Research Article
BibTex RIS Cite

Farklı Sürelerde Bakır Etkisinde Kalan Tatlısu Midyelerinde (Unio tigridis) Antioksidan Enzim Tepkilerinin Incelenmesi

Year 2022, Volume: 25 Issue: 1, 31 - 41, 28.02.2022
https://doi.org/10.18016/ksutarimdoga.vi.1005168

Abstract

Bu çalışmada, tatlısu midyeleri (Unio tigridis) bakırın (CuSO4 olarak) farklı derişimlerine (0, 30, 90 µg L-1) farklı sürelerde (0, 7, 14, 21gün) maruz bırakıldıktan sonra, hepatopankreas ve solungaç dokularında katalaz (CAT), süperoksit dismutaz (SOD), glutatyon peroksidaz (GPX), glutatyon redüktaz (GR) ve glutatyon S-transferaz (GST) gibi antioksidan enzimlerinin tepkileri incelenmiştir. Midyeler 21 gün süren deneyler esnasında kültür ortamında yetiştirilen tek hücreli algler (Cholorella vulgaris) ile (yaklaşık 300,000 alg/ml) beslenmişlerdir. Kontrol midyelerde 0-21 günler arasında hiçbir enzim aktivitesinde anlamlı (P>0.05) değişim olmamıştır. Deneyler sonunda bakır etkisiyle herhangi bir mortalite gözlenmezken, midyelerin solungaç ve hepatopankreas dokularında antioksidan enzim aktivitelerinde anlamlı (P<0.05) artışlar olmuştur. Buna göre antioksidan enzim aktivitelerindeki en fazla anlamlı artış en uzun etki süresinde olmuştur. CAT ve SOD gibi enzimler, antioksidan savunma sisteminin öncül enzimleri olması nedeniyle en fazla anlamı artışın görüldüğü enzimler olmuşlardır. Buna rağmen, solungaç ve hepatopankreas dokularının toplam protein düzeyinde anlamlı bir değişim olmamıştır (P>0.05). Bu çalışma, letal olmayan bakırın midyelerde oksidatif strese neden olduğunu vurgulamıştır.

Thanks

Bu çalışmada alg üretiminde desteklerini gördüğüm Dr. Uslu’ya teşekkürlerimi iletirim. Bu çalışmanın deneysel aşamaları Çukurova Üniversitesi Fen-Edebiyat Fakültesi Biyoloji Bölümünde yapılmıştır. Bunu sağladıkları için yönetimlere ve Dr. M. Canlı’ya teşekkür ederim.

References

  • Al-Fanharawi AA, Rabee AM, Al-Mamoori AM 2019. Multi-biomarker responses after exposure to organophosphates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous benglensis. Human and Ecological Risk Assessment: An International Journal, 25(5): 1137-1156.
  • Canli M, Stagg RM (1996) The effects of in vivo exposure to cadmium, copper and zinc on the activities of gill ATPases in the Norway lobster, Nephrops norvegicus. Arch. Environ. Contam. Toxicol. 31(4): 494-501.
  • Canli, E.G., Ila, H.B., Canli, M., 2019. Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al2O3, CuO, TiO2). Environ. Sci. Pollut. Res. 26, 938-945.
  • Canli EG, Celenk A, Canli M 2021a. Accumulation and distribution of nanoparticles (Al2O3, CuO, TiO2) in tissues of freshwater mussel (Unio tigridis). Bull. Environ. Contam Toxicol. (in press).
  • Canli EG, Canli M 2021b. Antioxidant system biomarkers of freshwater mussel (Unio tigridis) respond to nanoparticle (Al2O3, CuO, TiO2) exposures. Biomarkers, 26: 434-442.
  • Carlberg I, Mannervik B 1975. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 250: 5475-5480.
  • Clark RB 1989. Marine pollution. Oxford: Oxford Scientific Publications, Clarendon Press.
  • Company R, Serafim A, Cosson RP, Fiala-Médioni A, Camus L, Colaço A, Bebianno MJ 2008. Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent. Sci. Tot. Environ. 389(2-3): 407-417.
  • Doyotte A, Cossu C, Jacquin MC, Babut M, Vasseur P 1997. Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquat. Toxicol. 39(2): 93-110.
  • Falfushynska HI, Gnatyshyna LL, Ivanina AV, Sokolova IM, Stoliar O B 2018. Detoxification and cellular stress responses of unionid mussels Unio tumidus from two cooling ponds to combined nano-ZnO and temperature stress. Chemosphere, 193: 1127-1142.
  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ 2011. Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ. Sci. Techno. 45(21): 9356-9362.
  • Goswami P, Hariharan G, Godhantaraman N, Munuswamy N 2014. An integrated use of multiple biomarkers to investigate the individual and combined effect of copper and cadmium on the marine green mussel (Perna viridis). J. Environ. Sci. Health Part A, 49(13): 1564-1577.
  • Habig WH, Pabst MJ, Jakoby WB 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139.
  • Jorge MB, Loro VL, Bianchini A, Wood CM, Gillis PL 2013. Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. Aquat Toxicol. 126: 137-147.
  • Labieniec M, Gabryelak T, Falcioni G 2003. Antioxidant and pro-oxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 539(1-2): 19-28.
  • Lartillot S, Kedziora P, Athias A 1988. Purification and characterization of a new fungal catalase. Prep. Biochem. 18: 241-246.
  • Livingstone DR, Lips F, Martinez PG, Pipe RK 1992. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar. Biol. 112: 265–276.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  • McCord JM, Fridovich I 1969. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244(22): 6049-6055.
  • Mlouka R, Cachot J, Boukadida K, Clérandeau C, Gourves PY, Banni M 2019. Compared responses to copper and increased temperatures of hybrid and pure offspring of two mussel species. Sci. Tot. Environ. 685: 795-805.
  • Nugroho AP, Frank H 2012. Effects of copper on lipid peroxidation, glutathione, metallothionein, and antioxidative enzymes in the freshwater mussel Anodonta anatina. Toxicol. Environ. Chem. 94(5): 918-929.
  • Rajalakshmi S, Mohandas A 2005. Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotox. Environ. Safe. 62(1): 140-143.
  • Ruiz P, Katsumiti A, Nieto JA, Bori J, Jimeno-Romero A, Reip P, Cajaraville MP 2015. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Marine Environmental Research, 111, 107-120
  • Sukhovskaya IV, Borvinskaya EV, Kochneva AA, Slukovsky ZI, Kurpe SR, Xu K, Tang Z, Liu S, Xia H, Liu L, Wang Z, Qi P 2018. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. Fish Shellfish immunology, 82: 77-83.
  • Xu K, Tang Z, Liu S, Xia H, Liu L, Wang Z, Qi P 2018. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. Fish Shellfish Immun. 82: 77-83.
  • Zhou L, Li M, Zhong Z, Chen H, Wang X, Wang M, Li C 2021. Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Aquat. Toxicol. 236: 105845.
  • Winston GW 1991. Oxidants and Antioxidants in Aquatic Animals. Comp. Biochem. Physiol. C-Pharma. Toxicol. Endocrin.100: 173-176.
  • Wood CM, Farrel AP, Brauner CJ 2012a. Homeostasis and toxicology of essential metals. Fish Physiology 31A. Academic Press, London pp 497.
  • Wood CM, Farrel AP, Brauner CJ 2012b. Homeostasis and toxicology of non-essential metals. Fish Physiology 31B. Academic Press, London pp 507.

Investigations on the Responses of Antioxidant Enzymes in Freshwater Mussels (Unio tigridis) Exposed to Copper in Differing Durations

Year 2022, Volume: 25 Issue: 1, 31 - 41, 28.02.2022
https://doi.org/10.18016/ksutarimdoga.vi.1005168

Abstract

In this study, freshwater mussels (Unio tigridis) were exposed to different concentrations (0, 30, 90 µg L-1) of copper (as CuSO4) for different durations (0, 7, 14, 21 days) and then the responses of the antioxidant enzymes such as, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST) were investigated. Mussels were fed with the unicellular algae (Cholorella vulgaris) (approximately 300,000 algae ml-1) cultured in the laboratory conditions. There was no mussel mortality following copper exposures. Likewise, there was no significant (P>0.05) change in enzyme activities of control mussels between 0-21 days. There were significant (P<0.05) increases in antioxidant enzyme activities in the gill and hepatopancreas, exposure durations playing predominant roles. Since enzymes such as CAT and SOD are the first defense lines of the antioxidant systems, the most increases were observed in the activities of these enzymes. Despite this, there was no significant change in total protein levels of tissues (P>0.05). This study showed that that sublethal and low copper concentrations could have toxic effects for mussels, emphasizing oxidative stress of mussels.

References

  • Al-Fanharawi AA, Rabee AM, Al-Mamoori AM 2019. Multi-biomarker responses after exposure to organophosphates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous benglensis. Human and Ecological Risk Assessment: An International Journal, 25(5): 1137-1156.
  • Canli M, Stagg RM (1996) The effects of in vivo exposure to cadmium, copper and zinc on the activities of gill ATPases in the Norway lobster, Nephrops norvegicus. Arch. Environ. Contam. Toxicol. 31(4): 494-501.
  • Canli, E.G., Ila, H.B., Canli, M., 2019. Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al2O3, CuO, TiO2). Environ. Sci. Pollut. Res. 26, 938-945.
  • Canli EG, Celenk A, Canli M 2021a. Accumulation and distribution of nanoparticles (Al2O3, CuO, TiO2) in tissues of freshwater mussel (Unio tigridis). Bull. Environ. Contam Toxicol. (in press).
  • Canli EG, Canli M 2021b. Antioxidant system biomarkers of freshwater mussel (Unio tigridis) respond to nanoparticle (Al2O3, CuO, TiO2) exposures. Biomarkers, 26: 434-442.
  • Carlberg I, Mannervik B 1975. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 250: 5475-5480.
  • Clark RB 1989. Marine pollution. Oxford: Oxford Scientific Publications, Clarendon Press.
  • Company R, Serafim A, Cosson RP, Fiala-Médioni A, Camus L, Colaço A, Bebianno MJ 2008. Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent. Sci. Tot. Environ. 389(2-3): 407-417.
  • Doyotte A, Cossu C, Jacquin MC, Babut M, Vasseur P 1997. Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquat. Toxicol. 39(2): 93-110.
  • Falfushynska HI, Gnatyshyna LL, Ivanina AV, Sokolova IM, Stoliar O B 2018. Detoxification and cellular stress responses of unionid mussels Unio tumidus from two cooling ponds to combined nano-ZnO and temperature stress. Chemosphere, 193: 1127-1142.
  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ 2011. Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ. Sci. Techno. 45(21): 9356-9362.
  • Goswami P, Hariharan G, Godhantaraman N, Munuswamy N 2014. An integrated use of multiple biomarkers to investigate the individual and combined effect of copper and cadmium on the marine green mussel (Perna viridis). J. Environ. Sci. Health Part A, 49(13): 1564-1577.
  • Habig WH, Pabst MJ, Jakoby WB 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139.
  • Jorge MB, Loro VL, Bianchini A, Wood CM, Gillis PL 2013. Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. Aquat Toxicol. 126: 137-147.
  • Labieniec M, Gabryelak T, Falcioni G 2003. Antioxidant and pro-oxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 539(1-2): 19-28.
  • Lartillot S, Kedziora P, Athias A 1988. Purification and characterization of a new fungal catalase. Prep. Biochem. 18: 241-246.
  • Livingstone DR, Lips F, Martinez PG, Pipe RK 1992. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar. Biol. 112: 265–276.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  • McCord JM, Fridovich I 1969. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244(22): 6049-6055.
  • Mlouka R, Cachot J, Boukadida K, Clérandeau C, Gourves PY, Banni M 2019. Compared responses to copper and increased temperatures of hybrid and pure offspring of two mussel species. Sci. Tot. Environ. 685: 795-805.
  • Nugroho AP, Frank H 2012. Effects of copper on lipid peroxidation, glutathione, metallothionein, and antioxidative enzymes in the freshwater mussel Anodonta anatina. Toxicol. Environ. Chem. 94(5): 918-929.
  • Rajalakshmi S, Mohandas A 2005. Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotox. Environ. Safe. 62(1): 140-143.
  • Ruiz P, Katsumiti A, Nieto JA, Bori J, Jimeno-Romero A, Reip P, Cajaraville MP 2015. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Marine Environmental Research, 111, 107-120
  • Sukhovskaya IV, Borvinskaya EV, Kochneva AA, Slukovsky ZI, Kurpe SR, Xu K, Tang Z, Liu S, Xia H, Liu L, Wang Z, Qi P 2018. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. Fish Shellfish immunology, 82: 77-83.
  • Xu K, Tang Z, Liu S, Xia H, Liu L, Wang Z, Qi P 2018. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. Fish Shellfish Immun. 82: 77-83.
  • Zhou L, Li M, Zhong Z, Chen H, Wang X, Wang M, Li C 2021. Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Aquat. Toxicol. 236: 105845.
  • Winston GW 1991. Oxidants and Antioxidants in Aquatic Animals. Comp. Biochem. Physiol. C-Pharma. Toxicol. Endocrin.100: 173-176.
  • Wood CM, Farrel AP, Brauner CJ 2012a. Homeostasis and toxicology of essential metals. Fish Physiology 31A. Academic Press, London pp 497.
  • Wood CM, Farrel AP, Brauner CJ 2012b. Homeostasis and toxicology of non-essential metals. Fish Physiology 31B. Academic Press, London pp 507.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Esin Gülnaz Canlı 0000-0002-0132-3712

Publication Date February 28, 2022
Submission Date October 5, 2021
Acceptance Date November 18, 2021
Published in Issue Year 2022Volume: 25 Issue: 1

Cite

APA Canlı, E. G. (2022). Farklı Sürelerde Bakır Etkisinde Kalan Tatlısu Midyelerinde (Unio tigridis) Antioksidan Enzim Tepkilerinin Incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(1), 31-41. https://doi.org/10.18016/ksutarimdoga.vi.1005168


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149