Research Article
BibTex RIS Cite

Fıstık Ağaçları (Pistacia vera) Rizosferinden İzole Edilen Talaromyces funiculosus ST976'nın Farklı Fizikokimyasal Özelliklere Sahip Toprak Örneklerinde Fosfor Çözünürlüğüne Etkisi

Year 2022, Volume: 25 Issue: 5, 1077 - 1085, 31.10.2022
https://doi.org/10.18016/ksutarimdoga.vi.884333

Abstract

Bu çalışmada Neoscytalidium spp. ile yoğun bir şekilde bulaşık antepfıstığı (Pistacia vera L.) rizosferinden toplam 78 Talaromyces izolatı izole edilmiştir. Dört temsilci izolatın morfolojik ve moleküler yöntemlere dayanarak tanımlama çalışmaları, tüm izolatların T. funiculosus olduğunu göstermiştir. İzolatları temsilen seçilen T. funiculosus ST976 izolatının internal transcribed spacer bölgesinin 575 bç büyüklüğündeki sekansı, GenBank tarafından sağlanan MW130842 erişim numarası ile kaydedilmiştir. Maximum Likelihood dendogramı, ST976 izolatını, GenBank nükleotid veri tabanında bulunan referans T. funiculosus izolatları ile birlikte kümelemiştir. ST976 izolatının fosfor çözünme kabiliyeti, Şanlıurfa ilinin farklı lokasyonlarında bulunan tarım arazilerinden alınan altı toprak numunesi ile yapılan deney ile belirlenmiştir. Alınan toprak örneklerinin pH'sı 7.21 ile 7.88 arasında değişmektedir. Farklı toprak yapılarına (Killi ve Killli-Tın) sahip toprak örneklerine uygulanan ST976 izolatının ilave edilmesi ile yapılan analiz sonucunda ST976 izolatının kontrol numunesine göre % 109-311 daha fazla fosfor çözündüğü tespit edilmiştir. Çalışma, T. funiculosus izolatı ST976'nın fosforu toprak çözeltisine herhangi bir katkı maddesi olmadan çözebildiğini kanıtlayan ilk çalışmalardan biridir.

References

  • Anonymous, 2021. BLAST: http://blast.ncbi.nlm. nih.gov/.(Access Date: 15.01.2021).
  • Antoun H 2005. Field and greenhouse trials performed with phosphate solubilizing bacteria and fungi. Department of Soil and Agrifood Engineering, Faculty of Agriculture and Food. Science, Canada.
  • Barroso CB, Nahas E 2005. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology, 29(1): 73–83.
  • Bolat İ, Kara Ö 2017. Plant nutrients: sources, functions, deficiencies and redundancy. Journal of Bartin Faculty of Forestry, 19(1): 218–228.
  • Burford EP, Fomina M, Gadd GM 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67: 1127–1155.
  • Çakmakçı R 2005. Phosphate solubilizing bacteria and their role in plant growth promotion. Selcuk Journal of Agriculture and Food Sciences, 19(35): 93–108.
  • Chai B, Wu Y, Liu P, Liu B, Gao M 2011. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine. Journal of Basic Microbiology, 51(1): 5–14.
  • Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JZ 2006. Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology, 55: 235–253.
  • Dash S, Gupta N 2011. Microbial bioinoculants and their role in plant growth and development. International Journal of Biotechnology and Molecular Biology Research, 2(13): 232–251.
  • Derviş S, Türkölmez Ş, Çiftçi O, Ulubaş Serçe Ç, Dikilitas M 2019. First report of Neoscytalidium dimidiatum causing canker, shoot blight and root rot of pistachio in Turkey. Plant Disease, 103(6): 1411.
  • Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, Liao CF, Yan K, Pem D, Suwannarach N, Promputtha I, Lumyong S, Xu JC 2020. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: four novel species in Aspergillus, Gongronella, Penicillium and Talaromyces. Frontiers in Microbiology, 11, 2443.
  • Dumas M, Frossard E, Scholz RW 2011. Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere, 84(6): 798–805.
  • Eyüpoğlu F 1999. Türkiye topraklarının verimlilik durumu. Toprak ve Gübre Araştırma Enstitüsü Yayınları, Ankara.
  • Felsenstein J 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783–791.
  • Fomina M, Burford EP, Gadd GM 2005. Fungal dissolution and transformation of minerals: Significance for nutrient and metal mobility. In Fungi in Biogeochemical Cycles, ed. G.M. Gadd, 236–266. Cambridge: Cambridge University Press.
  • Gupta M, Kiran S, Gulati A, Singh B, Tewari R 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research, 167(6): 358–363.
  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245(1): 83–93.
  • Kacar B 1995. Bitki ve toprağın kimyasal analizleri, III. Toprak analizleri. Ankara Üniversitesi Ziraat Fakültesi, Eğitim, Araştırma ve Geliştirme Vakfı Yayınları, No:3, Ankara.
  • Kanse OS, Whitelaw-Wecker M, Kadam TA, Bhosale HJ 2015. Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the neem rhizosphere. Ann. Microbiol. 65(1): 85–93.
  • Kucey RMN 1983. Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63: 671–678.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K 2018. MEGA X: Molecular evolutionary genetics analyses across computing platforms. Molecular Biology and Evolution, 35: 1547–1549.
  • Mehta P, Walia A, Chauhan A, Shirkot CK 2013. Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Archives of Microbiology, 195(5): 357–369.
  • Musafa MK, Aini LQLQ, Prasetya B 2017. Peran mikoriza arbuskula dan bakteri Pseudomonas fluorescens dalam meningkatkan serapan P dan pertumbuhan tanaman jagung pada andisol. Jurnal Tanah dan Sumberdaya Lahan, 2(2): 191–197.
  • Naik PR, Raman G, Narayanan KB, Sakthivel N 2008. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiology, 8(1): 230–235.
  • Nawara S, Van Dael T, Merckx R, Amery F, Elsen A, Odeurs W, Vandendriessche H, Mcgrath S, Roisin C, Jouany C, Pellerin S, Denoroy P, Eichler-Löbermann B, Börjesson G, Goos P, Akkermans W, Smolders E 2017. A comparison of soil tests for available phosphorus in long-term field experiments in Europe. European Journal of Soil Science, 68(6): 873–885.
  • Owen D, Williams AP, Griffith GW, Withers PJA 2015. Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Applied Soil Ecology, 86: 41–54.
  • Özyılmaz Ü, Benlioğlu K 2012. Effect of phosphate solubilizing bacteria to growth of cotton plant and Verticillium wilt. Turkish Journal of Biological Control, 3(1): 47–62.
  • Pişkin A, Turhan M 2017. the effects of phosphorus applied in spring on yield and quality of sugar beet (Beta vulgaris L.). Journal of Agriculture and Nature, 20: 227–231.
  • Richardson AE 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9): 897–906.
  • Rodriguez H, Fraga R 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17 (4-5): 319–339.
  • Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC 2011. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology, 70: 159–183.
  • Seshadri S, Muthukumarasamy R, Lakshminarasimhan C, Lgnacimuthu S 2000. Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current Science, 79 (5): 565–567.
  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi, TA 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1): 587–600.
  • Shi XK, Ma JJ, Liu LJ 2017. Effects of phosphate-solubilizing bacteria application on soil phosphorus availability in coal mining subsidence area in Shanxi. Journal of Plant Interactions, 12(1): 137–142.
  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39(1): 151–156.
  • Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR 2012. Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi Journal of Biological Sciences, 19: 427–434.
  • Sun WL, Zhao YG, Yang M 2017. Microbial fertilizer improving the soil nutrients and growth of reed in degraded wetland. In IOP Conference Series: Earth and Environmental Science, 69, 012062
  • Thompson JD, Higgins DG, Gibson TJ 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673–4680.
  • Vassilev N, Vassileva M, Nikolaeva I 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71(2): 137–144.
  • White TT, Bruns T, Lee S, Taylor J 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J (eds). PCR Protocols: A guide to methods and applications, pp. 315-322. Academic Press, San Diego, CA, USA.
  • Whitelaw MA 1999. Growth promotion of plants inoculated with phosphate-solubilizing fungi. In: Advances in Agronomy, 69: 99–151.
  • Whitelaw MA, Harden TJ, Bender GL 1997. Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Soil Research, 35(2): 291–300.
  • Whitelaw MA, Harden TJ, Helyar KR 1999. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 31(5): 655-665.
  • Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA 2014. Polyphasic taxonomy of the genus Talaromyces. Studies in Mycology, 78: 175-341.

The Effect of Talaromyces funiculosus ST976 Isolated from Pistacia vera Rhizosphere on Phosphorus Solubility in Soil Samples with Different Physicochemical Properties

Year 2022, Volume: 25 Issue: 5, 1077 - 1085, 31.10.2022
https://doi.org/10.18016/ksutarimdoga.vi.884333

Abstract

In this study, a total of 78 Talaromyces isolates were isolated from the pistachio (Pistacia vera L.) rhizosphere heavily infested with Neoscytalidium spp. The identification studies of the four representative isolates based on morphological and molecular methods showed that all isolates were T. funiculosus. The 575 bp long sequence of the internal transcribed spacer region of T. funiculosus isolate ST976, selected as a representative of the isolates, was deposited in GenBank under accession no. MW130842. The Maximum Likelihood tree clustered the ST976 isolate with reference T. funiculosus isolates derived from the GenBank nucleotide database. The phosphorus dissolution ability of ST976 isolate was determined by an experiment using six soil samples collected from agricultural lands in various locations of Şanlıurfa province. The pH of the soil samples taken varied between 7.21 and 7.88. As a result of the analysis performed with the addition of the isolate ST976 applied to soil samples with different soil structures (Clay and Clay-Loam), it was determined that the isolate ST976 dissolved 109–311% more phosphorus than the control sample. The study is one of the first studies proving the ability of T. funiculosus isolate ST976 to dissolve phosphorus without any additives to soil solution was determined.

References

  • Anonymous, 2021. BLAST: http://blast.ncbi.nlm. nih.gov/.(Access Date: 15.01.2021).
  • Antoun H 2005. Field and greenhouse trials performed with phosphate solubilizing bacteria and fungi. Department of Soil and Agrifood Engineering, Faculty of Agriculture and Food. Science, Canada.
  • Barroso CB, Nahas E 2005. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology, 29(1): 73–83.
  • Bolat İ, Kara Ö 2017. Plant nutrients: sources, functions, deficiencies and redundancy. Journal of Bartin Faculty of Forestry, 19(1): 218–228.
  • Burford EP, Fomina M, Gadd GM 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67: 1127–1155.
  • Çakmakçı R 2005. Phosphate solubilizing bacteria and their role in plant growth promotion. Selcuk Journal of Agriculture and Food Sciences, 19(35): 93–108.
  • Chai B, Wu Y, Liu P, Liu B, Gao M 2011. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine. Journal of Basic Microbiology, 51(1): 5–14.
  • Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JZ 2006. Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology, 55: 235–253.
  • Dash S, Gupta N 2011. Microbial bioinoculants and their role in plant growth and development. International Journal of Biotechnology and Molecular Biology Research, 2(13): 232–251.
  • Derviş S, Türkölmez Ş, Çiftçi O, Ulubaş Serçe Ç, Dikilitas M 2019. First report of Neoscytalidium dimidiatum causing canker, shoot blight and root rot of pistachio in Turkey. Plant Disease, 103(6): 1411.
  • Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, Liao CF, Yan K, Pem D, Suwannarach N, Promputtha I, Lumyong S, Xu JC 2020. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: four novel species in Aspergillus, Gongronella, Penicillium and Talaromyces. Frontiers in Microbiology, 11, 2443.
  • Dumas M, Frossard E, Scholz RW 2011. Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere, 84(6): 798–805.
  • Eyüpoğlu F 1999. Türkiye topraklarının verimlilik durumu. Toprak ve Gübre Araştırma Enstitüsü Yayınları, Ankara.
  • Felsenstein J 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783–791.
  • Fomina M, Burford EP, Gadd GM 2005. Fungal dissolution and transformation of minerals: Significance for nutrient and metal mobility. In Fungi in Biogeochemical Cycles, ed. G.M. Gadd, 236–266. Cambridge: Cambridge University Press.
  • Gupta M, Kiran S, Gulati A, Singh B, Tewari R 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research, 167(6): 358–363.
  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245(1): 83–93.
  • Kacar B 1995. Bitki ve toprağın kimyasal analizleri, III. Toprak analizleri. Ankara Üniversitesi Ziraat Fakültesi, Eğitim, Araştırma ve Geliştirme Vakfı Yayınları, No:3, Ankara.
  • Kanse OS, Whitelaw-Wecker M, Kadam TA, Bhosale HJ 2015. Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the neem rhizosphere. Ann. Microbiol. 65(1): 85–93.
  • Kucey RMN 1983. Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63: 671–678.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K 2018. MEGA X: Molecular evolutionary genetics analyses across computing platforms. Molecular Biology and Evolution, 35: 1547–1549.
  • Mehta P, Walia A, Chauhan A, Shirkot CK 2013. Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Archives of Microbiology, 195(5): 357–369.
  • Musafa MK, Aini LQLQ, Prasetya B 2017. Peran mikoriza arbuskula dan bakteri Pseudomonas fluorescens dalam meningkatkan serapan P dan pertumbuhan tanaman jagung pada andisol. Jurnal Tanah dan Sumberdaya Lahan, 2(2): 191–197.
  • Naik PR, Raman G, Narayanan KB, Sakthivel N 2008. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiology, 8(1): 230–235.
  • Nawara S, Van Dael T, Merckx R, Amery F, Elsen A, Odeurs W, Vandendriessche H, Mcgrath S, Roisin C, Jouany C, Pellerin S, Denoroy P, Eichler-Löbermann B, Börjesson G, Goos P, Akkermans W, Smolders E 2017. A comparison of soil tests for available phosphorus in long-term field experiments in Europe. European Journal of Soil Science, 68(6): 873–885.
  • Owen D, Williams AP, Griffith GW, Withers PJA 2015. Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Applied Soil Ecology, 86: 41–54.
  • Özyılmaz Ü, Benlioğlu K 2012. Effect of phosphate solubilizing bacteria to growth of cotton plant and Verticillium wilt. Turkish Journal of Biological Control, 3(1): 47–62.
  • Pişkin A, Turhan M 2017. the effects of phosphorus applied in spring on yield and quality of sugar beet (Beta vulgaris L.). Journal of Agriculture and Nature, 20: 227–231.
  • Richardson AE 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9): 897–906.
  • Rodriguez H, Fraga R 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17 (4-5): 319–339.
  • Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC 2011. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology, 70: 159–183.
  • Seshadri S, Muthukumarasamy R, Lakshminarasimhan C, Lgnacimuthu S 2000. Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current Science, 79 (5): 565–567.
  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi, TA 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1): 587–600.
  • Shi XK, Ma JJ, Liu LJ 2017. Effects of phosphate-solubilizing bacteria application on soil phosphorus availability in coal mining subsidence area in Shanxi. Journal of Plant Interactions, 12(1): 137–142.
  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39(1): 151–156.
  • Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR 2012. Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi Journal of Biological Sciences, 19: 427–434.
  • Sun WL, Zhao YG, Yang M 2017. Microbial fertilizer improving the soil nutrients and growth of reed in degraded wetland. In IOP Conference Series: Earth and Environmental Science, 69, 012062
  • Thompson JD, Higgins DG, Gibson TJ 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673–4680.
  • Vassilev N, Vassileva M, Nikolaeva I 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71(2): 137–144.
  • White TT, Bruns T, Lee S, Taylor J 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J (eds). PCR Protocols: A guide to methods and applications, pp. 315-322. Academic Press, San Diego, CA, USA.
  • Whitelaw MA 1999. Growth promotion of plants inoculated with phosphate-solubilizing fungi. In: Advances in Agronomy, 69: 99–151.
  • Whitelaw MA, Harden TJ, Bender GL 1997. Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Soil Research, 35(2): 291–300.
  • Whitelaw MA, Harden TJ, Helyar KR 1999. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 31(5): 655-665.
  • Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA 2014. Polyphasic taxonomy of the genus Talaromyces. Studies in Mycology, 78: 175-341.
There are 44 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Şahimerdan Türkölmez

Abdullah Eren 0000-0003-1187-7978

Göksel Özer

Sibel Derviş 0000-0002-4917-3813

Publication Date October 31, 2022
Submission Date February 21, 2021
Acceptance Date November 15, 2021
Published in Issue Year 2022Volume: 25 Issue: 5

Cite

APA Türkölmez, Ş., Eren, A., Özer, G., Derviş, S. (2022). The Effect of Talaromyces funiculosus ST976 Isolated from Pistacia vera Rhizosphere on Phosphorus Solubility in Soil Samples with Different Physicochemical Properties. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(5), 1077-1085. https://doi.org/10.18016/ksutarimdoga.vi.884333


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149