publishers, London/New York, pp 73–91.
  • Foyer CH, Noctor G 2005a. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866–1875.
  • Foyer CH, Noctor G 2005b. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28: 1056–1071.
  • Fricke W, Peters WS 2002. The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiology 129: 374–388.
  • Georgieva K, Lichtenthaler HL 1999. Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. Journal of Plant Physiology 155: 416–423.
  • Hamada AM, Al-Hakimi AM 2009. Exogenous ascorbic acid or thiamine increases the resistance of sunflower and maize plants to salt stress. Acta Agron Hung 57: 335–347.
  • Hegazi AM, El-Shraiy AM, 2017. Stimulation of Photosynthetic Pigments, Anthocyanin, Antioxidant Enzymes in Salt Stressed Red Cabbage Plants by Ascorbic Acid and Potassium Silicate. Middle East Journal of Agriculture Research 6: 553–568.
  • Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E 2010. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61: 521–535.
  • Irfan M, Nabeela Ilyas M, Rahman KU 2019. Effects of ascorbic acid against salt stress on the morphological and physiological parameters of Solanum melongela L. Pure Appl. Biol. 8(2): 1425–1443.
  • Jajoo A 2013. Changes in Photosystem II in Response to Salt Stress P. Ahmad et al. (eds.), Ecophysiology and Responses of Plants under Salt Stress, Springer Science+Business Media, LLC 2013.
  • Kalaji MH, Pietkiewicz S 1993. Salinity effects on plant growth and other physiological processes. Acta Physiologia Plantarum 143: 89–124.
  • Kalaji MH, Guo P 2008. Chlorophyll fluorescence: a useful tool in barley plant breeding programs. Nova Publishers NY USA.
  • Kalaji MH, Govindjee Bosa K, Koscielniak J, Golaszewska KZ 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany 73: 64–72.
  • Khafagy MA, Arafa AA, El-Banna MF 2009. Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. Aust J Crop Sci 3: 257–267.
  • Li JM, Jin H 2007. Regulation of brassinosteroid signaling. Trends Plant Sci 12: 37–41.
  • Maxwell K, Johnson NG 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51: 659–668.
  • Mehta P, Allakhverdiev SI, Jajoo A 2010a. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105: 249–255.
  • Mehta P, Jajoo A, Mathur S, Bharti S 2010b. Chlorophyll a fl uorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48: 16–20.
  • Mittal N, Thakur S, Verma H, Kaur A 2018. Interactive effect of salinity and ascorbic acid on Brassica rapa L. plants. Global Journal of Biosicence and biotechnology 7(1): 27–29.
  • Mohamed MA, Matter MA, Saker MM 2010. Effect of salt stress on some defense mechanisms of transgenic and wild potato clones (Solanum tuberosum L.) grown in vitro. Nat Sci 12: 181–193.
  • Munir N, Aftab F 2011. Enhancement of salt tolerance in sugarcane by ascorbic acid pretreatment. Afr J Biotechnol 10: 18362–18370.
  • Munns R, James R, Läuchli A 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57(5): 1025–1043.
  • Noble CL, Halloran GM, West DW 1984. Identification and selection for salt tolerance in lucerne (Medicado sativa L.). Australian Journal of Agricultural Research 35: 239–252.
  • Panda SK, Upadhyay RK 2004. Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor. Biol Plant 48: 249–253.
  • Papageorgiou GC, Murata N 1995. The unusually stron stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem complex. Photosynthesis Research 44: 243–252.
  • Parida AK, Das AB, Mohanty P 2004. Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42: 213–226.
  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939–951.
  • Pereira WE, de Siqueira DL, Martinez CA, Puiatti M 2000. Gas exchange and chlorphyll fluorescence in four citrus rootstocks under aluminum stress. Journal of Plant Physiology 157: 513–520.
  • Sajid ZA, Aftab F 2009. Amelioration of salinity tolerance in Solanum tuberosum L. by exogenous application of ascorbic acid. In Vitro Cell. Dev. Biol. Plant 45(5): 540–549.
  • Shalata A, Neumann PM 2001. Exogenous ascorbic acid (Vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52: 2207–2211.
  • Shannon MC 1998. Adaptation of plants to salinity. Advances in Agronomy 60: 75–119.
  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K 2002 Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53: 1305–1319.
  • SPSS 2013. IBM SPSS Statistics 22.0 for Windows. Armonk, NY.
  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T 1999. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science 148: 131–138.
  • Wang-Pruski G, Schofield A 2012. Potato: Improving Crop Productivity and Abiotic Stress Tolerance. (Improving Crop Resistance to Abiotic Stress, First Edition. Ed. Tuteja N, Singh Gill S, Tiburcio AF, Tuteja R Published 2012 by Wiley-VCH Verlag GmbH, Co. KGaA.
There are 64 citations in total.

Details

Primary Language Turkish
Journal Section RESEARCH ARTICLE
Authors

Sezen Toksoy 0000-0002-1564-9465

Ali Doğru 0000-0003-0060-4691

Publication Date August 31, 2021
Submission Date May 4, 2020
Acceptance Date December 17, 2020
Published in Issue Year 2021

Cite

APA Toksoy, S., & Doğru, A. (2021). Tuz Stresi Altındaki Hıyar Bitkilerinde Ekzojen Askorbik Asit Uygulamalarının Fotosistem II Aktivitesi Üzerindeki Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 24(4), 757-765. https://doi.org/10.18016/ksutarimdoga.vi.732141

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149