Araştırma Makalesi
BibTex RIS Kaynak Göster

Kula Jeoparkından Tanımlanan Aktinobakterilerin Bitki Büyümesini Teşvik Etme ve Antimikrobiyal Aktivite Potansiyelinin Belirlenmesi

Yıl 2025, Cilt: 28 Sayı: 5, 1173 - 1185
https://doi.org/10.18016/ksutarimdoga.vi.1700158

Öz

Biyoaktif bileşiklerin üreticisi olarak bilinen aktinobakteriler ayrıca azot fiksasyonu, amonyak, siderofor ve indol-3-asetik asit (IAA) üretimi, fosfat çözünürleştirme ve fitopatojen baskılama yoluyla bitki büyümesini artırmaya yardımcı olmaktadır. Bu çalışmada, Kula Jeoparkı'ndan izole edilen 34 Actinobacteria'nın bitki büyümesini teşvik etme ve antimikrobiyal aktivite potansiyelleri araştırılmıştır. Bu izolatlar arasında sekiz Amycolatopsis üyesi (KG3, KH8, KH9, KR1, KR2, KR3, KR6, KR12) hem siderofor üretimi, azot fiksasyonu, fosfat çözünürleştirme ve amonyak üretimi gerçekleştirmekte, hem de sekiz farklı patojene karşı önemli antimikrobiyal aktivite sergilemektedir. Ayrıca, Kribbella cinsine ait beş izolat (KS52, KS86, KS88, KS95, KS96) siderofor üretimi, IAA üretimi, azot fiksasyonu, fosfat çözünürleştirme ve amonyak üretimi gerçekleştirmektedir. Siderofor üretimi yaptığı belirlenen Actinomadura sp. KS37 izolatı, dokuz patojene karşı inhibisyon zonları göstererek en geniş mikrobiyal aktivite spektrumunu sergileyen iki izolattan biri olmuştur. Geniş spektrumlu bir diğer izolat olan Micromonospora sp. KC97 ise dokuz patojene karşı antimikrobiyal aktivite göstermektedir. Bu bulgular, Kula Jeoparkı'ndan elde edilen aktinobakterilerin bitki gelişimini destekleme ve antimikrobiyal aktivite sergileme konusunda önemli bir potansiyele sahip olduğunu göstermektedir.

Proje Numarası

PYO.FEN.1904.23.008

Kaynakça

  • Acquah, K. S., Beukes, D. R., Warner, D. F., Meyers, P. R., Sunassee, S. N., Maglangit, F., ... & Gammon, D. W. (2020). Novel South African rare actinomycete Kribbella speibonae strain SK5: a prolific producer of hydroxamate siderophores including new dehydroxylated congeners. Molecules, 25(13), 2979. https://doi.org/10.3390/molecules25132979
  • Ali, B., Sabri, A. N., Ljung, K., & Hasnain, S. (2009). Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Letters in Applied Microbiology, 48(5), 542-547. https://doi.org/10.1111/j.1472-765X.2009.02565.x
  • Aliyat, F.Z., El Guilli, M., Nassiri, L., & Ibijbijen, J. (2024). Biotechnological applications of phosphate solubilizing microorganisms: biological alternative to ımprove phosphorus availability. In: Arora, N.K. & Bouizgarne, B. (Eds.), Microbial biotechnology for sustainable agriculture volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-97-2355-3_5
  • Al-Sadi, A. M. (2021). Bipolaris sorokiniana-induced black point, common root rot, and spot blotch diseases of wheat: A review. Frontiers in Cellular and Infection Microbiology, 11, 584899. https://doi.org/10.3389/fcimb.2021.584899
  • Arnold, D. L., Lovell, H. C., Jackson, R. W., & Mansfield, J. W. (2011). Pseudomonas syringae pv. phaseolicola: from ‘has bean’to supermodel. Molecular Plant Pathology, 12(7), 617-627. https://doi.org/10.1111/j.1364-3703.2010.00697.x
  • Arora, N. K. & Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech, 7(6), 381. https://doi.org/10.1007/s13205-017-1008-y
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216. https://doi.org/10.1038/s41573-020-00114-z
  • Ay, H. (2020). Phylogeny of plant growth-promoting actinobacteria isolated from legume nodules in Turkey. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(3), 611-619. https://doi.org/10.29133/yyutbd.705227
  • Bayraktar, B. & Işık, K. (2024). Biodiversity of Actinobacteria from Kula Geopark in Türkiye. Black Sea Journal of Engineering and Science, 7(3), 495-508. https://doi.org/10.34248/bsengineering.1459935
  • Bekircan Eski, D., & Darcan, C. (2023). Isolation of Clavibacter michiganensis subsp. michiganenesis-specific bacteriophages from tomato fields in Turkey and their biocontrol potential. Egyptian Journal of Biological Pest Control, 33(1), 71. https://doi.org/10.1186/s41938-023-00717-9
  • Benadjila, A., Zamoum, M., Aouar, L., Zitouni, A., & Goudjal, Y. (2022). Optimization of cultural conditions using response surface methodology and modeling of indole-3-acetic acid production by Saccharothrix texasensis MB15. Biocatalysis and Agricultural Biotechnology, 39, 102271. https://doi.org/10.1016/j.bcab.2021.102271
  • Benhadj, M., Metrouh, R., Menasria, T., Gacemi-Kirane, D., Slim, F. Z., & Ranque, S. (2020). Broad-spectrum antimicrobial activity of wetland-derived Streptomyces sp. ActiF450. EXCLI Journal, 19, 360. https://orcid.org/0000-0003-4925-6165
  • Bibi, A., Mubeen, F., Rizwan, A., Ullah, I., Hammad, M., Waqas, M. A. B., Ikram, A., Abbas, Z., Halterman, D., & Saeed, N. A. (2024). Morpho-molecular identification of Fusarium equiseti and Fusarium oxysporum associated with symptomatic wilting of potato from Pakistan. Journal of Fungi, 10(10), 701. https://doi.org/10.3390/jof10100701
  • Borah, A. & Thakur, D. (2020). Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Frontiers in Microbiology, 11, 318. https://doi.org/10.3389/fmicb.2020.00318
  • Bottignole, D., Avola, G., Cancilla, R., Curti, E., Misirocchi, F., Severi, S., Vincenzi, F., & Florindo, I. (2025). Shiga toxin-producing Escherichia coli infection-related acute encephalopathy. Neurological Sciences, 46(5), 2309–2312. https://doi.org/10.1007/s10072-025-08034-9
  • Cappuccino, J. G. & Sherman, N. (2002). Microbiology: a laboratory manual. California City, CA: Pearson Education.
  • Chaiya, L., Kumla, J., Suwannarach, N., Kiatsiriroat, T., & Lumyong, S. (2021). Isolation, characterization, and efficacy of actinobacteria associated with arbuscular mycorrhizal spores in promoting plant growth of chili (Capsicum flutescens L.). Microorganisms, 9(6), 1274. https://doi.org/10.3390/microorganisms9061274
  • Chandran, H., Meena, M., & Swapnil, P. (2021). Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability, 13(19), 10986. https://doi.org/10.3390/su131910986
  • Chang, D., Sharma, L., Dela Cruz, C. S., & Zhang, D. (2021). Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Frontiers in Microbiology, 12, 750662. https://doi.org/10.3389/fmicb.2021.750662
  • Cohen, J. (2008). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
  • Dai, X., Cao, Y., Yu, M., Zhang, X., Li, J., Wang, L., & Chen, H. (2024). Rapid and quantitative detection of Aspergillus niger Van Tieghem using loop-mediated isothermal amplification assay. Journal of Plant Pathology, 106, 1603–1614. https://doi.org/10.1007/s42161-024-01674-4
  • FAO.(2025,April12). Countries by commodity. https://www.fao.org/faostat/en/#rankings/countries_by_commodity
  • Faustino, M., Ferreira, C. M. H., Pereira, A. M., & Carvalho, A. P. (2025). Candida albicans: The current status regarding vaginal infections. Applied Microbiology and Biotechnology, 109, 91. https://doi.org/10.1007/s00253-025-13478-2
  • Ghodhbane-Gtari, F., Nouioui, I., Hezbri, K., Lundstedt, E., D’Angelo, T., McNutt, Z., ... & Tisa, L. S. (2019). The plant-growth-promoting actinobacteria of the genus Nocardia induces root nodule formation in Casuarina glauca. Antonie Van Leeuwenhoek, 112, 75-90. https://doi.org/10.1007/s10482-018-1147-0
  • Gaur, A. C. (1990). Phosphate solubilizing microorganisms as biofertilizer. Omega Scientific Publications, New Delhi.
  • Giacomelli Ribeiro, H., & Teresinha Van Der Sand, S. (2024). Exploring the Trends in Actinobacteria as Biological Control Agents of Phytopathogenic Fungi: A (Mini)-Review. Indian Journal of Microbiology, 64(1), 70-81. https://doi.org/10.1007/s12088-023-01166-6
  • Giuliano, S., Angelini, J., Campanile, F., Conti, P., Flammini, S., Pagotto, A., Sbrana, F., Martini, L., D'Elia, D., Abdul-Aziz, M. H., Cotta, M. O., Roberts, J. A., Bonomo, R. A., & Tascini, C. (2025). Evaluation of ampicillin plus ceftobiprole combination therapy in treating Enterococcus faecalis infective endocarditis and bloodstream infection. Scientific Reports, 15, 3519. https://doi.org/10.1038/s41598-025-87512-8
  • Hami, A., Rasool, R. S., Khan, N. A., Mansoor, S., Mir, M. A., Ahmed, N., & Masoodi, K. Z. (2021). Morpho-molecular identification and first report of Fusarium equiseti in causing chilli wilt from Kashmir (Northern Himalayas). Scientific Reports, 11, 3610. https://doi.org/10.1038/s41598-021-82854-5
  • He, S., Li, L., Lv, M., Wang, R., Wang, L., Yu, S., ... & Li, X. (2024). PGPR: key to enhancing crop productivity and achieving sustainable agriculture. Current Microbiology, 81(11), 377. https://doi.org/10.1007/s00284-024-03893-5
  • Hong, J. E., Kim, H. J., Hossain, M. R., Rubel, M. H., Sahu, N., Mao, S., ... & Park, J. I. (2024). Characterization and distribution of black rot disease causing pathogen-Xanthomonas campestris pv. campestris races of the Jeju Island, South Korea. Journal of Plant Pathology, 106(1), 251-257. https://doi.org/10.1007/s42161-023-01549-0
  • Hui, M. L. Y., Tan, L. T. H., Letchumanan, V., He, Y. W., Fang, C. M., Chan, K. G., ... & Lee, L. H. (2021). The extremophilic actinobacteria: from microbes to medicine. Antibiotics, 10(6), 682. https://doi.org/10.3390/antibiotics10060682
  • Ismael, N. M., Azzam, M., Abdelmoteleb, M., & El-Shibiny, A. (2024). Phage vB_Ec_ZCEC14 to treat antibiotic-resistant Escherichia coli isolated from urinary tract infections. Virology Journal, 21(1), 44. https://doi.org/10.1186/s12985-024-02306-0
  • Kaari, M., Manikkam, R., Annamalai, K. K., & Joseph, J. (2023). Actinobacteria as a source of biofertilizer/biocontrol agents for bio-organic agriculture. Journal of Applied Microbiology, 134(2), lxac047. https://doi.org/10.1093/jambio/lxac047
  • Kim, B. S., Moon, S. S., & Hwang, B. K. (2000). Structure elucidation and antifungal activity of an anthracycline antibiotic, daunomycin, isolated from Actinomadura roseola. Journal of Agricultural and Food Chemistry, 48(5), 1875-1881. https://doi.org/10.1021/jf990402u
  • Krell, T. & Matilla, M. A. (2022). Antimicrobial resistance: progress and challenges in antibiotic discovery and anti‐infective therapy. Microbial Biotechnology, 15(1), 70-78. https://doi.org/10.1111/1751-7915.13945
  • Li, L., Mohamad, O. A. A., Ma, J., Friel, A. D., Su, Y., Wang, Y., ... & Li, W. (2018). Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek, 111, 1735-1748. https://doi.org/10.1007/s10482-018-1062-4
  • Meliani, H., Makhloufi, A., Cherif, A., Mahjoubi, M., & Makhloufi, K. (2022). Biocontrol of toxinogenic Aspergillus flavus and Fusarium oxysporum f. sp. albedinis by two rare Saharan actinomycetes strains and LC-ESI/MS-MS profiling of their antimicrobial products. Saudi Journal of Biological Sciences, 29(6), 103288. https://doi.org/10.1016/j.sjbs.2022.103288
  • Miller, W. R. & Arias, C. A. (2024). ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nature Reviews Microbiology, 22, 598-616. https://doi.org/10.1038/s41579-024-01054-w
  • Muñoz-Torres, P., Márquez, S. L., Sepúlveda-Chavera, G., Cárdenas-Ninasivincha, S., Arismendi-Macuer, M., Huanca-Mamani, W., ... & Bugueño, F. (2023). Isolation and identification of bacteria from three geothermal sites of the Atacama desert and their plant-beneficial characteristics. Microorganisms, 11(11), 2635. https://doi.org/10.3390/microorganisms11112635
  • Muteeb, G., Rehman, M. T., Shahwan, M., & Aatif, M. (2023). Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals, 16(11), 1615. https://doi.org/10.3390/ph16111615
  • Neeva, N. I., Zafrin, N., Jhuma, A. A., Chowdhury, S. K., Fatema, K., & Rifat, T. A. (2024). Antimicrobial susceptibility patterns of Enterococcus species and molecular detection of Enterococcus faecalis isolated from patients with urinary tract infection in a tertiary care hospital in Bangladesh. Indian Journal of Microbiology, 64(3), 1025–1034. https://doi.org/10.1007/s12088-024-01216-7
  • Peng, D., Li, A., Kong, M., Mao, C., Sun, Y., & Shen, M. (2024). Pathogenic Aspergillus strains identification and antifungal susceptibility analysis of 452 cases with otomycosis in Jingzhou, China. Mycopathologia, 189(2), 30. https://doi.org/10.1007/s11046-024-00836-3
  • Petrasch, S., Knapp, S. J., van Kan, J. A. L., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877–892. https://doi.org/10.1111/mpp.12794
  • Qin, S., Li, W. J., Klenk, H. P., Hozzein, W. N., & Ahmed, I. (2019). Actinobacteria in special and extreme habitats: diversity, function roles and environmental adaptations. Frontiers in Microbiology, 10, 944. https://doi.org/10.3389/fmicb.2019.00944
  • Ramesh, R., Rekha, N. D., & Gopal, S. (2025). Pseudomonas aeruginosa biofilm: Treatment strategies to combat infection. Archives of Microbiology, 207(1), 141. https://doi.org/10.1007/s00203-025-04346-8
  • Sarker, A., Ansary, M. W. R., Hossain, M. N., & Islam, T. (2021). Prospect and challenges for sustainable management of climate change-associated stresses to soil and plant health by beneficial rhizobacteria. Stresses, 1(4), 200-222. https://doi.org/10.3390/stresses1040015
  • Schwyn, B. ve Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Shaaban, M. T., Abdel-Raouf, M., Zayed, M., & Emara, M. A. (2024). Microbiological and molecular studies on a multidrug-resistant Pseudomonas aeruginosa from a liver transplant patient with urinary tract infection in Egypt. BMC Microbiology, 24, 184. https://doi.org/10.1186/s12866-024-03318-0
  • Shen, Q., Dai, G., Ravichandran, V., Liu, Y., Zhong, L., Sui, H., ... & Bian, X. (2021). Saccharochelins A–H, cytotoxic amphiphilic siderophores from the rare marine actinomycete Saccharothrix sp. D09. Journal of Natural Products, 84(8), 2149-2156. https://doi.org/10.1021/acs.jnatprod.1c00155
  • Swarnalakshmi, K., Senthilkumar, M., Ramakrishnan, B. (2016). Endophytic actinobacteria: nitrogen fixation, phytohormone production, and antibiosis. In: Subramaniam, G., Arumugam, S., & Rajendran, V. (Eds.), Plant growth promoting actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_8
  • Tang, J., Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., ... & Ye, Z. (2023). Biosynthetic pathways and functions of indole-3-acetic acid in microorganisms. Microorganisms, 11(8), 2077. https://doi.org/10.3390/microorganisms11082077
  • Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14
  • Tsonis, I., Karamani, L., Xaplanteri, P., Kolonitsiou, F., Zampakis, P., Gatzounis, G., ... & Assimakopoulos, S. F. (2018). Spontaneous cerebral abscess due to Bacillus subtilis in an immunocompetent male patient: A case report and review of literature. World Journal of Clinical Cases, 6(16), 1169–1174. https://doi.org/10.12998/wjcc.v6.i16.1169
  • van Bergeijk, D. A., Terlouw, B. R., Medema, M. H., & van Wezel, G. P. (2020). Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 18(10), 546-558. https://doi.org/10.1038/s41579-020-0379-y
  • Veyisoglu, A. & Tatar, D. (2021). Diversity and antimicrobial activity of culturable actinobacteria isolated from the sediment of Sarıkum Lake. Biotechnology & Biotechnological Equipment, 35(1), 1136-1146. https://doi.org/10.1080/13102818.2021.1952898
  • Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A., & Sackin, M. J. (1983). Numerical classification of Streptomyces and related genera. Microbiology, 129(6), 1743-1813. https://doi.org/10.1099/00221287-129-6-1743
  • Yang, X., Zhang, W., Lv, H., Gao, Y., Kang, Y., Wu, Y., Wang, F., Zhang, W., & Liang, H. (2024). Lignin synthesis pathway in response to Rhizoctonia solani Kühn infection in potato (Solanum tuberosum L.). Chemical and Biological Technologies in Agriculture, 11(1), 135. https://doi.org/10.1186/s40538-024-00663-0
  • Ye, X., Liu, Y., Chen, D., Liao, B., Wang, J., Shen, J., Gou, L., Zhou, Y., Zhou, X., Liao, G., Zhou, X., Zou, J., & Ren, B. (2024). Moxidectin elevates Candida albicans ergosterol levels to synergize with polyenes against oral candidiasis. Applied Microbiology and Biotechnology, 108(1), 509. https://doi.org/10.1007/s00253-024-13343-8
  • Yun, B. R., Roh, S. G., & Kim, S. B. (2017). Diversity and physiological properties of soil Actinobacteria in Ulleung Island. Korean Journal of Microbiology, 53(4), 242-250. https://doi.org/10.7845/kjm.2017.7057

Determination of Plant Growth Promotion and Antimicrobial Activity Potential of Identified Actinobacteria from Kula Geopark

Yıl 2025, Cilt: 28 Sayı: 5, 1173 - 1185
https://doi.org/10.18016/ksutarimdoga.vi.1700158

Öz

Actinobacteria, known as producers of bioactive compounds, also help enhance plant growth through nitrogen fixation, ammonia, siderophore, and indole-3-acetic acid (IAA) production, phosphate solubilization, and phytopathogen suppression. In this study, antimicrobial activity and the plant growth-promoting potentials of 34 Actinobacteria isolated from the Kula Geopark were investigated. Among these isolates, eight members of Amycolatopsis (KG3, KH8, KH9, KR1, KR2, KR3, KR6, KR12) performed ammonia production, nitrogen fixation, IAA production, phosphate solubilization, and siderophore production, while also exhibiting significant antimicrobial activity against eight different pathogens. Additionally, five isolates of the genus Kribbella (KS52, KS86, KS88, KS95, KS96) performed ammonia production, nitrogen fixation, IAA production, phosphate solubilization, and siderophore production. The Actinomadura sp. KS37 isolate, which was identified for its siderophore production, is also one of the two isolates that exhibit the broadest microbial activity spectrum, showing inhibition zones against nine pathogens. Another isolate with a broad spectrum, Micromonospora sp. KC97 demonstrated antimicrobial activity against nine pathogens. These findings indicate that the Actinobacteria from Kula Geopark have significant potential for promoting plant growth (PGP) and exhibiting antimicrobial activity.

Destekleyen Kurum

OMÜ-Scientific Research Projects Coordination Unit (BAPKOB)

Proje Numarası

PYO.FEN.1904.23.008

Teşekkür

We would like to thank Prof. Dr. Yüksel Terzi for his contribution to the statistical analysis.

Kaynakça

  • Acquah, K. S., Beukes, D. R., Warner, D. F., Meyers, P. R., Sunassee, S. N., Maglangit, F., ... & Gammon, D. W. (2020). Novel South African rare actinomycete Kribbella speibonae strain SK5: a prolific producer of hydroxamate siderophores including new dehydroxylated congeners. Molecules, 25(13), 2979. https://doi.org/10.3390/molecules25132979
  • Ali, B., Sabri, A. N., Ljung, K., & Hasnain, S. (2009). Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Letters in Applied Microbiology, 48(5), 542-547. https://doi.org/10.1111/j.1472-765X.2009.02565.x
  • Aliyat, F.Z., El Guilli, M., Nassiri, L., & Ibijbijen, J. (2024). Biotechnological applications of phosphate solubilizing microorganisms: biological alternative to ımprove phosphorus availability. In: Arora, N.K. & Bouizgarne, B. (Eds.), Microbial biotechnology for sustainable agriculture volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-97-2355-3_5
  • Al-Sadi, A. M. (2021). Bipolaris sorokiniana-induced black point, common root rot, and spot blotch diseases of wheat: A review. Frontiers in Cellular and Infection Microbiology, 11, 584899. https://doi.org/10.3389/fcimb.2021.584899
  • Arnold, D. L., Lovell, H. C., Jackson, R. W., & Mansfield, J. W. (2011). Pseudomonas syringae pv. phaseolicola: from ‘has bean’to supermodel. Molecular Plant Pathology, 12(7), 617-627. https://doi.org/10.1111/j.1364-3703.2010.00697.x
  • Arora, N. K. & Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech, 7(6), 381. https://doi.org/10.1007/s13205-017-1008-y
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216. https://doi.org/10.1038/s41573-020-00114-z
  • Ay, H. (2020). Phylogeny of plant growth-promoting actinobacteria isolated from legume nodules in Turkey. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(3), 611-619. https://doi.org/10.29133/yyutbd.705227
  • Bayraktar, B. & Işık, K. (2024). Biodiversity of Actinobacteria from Kula Geopark in Türkiye. Black Sea Journal of Engineering and Science, 7(3), 495-508. https://doi.org/10.34248/bsengineering.1459935
  • Bekircan Eski, D., & Darcan, C. (2023). Isolation of Clavibacter michiganensis subsp. michiganenesis-specific bacteriophages from tomato fields in Turkey and their biocontrol potential. Egyptian Journal of Biological Pest Control, 33(1), 71. https://doi.org/10.1186/s41938-023-00717-9
  • Benadjila, A., Zamoum, M., Aouar, L., Zitouni, A., & Goudjal, Y. (2022). Optimization of cultural conditions using response surface methodology and modeling of indole-3-acetic acid production by Saccharothrix texasensis MB15. Biocatalysis and Agricultural Biotechnology, 39, 102271. https://doi.org/10.1016/j.bcab.2021.102271
  • Benhadj, M., Metrouh, R., Menasria, T., Gacemi-Kirane, D., Slim, F. Z., & Ranque, S. (2020). Broad-spectrum antimicrobial activity of wetland-derived Streptomyces sp. ActiF450. EXCLI Journal, 19, 360. https://orcid.org/0000-0003-4925-6165
  • Bibi, A., Mubeen, F., Rizwan, A., Ullah, I., Hammad, M., Waqas, M. A. B., Ikram, A., Abbas, Z., Halterman, D., & Saeed, N. A. (2024). Morpho-molecular identification of Fusarium equiseti and Fusarium oxysporum associated with symptomatic wilting of potato from Pakistan. Journal of Fungi, 10(10), 701. https://doi.org/10.3390/jof10100701
  • Borah, A. & Thakur, D. (2020). Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Frontiers in Microbiology, 11, 318. https://doi.org/10.3389/fmicb.2020.00318
  • Bottignole, D., Avola, G., Cancilla, R., Curti, E., Misirocchi, F., Severi, S., Vincenzi, F., & Florindo, I. (2025). Shiga toxin-producing Escherichia coli infection-related acute encephalopathy. Neurological Sciences, 46(5), 2309–2312. https://doi.org/10.1007/s10072-025-08034-9
  • Cappuccino, J. G. & Sherman, N. (2002). Microbiology: a laboratory manual. California City, CA: Pearson Education.
  • Chaiya, L., Kumla, J., Suwannarach, N., Kiatsiriroat, T., & Lumyong, S. (2021). Isolation, characterization, and efficacy of actinobacteria associated with arbuscular mycorrhizal spores in promoting plant growth of chili (Capsicum flutescens L.). Microorganisms, 9(6), 1274. https://doi.org/10.3390/microorganisms9061274
  • Chandran, H., Meena, M., & Swapnil, P. (2021). Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability, 13(19), 10986. https://doi.org/10.3390/su131910986
  • Chang, D., Sharma, L., Dela Cruz, C. S., & Zhang, D. (2021). Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Frontiers in Microbiology, 12, 750662. https://doi.org/10.3389/fmicb.2021.750662
  • Cohen, J. (2008). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
  • Dai, X., Cao, Y., Yu, M., Zhang, X., Li, J., Wang, L., & Chen, H. (2024). Rapid and quantitative detection of Aspergillus niger Van Tieghem using loop-mediated isothermal amplification assay. Journal of Plant Pathology, 106, 1603–1614. https://doi.org/10.1007/s42161-024-01674-4
  • FAO.(2025,April12). Countries by commodity. https://www.fao.org/faostat/en/#rankings/countries_by_commodity
  • Faustino, M., Ferreira, C. M. H., Pereira, A. M., & Carvalho, A. P. (2025). Candida albicans: The current status regarding vaginal infections. Applied Microbiology and Biotechnology, 109, 91. https://doi.org/10.1007/s00253-025-13478-2
  • Ghodhbane-Gtari, F., Nouioui, I., Hezbri, K., Lundstedt, E., D’Angelo, T., McNutt, Z., ... & Tisa, L. S. (2019). The plant-growth-promoting actinobacteria of the genus Nocardia induces root nodule formation in Casuarina glauca. Antonie Van Leeuwenhoek, 112, 75-90. https://doi.org/10.1007/s10482-018-1147-0
  • Gaur, A. C. (1990). Phosphate solubilizing microorganisms as biofertilizer. Omega Scientific Publications, New Delhi.
  • Giacomelli Ribeiro, H., & Teresinha Van Der Sand, S. (2024). Exploring the Trends in Actinobacteria as Biological Control Agents of Phytopathogenic Fungi: A (Mini)-Review. Indian Journal of Microbiology, 64(1), 70-81. https://doi.org/10.1007/s12088-023-01166-6
  • Giuliano, S., Angelini, J., Campanile, F., Conti, P., Flammini, S., Pagotto, A., Sbrana, F., Martini, L., D'Elia, D., Abdul-Aziz, M. H., Cotta, M. O., Roberts, J. A., Bonomo, R. A., & Tascini, C. (2025). Evaluation of ampicillin plus ceftobiprole combination therapy in treating Enterococcus faecalis infective endocarditis and bloodstream infection. Scientific Reports, 15, 3519. https://doi.org/10.1038/s41598-025-87512-8
  • Hami, A., Rasool, R. S., Khan, N. A., Mansoor, S., Mir, M. A., Ahmed, N., & Masoodi, K. Z. (2021). Morpho-molecular identification and first report of Fusarium equiseti in causing chilli wilt from Kashmir (Northern Himalayas). Scientific Reports, 11, 3610. https://doi.org/10.1038/s41598-021-82854-5
  • He, S., Li, L., Lv, M., Wang, R., Wang, L., Yu, S., ... & Li, X. (2024). PGPR: key to enhancing crop productivity and achieving sustainable agriculture. Current Microbiology, 81(11), 377. https://doi.org/10.1007/s00284-024-03893-5
  • Hong, J. E., Kim, H. J., Hossain, M. R., Rubel, M. H., Sahu, N., Mao, S., ... & Park, J. I. (2024). Characterization and distribution of black rot disease causing pathogen-Xanthomonas campestris pv. campestris races of the Jeju Island, South Korea. Journal of Plant Pathology, 106(1), 251-257. https://doi.org/10.1007/s42161-023-01549-0
  • Hui, M. L. Y., Tan, L. T. H., Letchumanan, V., He, Y. W., Fang, C. M., Chan, K. G., ... & Lee, L. H. (2021). The extremophilic actinobacteria: from microbes to medicine. Antibiotics, 10(6), 682. https://doi.org/10.3390/antibiotics10060682
  • Ismael, N. M., Azzam, M., Abdelmoteleb, M., & El-Shibiny, A. (2024). Phage vB_Ec_ZCEC14 to treat antibiotic-resistant Escherichia coli isolated from urinary tract infections. Virology Journal, 21(1), 44. https://doi.org/10.1186/s12985-024-02306-0
  • Kaari, M., Manikkam, R., Annamalai, K. K., & Joseph, J. (2023). Actinobacteria as a source of biofertilizer/biocontrol agents for bio-organic agriculture. Journal of Applied Microbiology, 134(2), lxac047. https://doi.org/10.1093/jambio/lxac047
  • Kim, B. S., Moon, S. S., & Hwang, B. K. (2000). Structure elucidation and antifungal activity of an anthracycline antibiotic, daunomycin, isolated from Actinomadura roseola. Journal of Agricultural and Food Chemistry, 48(5), 1875-1881. https://doi.org/10.1021/jf990402u
  • Krell, T. & Matilla, M. A. (2022). Antimicrobial resistance: progress and challenges in antibiotic discovery and anti‐infective therapy. Microbial Biotechnology, 15(1), 70-78. https://doi.org/10.1111/1751-7915.13945
  • Li, L., Mohamad, O. A. A., Ma, J., Friel, A. D., Su, Y., Wang, Y., ... & Li, W. (2018). Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek, 111, 1735-1748. https://doi.org/10.1007/s10482-018-1062-4
  • Meliani, H., Makhloufi, A., Cherif, A., Mahjoubi, M., & Makhloufi, K. (2022). Biocontrol of toxinogenic Aspergillus flavus and Fusarium oxysporum f. sp. albedinis by two rare Saharan actinomycetes strains and LC-ESI/MS-MS profiling of their antimicrobial products. Saudi Journal of Biological Sciences, 29(6), 103288. https://doi.org/10.1016/j.sjbs.2022.103288
  • Miller, W. R. & Arias, C. A. (2024). ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nature Reviews Microbiology, 22, 598-616. https://doi.org/10.1038/s41579-024-01054-w
  • Muñoz-Torres, P., Márquez, S. L., Sepúlveda-Chavera, G., Cárdenas-Ninasivincha, S., Arismendi-Macuer, M., Huanca-Mamani, W., ... & Bugueño, F. (2023). Isolation and identification of bacteria from three geothermal sites of the Atacama desert and their plant-beneficial characteristics. Microorganisms, 11(11), 2635. https://doi.org/10.3390/microorganisms11112635
  • Muteeb, G., Rehman, M. T., Shahwan, M., & Aatif, M. (2023). Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals, 16(11), 1615. https://doi.org/10.3390/ph16111615
  • Neeva, N. I., Zafrin, N., Jhuma, A. A., Chowdhury, S. K., Fatema, K., & Rifat, T. A. (2024). Antimicrobial susceptibility patterns of Enterococcus species and molecular detection of Enterococcus faecalis isolated from patients with urinary tract infection in a tertiary care hospital in Bangladesh. Indian Journal of Microbiology, 64(3), 1025–1034. https://doi.org/10.1007/s12088-024-01216-7
  • Peng, D., Li, A., Kong, M., Mao, C., Sun, Y., & Shen, M. (2024). Pathogenic Aspergillus strains identification and antifungal susceptibility analysis of 452 cases with otomycosis in Jingzhou, China. Mycopathologia, 189(2), 30. https://doi.org/10.1007/s11046-024-00836-3
  • Petrasch, S., Knapp, S. J., van Kan, J. A. L., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877–892. https://doi.org/10.1111/mpp.12794
  • Qin, S., Li, W. J., Klenk, H. P., Hozzein, W. N., & Ahmed, I. (2019). Actinobacteria in special and extreme habitats: diversity, function roles and environmental adaptations. Frontiers in Microbiology, 10, 944. https://doi.org/10.3389/fmicb.2019.00944
  • Ramesh, R., Rekha, N. D., & Gopal, S. (2025). Pseudomonas aeruginosa biofilm: Treatment strategies to combat infection. Archives of Microbiology, 207(1), 141. https://doi.org/10.1007/s00203-025-04346-8
  • Sarker, A., Ansary, M. W. R., Hossain, M. N., & Islam, T. (2021). Prospect and challenges for sustainable management of climate change-associated stresses to soil and plant health by beneficial rhizobacteria. Stresses, 1(4), 200-222. https://doi.org/10.3390/stresses1040015
  • Schwyn, B. ve Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Shaaban, M. T., Abdel-Raouf, M., Zayed, M., & Emara, M. A. (2024). Microbiological and molecular studies on a multidrug-resistant Pseudomonas aeruginosa from a liver transplant patient with urinary tract infection in Egypt. BMC Microbiology, 24, 184. https://doi.org/10.1186/s12866-024-03318-0
  • Shen, Q., Dai, G., Ravichandran, V., Liu, Y., Zhong, L., Sui, H., ... & Bian, X. (2021). Saccharochelins A–H, cytotoxic amphiphilic siderophores from the rare marine actinomycete Saccharothrix sp. D09. Journal of Natural Products, 84(8), 2149-2156. https://doi.org/10.1021/acs.jnatprod.1c00155
  • Swarnalakshmi, K., Senthilkumar, M., Ramakrishnan, B. (2016). Endophytic actinobacteria: nitrogen fixation, phytohormone production, and antibiosis. In: Subramaniam, G., Arumugam, S., & Rajendran, V. (Eds.), Plant growth promoting actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_8
  • Tang, J., Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., ... & Ye, Z. (2023). Biosynthetic pathways and functions of indole-3-acetic acid in microorganisms. Microorganisms, 11(8), 2077. https://doi.org/10.3390/microorganisms11082077
  • Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14
  • Tsonis, I., Karamani, L., Xaplanteri, P., Kolonitsiou, F., Zampakis, P., Gatzounis, G., ... & Assimakopoulos, S. F. (2018). Spontaneous cerebral abscess due to Bacillus subtilis in an immunocompetent male patient: A case report and review of literature. World Journal of Clinical Cases, 6(16), 1169–1174. https://doi.org/10.12998/wjcc.v6.i16.1169
  • van Bergeijk, D. A., Terlouw, B. R., Medema, M. H., & van Wezel, G. P. (2020). Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 18(10), 546-558. https://doi.org/10.1038/s41579-020-0379-y
  • Veyisoglu, A. & Tatar, D. (2021). Diversity and antimicrobial activity of culturable actinobacteria isolated from the sediment of Sarıkum Lake. Biotechnology & Biotechnological Equipment, 35(1), 1136-1146. https://doi.org/10.1080/13102818.2021.1952898
  • Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A., & Sackin, M. J. (1983). Numerical classification of Streptomyces and related genera. Microbiology, 129(6), 1743-1813. https://doi.org/10.1099/00221287-129-6-1743
  • Yang, X., Zhang, W., Lv, H., Gao, Y., Kang, Y., Wu, Y., Wang, F., Zhang, W., & Liang, H. (2024). Lignin synthesis pathway in response to Rhizoctonia solani Kühn infection in potato (Solanum tuberosum L.). Chemical and Biological Technologies in Agriculture, 11(1), 135. https://doi.org/10.1186/s40538-024-00663-0
  • Ye, X., Liu, Y., Chen, D., Liao, B., Wang, J., Shen, J., Gou, L., Zhou, Y., Zhou, X., Liao, G., Zhou, X., Zou, J., & Ren, B. (2024). Moxidectin elevates Candida albicans ergosterol levels to synergize with polyenes against oral candidiasis. Applied Microbiology and Biotechnology, 108(1), 509. https://doi.org/10.1007/s00253-024-13343-8
  • Yun, B. R., Roh, S. G., & Kim, S. B. (2017). Diversity and physiological properties of soil Actinobacteria in Ulleung Island. Korean Journal of Microbiology, 53(4), 242-250. https://doi.org/10.7845/kjm.2017.7057
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikrobiyoloji (Diğer)
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Kamil Işık 0000-0003-1764-8113

Betül Bayraktar 0009-0003-8312-5203

Salih Sarıcaoğlu 0000-0002-0013-9024

Proje Numarası PYO.FEN.1904.23.008
Erken Görünüm Tarihi 25 Temmuz 2025
Yayımlanma Tarihi
Gönderilme Tarihi 15 Mayıs 2025
Kabul Tarihi 17 Haziran 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 5

Kaynak Göster

APA Işık, K., Bayraktar, B., & Sarıcaoğlu, S. (2025). Determination of Plant Growth Promotion and Antimicrobial Activity Potential of Identified Actinobacteria from Kula Geopark. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(5), 1173-1185. https://doi.org/10.18016/ksutarimdoga.vi.1700158

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149