Research Article
BibTex RIS Cite

Atık Bulgur Suyu Kullanılarak Rhizopus oryzae NRRL-395 ile Üretilen Laktik Asite Bazı Parametrelerin Etkisi

Year 2021, , 293 - 298, 30.04.2021
https://doi.org/10.18016/ksutarimdoga.vi.739225

Abstract

Bu çalışmanın amacı, Rhizopus oryzae NRRL-395 tarafından bulgur atık suyu kullanılarak üretilen laktik asit üretimine bazı önemli parametrelerin etkisi denenmiştir. Bu amaç ile filamentli bir yapıya sahip olan Rhizopus oryzae fungusunun gelişimi ve laktik asit üretimi için bulgur atık suyu ve glukoz gibi karbon kaynakları bu çalışmada kullanılmıştır. Karbon kaynaklarının konsantrasyonunun, pH’larının, çalkalama hızlarının ve spor konsantrasyonlarının üretim üzerine olan etkileri incelenmiştir. Fermentasyon işleminden sonra, bulgur atık suyu ve glukozdan elde edilen yüksek laktik asit değerleri yüksek performanslı sıvı kromatografisi (HPLC-UV) kullanılarak analiz edilmiştir. Çalkalamalı sistemde en yüksek laktik asit değerleri için pH 6, 1.0x106 spor/mL konsantrasyonunda, 150 rpm hızında ve 30 ̊C de 8 gün olarak araştırılmıştır. Bulgur atık suyu için maksimum laktik asit miktarı %100 konsantrasyonda (5.638 g/L) ve glukoz için 150 g/L konsantrasyonda (5.042 g/L) olarak elde edilmiştir. Bulgur atık suyu ve glukoz için maksimum laktik asit oranları sırası ile pH 6’da 5.568 ve 2.463 g/L, 150 rpm hızında 5.603 ve 2.483 g/L ve 1.0x106 spor/mL konsantrasyonunda ise 5.804 ve 5.646 g/L olarak elde edilmiştir.

Supporting Institution

Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi Başkanlığı tarafından desteklenmiştir.

Project Number

20133-4YLS

References

  • Anonim 2020. Türkiye mahsulleri ofisi buğday üretim miktarı. http://www.tmo.gov.tr/ Upload/Document/ istatistikler/tablolar/1bugdayeuva.pdf
  • AbdulRauf M, Muhammad N, Ishtiaq A, Hafiz M, Nasir I 2010. Optimization of Growth Conditions for Acidic Protease Production from Rhizopus oligosporus Through Solid State Fermentation of Sunflower. World Academy of Science, Engineering and Technology 72(1): 40-43.
  • Abood Nagham H, Suhad A Ahmed 2017. Effect of some growth factors on protease production by Rhizopus oryzae. Al-Nahrain Journal of Science 20(2): 90-95.
  • Åkerberg C, Hofvendahl K, Zacchi G, Hahn-Hägerdal B 1998. Modeling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetic of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour, Applied Microbiology and Biotechnology. 49 : 682–690.
  • Åkerberg C, Zacchi G 2000. An economic evaluation of the fermentative production of lactic acid from wheat flour, Bioresour. Technol. 75: 119–126.
  • Benninga H 1990. A History of Lactic Acid Making, a chapter in the history of Biotechnology Kluwer Academic Publishers pp. 1–61.
  • Bibal B, Vayssier Y, Goma G, Pareilleux A 1991. High concentration cultivation of Lactococcus cremoris in a cell recycle reactor. Biotechnology and Bioengineering, 37 (8): 746-754.
  • Bulut Ş, Elibol M, Özer D 2004. Effect of different carbon sources on L(+)- lactic acid production by Rhizopus oryzae. Biochemical Engineering Journal 21: 33–37.
  • Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR 1995. Technological and economic potential of poly(lactic acid) and lactic acid derivatives, FEMS Microbiol. Reviews 16 : 221–231.
  • Davidson BE, Llanos RL, Cancilla MR, Redman NC, Hillier AJ 1995. Current research on the genetics of lactic acid production in lactic acid bacteria, International Dairy Journal, 5 : 763–784.
  • Domínguez JM, Vázquez M 1999. Effect of the operational conditions on the L-lactic acid production by Rhizopus oryzae. Cienc. Tecnol. Aliment, 2(3):113 118.
  • Göçeri A 2013. Bulgur Suyundan Rhizopus oryzae NRRL 395 Fungusu ile Laktik Asit Üretimi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü Biyomühendislik ve Bilimleri Ana Bilim Dalı, Yüksek lisans Tezi, 68 sy, Kahramanmaraş
  • Hofvendahl K, Hahn-Hägerdal B 1997. L-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci, Enzyme and Microbial Technology. 20:301–307.
  • Hofvendahl K, Hahn-Hägerdal B 2000. Factors affecting the fermentative lactic acid production from renewable resources, Enzyme and microbial technology. 26 : 87–107.
  • Hofvendal K, Akerberg C, Zacchi G 1999. Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis, Apply. Microbiol. Biotechnol. 52:163-163
  • Iyer PV, Lee YY 1999. Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid. Biotechnology Letters, 21(5): 371-373.
  • Kascak JS, Kominek J, Roehr M 1996. Lactic acid. In Rehm HJ, Reed G, Puhler A, Stadler P (eds.). Biotechnology, 293 – 306.
  • Karaoğul E, Kirecci E, Alma MH 2016. Determination of phenolic compounds from Turkish kermes oak (Quercus coccifera L.) roots by high performance liquid chromatography; its antimicrobial activities. Fresenius Environmental Bulletin. 25(7): 2356-2363.
  • Khalaf SA 2001. Lactic acid production by interspecific hybrids of Rhizopus strain from potato processing peel waste. J. Microbiol. 36(1):89-102.
  • Liu Y, Wen Z, Liao W, Liu C, Chen S 2005. Optimization of the Process for the Production of L (+)-Lactic Acid from Cull Potato by Rhizopus oryzae. Engineering in life sciences, 5(4): 343-349.
  • Narayanan N, Roychoudhury PK, Srivastava A 2004. L (+) lactic acid fermentation and its product polymerization. Electronic Journal of Biotechnology, 7(2): 167-178.
  • Oh H, Wee YJ, Yun JS, Han SH, Jung S, Ryu HW 2005. Lactic acid production from agricultural resources as cheap raw materials, Bioresource technology, 96: 1492–1498.
  • Ott RL, Longnecker M 2001. Inferences about more than two population central values. An introduction to statistical method and data analysis (5th ed.). Pacific Grove, CA: Duxbury. 379-459.
  • Soccol CR 1992. Physiologie et métabolisme de Rhizopus en culture solide et submergée en relation avec la degradation d'amidon cru et la production d'acide L(+) lactique. Universite de Technologie de Compihgne France. PhD Thesis, pp. 219.
  • Soccol CR, Marin B, Raimbault M, Lebeault JM 1994. Potential of solid state fermentation for production of L(+)-lactic acid by Rhizopus oryzae, Applied Microbiology and Biotechnology 41 : 286 – 290.
  • Tanyıldızı MŞ, Bulut Ş, Selen V, Özer D 2012. Optimization of Lactic acid production with immobilized Rhizopus oryzae. African Journal of Biotechnology, 11(34): 8546-8552.
  • Tkacz JS, Lange L 2004. Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Organic Acid Production by Filamentous Fungi, New York. s.325-330.
  • Vardarajan S, Miller DJ 1999. Catalytic upgrading of fermentation derived organic acids. Biotechnology progress, 15:845–854.
  • Vert M, Li SM, Spenlehauer G, Guerin P 1992. Bioresorbability and biocompatibility of aliphatic polyesters. Journal of materials science 3 : 432 – 446.
  • VickRoy TB 1985. Lactic Acid in Comprehensive Biotechnology, The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine. Vol. 3, M. Moo-Young (Ed.), Pergamon Press, New York, USA, pp. 761–776.
  • VickRoy TB, Blanch HW, Wilke CR 1982. Lactic acid production by Lactobacillus delbreuckii in a hollow fiber fermentor. Biotechnology. Letter. 4:483–488.
  • Wee YJ, Kim JN, Ryu HW 2006. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 44(2): 163-172.
  • Yin P, Nishina N, Kosakai Y, Yahiro K, Park Y, 0kabe M 1997. Enhanced Production of L(+)-Lactic Acid from Corn Starch in a Culture of Rhizopus oryzae Using an Air-Lift Bioreactor. Journal of Fermentation and Bioengineering, 84(3): 249-253.
  • Zhou S, Shanmugam KT, Yomano LP, Grabar TB, Ingram LO 2006. Fermentation of 2% (w/v) glucose to1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol. Lett. 28: 663–670.

The Effect of Some Parameters on the Production of L(+) Lactic Acid Using Wheat wastewater by Rhizopus oryzae NRRL-395

Year 2021, , 293 - 298, 30.04.2021
https://doi.org/10.18016/ksutarimdoga.vi.739225

Abstract

The aim of the study was to investigate some major parameters on production lactic acid using wheat wastewater by Rhizopus oryzae NRRL-395. The parameters, which may play an effective role in production, were determined. For developing and producing pure L(+)-Lactic acid of the filamentous fungus Rhizopus oryzae NRRL-395, rich medium with wheat wastewater and glucose as carbon source were used in the study. The effects of carbon sources concentration, pH, agitation (shaking speed) and spores concentration on lactic acid production were examined. After fermentation process, the highest values of lactic acid obtained from wheat wastewater and glucose were analyzed using high-performance liquid chromatography with ultraviolet detectors (HPLC-UV). The maximum L (+) Lactic acid production in shake flasks was investigated at pH 6, 1.0x106 spores/mL, 150 rpm, 30 ̊C at 8 days. The maximum lactic acid content for wheat wastewater and glucose were obtained at a concentration of 100% (5.638 g/L) and 150 g/L (5.042 g/L). The maximum lactic acid amount of 5.568 g/L was obtained at pH value of 6 for wheat wastewater. However, the maximum lactic acid amount of 2.463 g/L was obtained at pH value of 6 for glucose. The maximum lactic acid values for wheat wastewater and glucose were obtained 5.603 g/L and 2.483 g/L at 150 rpm speed, respectively. The maximum lactic acid values for wheat wastewater and glucose were obtained 5.804 g/L and 5.646 g/L at the 1.0x106 spores/mL respectively.

Project Number

20133-4YLS

References

  • Anonim 2020. Türkiye mahsulleri ofisi buğday üretim miktarı. http://www.tmo.gov.tr/ Upload/Document/ istatistikler/tablolar/1bugdayeuva.pdf
  • AbdulRauf M, Muhammad N, Ishtiaq A, Hafiz M, Nasir I 2010. Optimization of Growth Conditions for Acidic Protease Production from Rhizopus oligosporus Through Solid State Fermentation of Sunflower. World Academy of Science, Engineering and Technology 72(1): 40-43.
  • Abood Nagham H, Suhad A Ahmed 2017. Effect of some growth factors on protease production by Rhizopus oryzae. Al-Nahrain Journal of Science 20(2): 90-95.
  • Åkerberg C, Hofvendahl K, Zacchi G, Hahn-Hägerdal B 1998. Modeling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetic of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour, Applied Microbiology and Biotechnology. 49 : 682–690.
  • Åkerberg C, Zacchi G 2000. An economic evaluation of the fermentative production of lactic acid from wheat flour, Bioresour. Technol. 75: 119–126.
  • Benninga H 1990. A History of Lactic Acid Making, a chapter in the history of Biotechnology Kluwer Academic Publishers pp. 1–61.
  • Bibal B, Vayssier Y, Goma G, Pareilleux A 1991. High concentration cultivation of Lactococcus cremoris in a cell recycle reactor. Biotechnology and Bioengineering, 37 (8): 746-754.
  • Bulut Ş, Elibol M, Özer D 2004. Effect of different carbon sources on L(+)- lactic acid production by Rhizopus oryzae. Biochemical Engineering Journal 21: 33–37.
  • Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR 1995. Technological and economic potential of poly(lactic acid) and lactic acid derivatives, FEMS Microbiol. Reviews 16 : 221–231.
  • Davidson BE, Llanos RL, Cancilla MR, Redman NC, Hillier AJ 1995. Current research on the genetics of lactic acid production in lactic acid bacteria, International Dairy Journal, 5 : 763–784.
  • Domínguez JM, Vázquez M 1999. Effect of the operational conditions on the L-lactic acid production by Rhizopus oryzae. Cienc. Tecnol. Aliment, 2(3):113 118.
  • Göçeri A 2013. Bulgur Suyundan Rhizopus oryzae NRRL 395 Fungusu ile Laktik Asit Üretimi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü Biyomühendislik ve Bilimleri Ana Bilim Dalı, Yüksek lisans Tezi, 68 sy, Kahramanmaraş
  • Hofvendahl K, Hahn-Hägerdal B 1997. L-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci, Enzyme and Microbial Technology. 20:301–307.
  • Hofvendahl K, Hahn-Hägerdal B 2000. Factors affecting the fermentative lactic acid production from renewable resources, Enzyme and microbial technology. 26 : 87–107.
  • Hofvendal K, Akerberg C, Zacchi G 1999. Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis, Apply. Microbiol. Biotechnol. 52:163-163
  • Iyer PV, Lee YY 1999. Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid. Biotechnology Letters, 21(5): 371-373.
  • Kascak JS, Kominek J, Roehr M 1996. Lactic acid. In Rehm HJ, Reed G, Puhler A, Stadler P (eds.). Biotechnology, 293 – 306.
  • Karaoğul E, Kirecci E, Alma MH 2016. Determination of phenolic compounds from Turkish kermes oak (Quercus coccifera L.) roots by high performance liquid chromatography; its antimicrobial activities. Fresenius Environmental Bulletin. 25(7): 2356-2363.
  • Khalaf SA 2001. Lactic acid production by interspecific hybrids of Rhizopus strain from potato processing peel waste. J. Microbiol. 36(1):89-102.
  • Liu Y, Wen Z, Liao W, Liu C, Chen S 2005. Optimization of the Process for the Production of L (+)-Lactic Acid from Cull Potato by Rhizopus oryzae. Engineering in life sciences, 5(4): 343-349.
  • Narayanan N, Roychoudhury PK, Srivastava A 2004. L (+) lactic acid fermentation and its product polymerization. Electronic Journal of Biotechnology, 7(2): 167-178.
  • Oh H, Wee YJ, Yun JS, Han SH, Jung S, Ryu HW 2005. Lactic acid production from agricultural resources as cheap raw materials, Bioresource technology, 96: 1492–1498.
  • Ott RL, Longnecker M 2001. Inferences about more than two population central values. An introduction to statistical method and data analysis (5th ed.). Pacific Grove, CA: Duxbury. 379-459.
  • Soccol CR 1992. Physiologie et métabolisme de Rhizopus en culture solide et submergée en relation avec la degradation d'amidon cru et la production d'acide L(+) lactique. Universite de Technologie de Compihgne France. PhD Thesis, pp. 219.
  • Soccol CR, Marin B, Raimbault M, Lebeault JM 1994. Potential of solid state fermentation for production of L(+)-lactic acid by Rhizopus oryzae, Applied Microbiology and Biotechnology 41 : 286 – 290.
  • Tanyıldızı MŞ, Bulut Ş, Selen V, Özer D 2012. Optimization of Lactic acid production with immobilized Rhizopus oryzae. African Journal of Biotechnology, 11(34): 8546-8552.
  • Tkacz JS, Lange L 2004. Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Organic Acid Production by Filamentous Fungi, New York. s.325-330.
  • Vardarajan S, Miller DJ 1999. Catalytic upgrading of fermentation derived organic acids. Biotechnology progress, 15:845–854.
  • Vert M, Li SM, Spenlehauer G, Guerin P 1992. Bioresorbability and biocompatibility of aliphatic polyesters. Journal of materials science 3 : 432 – 446.
  • VickRoy TB 1985. Lactic Acid in Comprehensive Biotechnology, The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine. Vol. 3, M. Moo-Young (Ed.), Pergamon Press, New York, USA, pp. 761–776.
  • VickRoy TB, Blanch HW, Wilke CR 1982. Lactic acid production by Lactobacillus delbreuckii in a hollow fiber fermentor. Biotechnology. Letter. 4:483–488.
  • Wee YJ, Kim JN, Ryu HW 2006. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 44(2): 163-172.
  • Yin P, Nishina N, Kosakai Y, Yahiro K, Park Y, 0kabe M 1997. Enhanced Production of L(+)-Lactic Acid from Corn Starch in a Culture of Rhizopus oryzae Using an Air-Lift Bioreactor. Journal of Fermentation and Bioengineering, 84(3): 249-253.
  • Zhou S, Shanmugam KT, Yomano LP, Grabar TB, Ingram LO 2006. Fermentation of 2% (w/v) glucose to1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol. Lett. 28: 663–670.
There are 34 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Ali Göçeri 0000-0002-1218-6696

Mehmet Hakkı Alma 0000-0001-7011-3965

Yekta Gezginc 0000-0002-3230-2850

Eyyüp Karaoğul 0000-0001-8162-6838

Project Number 20133-4YLS
Publication Date April 30, 2021
Submission Date May 18, 2020
Acceptance Date July 18, 2020
Published in Issue Year 2021

Cite

APA Göçeri, A., Alma, M. H., Gezginc, Y., Karaoğul, E. (2021). The Effect of Some Parameters on the Production of L(+) Lactic Acid Using Wheat wastewater by Rhizopus oryzae NRRL-395. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 24(2), 293-298. https://doi.org/10.18016/ksutarimdoga.vi.739225

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149