Biyojeokimyasal Döngüyle İlişkili Tuz Gölü'ndeki Mevsimsel Gen Profili
Yıl 2024,
, 273 - 284, 01.04.2024
Suzan Sahin Dogan
,
Aytaç Kocabaş
Öz
Tuz oranı %32 olan talassohalin bir göl olan Tuz Gölü, halofilik mikrobiyom için önemli bir yaşam alanıdır. Tuz Gölü'ndeki prokaryot mikrobiyal çeşitliliği belirlemek için kültüre bağlı ve bağımsız yöntemler uygulanmıştır. Tuz Gölü'ndeki prokaryot mikrobiyal çeşitliliği belirlemek için kültüre bağımlı ve bağımsız yöntemler uygulanmıştır. Bununla birlikte, Tuz Gölü'ndeki biyojeokimyasal döngülerde yer alan temel süreçler ve genler mevsimsel olarak araştırılmamıştır. Çalışmanın amacı, Tuz Gölü'ndeki biyojeokimyasal döngü ile ilişkili mevsimsel gen profilini araştırmak ve bu ekstremofilik ortamın ekosistem dinamiklerini ortaya çıkarmaktır. Bu nedenle, Tuz Gölü'ndeki arke ve bakteri çeşitliliğinin metabolik işlevlerini analiz etmek için PICRUSt2 aracı kullanılmıştır. 16S rDNA amplikon dizileme verilerine dayanan metabolik fonksiyonlar sonucunda, Tuz Gölü'ndeki anaerobik arkelerin H2 ve CO2 ile metan üretiminin baskın metanojenez yolu olduğu gözlenmiştir. Kükürt oksidasyonu baskın kükürt metabolizması iken indirgeyici sitrik asit döngüsü de baskın karbon fiksasyon yolağı olarak saptanmıştır.
Kaynakça
- Akyol, İ., Yıldız, M.A., & Tutar, E. (2017). Yeni Nesil Nükleotid Dizileme Metotlarının Biyokimyasal Temelleri. KSU Doğa Bilimleri Dergisi, 20(1), 1–15.
- Alfreider, A., Baumer, A., Bogensperger, T., Posch, T., Salcher, M.M., & Summerer, M (2017). CO 2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environmental Microbiology, 19(7), 2754–2768. https://doi.org/10.1111/1462-2920.13786
- Alfreider, A. & Tartarotti, B. (2019). Spatiotemporal dynamics of different CO2 fixation strategies used by prokaryotes in a dimictic lake. Scientific Reports, 9(1), 15068. https://doi.org/10.1038/s41598-019-51584-0
- Başkaya, Y. & Kocabaş, A. (2016). Topraktan İzole Edilen Mikroorganizmaların Antimikrobiyal Madde Üretim Potansiyellerinin Belirlenmesi. KSU Doğa Bilimleri Dergisi, 19(4), 393–398.
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B.
J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and
extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857.
https://doi.org/10.1038/s41587-019-0209-9
- Check Hayden, E. (2014). Technology: The $1,000 genome. Nature, 507(7492), 294–295. https:// doi.org/10.1038/507294a
- Doğan, S. Ş. & Kocabaş, A. (2021). Metagenomic Assessment of Prokaryotic Diversity within Hypersaline Tuz Lake, Turkey. Microbiology, 90(5), 647–655. https://doi.org/10.1134/S00262617210 50118
- Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C. & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6), 685–688. https://doi.org/10.1038/s41587-020-0548-6
- Feng, H., Sun, Y., Zhi, Y., Wei, X., Luo, Y., Mao, L. & Zhou, P. (2014). Identification and characterization of the nitrate assimilation genes in the isolate of Streptomyces griseorubens JSD-1. Microbial Cell Factories, 13(1), 174. https://doi.org/10.1186/ s12934-014-0174-4
- Fernández, A. B., Ghai, R., Martin-Cuadrado, A.-B., Sánchez-Porro, C., Rodriguez-Valera, F. & Ventosa, A. (2014). Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiology Ecology, 88(3), 623–635. https://doi.org/10.1111/1574-6941.12329
- Ferrer, M., Werner, J., Chernikova, T. N., Bargiela, R., Fernández, L., La Cono, V., Waldmann, J., Teeling, H., Golyshina, O. V., Glöckner, F. O., Yakimov, M. M. & Golyshin, P. N. (2012). Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environmental Microbiology, 14(1), 268–281. https://doi.org/ 10.1111/j.1462-2920.2011.02634.x
- Goyal, N., Zhou, Z. & Karimi, I. A. (2016). Metabolic processes of Methanococcus maripaludis and potential applications. Microbial Cell Factories, 15(1), 107. https://doi.org/10.1186/s12934-016-0500-0
- Hu, B. -l., Shen, L. -d., Lian, X., Zhu, Q., Liu, S., Huang, Q., He, Z. -f., Geng, S., Cheng, D. -q., Lou, L. -p., Xu, X. -y., Zheng, P. & He, Y. -f. (2014). Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proceedings of the National Academy of Sciences, 111(12), 4495–4500. https://doi.org/ 10.1073/pnas.1318393111
- Isaji, Y., Kawahata, H., Ogawa, N. O., Kuroda, J., Yoshimura, T., Jiménez-Espejo, F. J., Makabe, A., Shibuya, T., Lugli, S., Santulli, A., Manzi, V., Roveri, M. & Ohkouchi, N. (2019). Efficient recycling of nutrients in modern and past hypersaline environments. Scientific Reports, 9(1), 3718. https://doi.org/10.1038/s41598-019-40174-9
- Kırkağaç, M., Gümüş, E. & Yokuş, G. (2017). Tuz Gölü’nde Çevresel Faktörlerin Artemia Populasyonu’na Etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 303–312.
- Kuypers, M. M. M., Marchant, H. K. & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263–276. https://doi.org/10.1038/nrmicro.2018.9
- Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G. & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676
- Lopes, L. D., Pereira e Silva, M. de C. & Andreote, F. D. (2016). Bacterial Abilities and Adaptation Toward the Rhizosphere Colonization. Frontiers in Microbiology, 7. https://doi.org/10.3389/ fmicb.2016. 01341
- Maier, R. M. (2015). Biogeochemical Cycling. In Environmental Microbiology (pp. 339–373). Elsevier. https://doi.org/10.1016/B978-0-12-394626-3.00016-8
- McGonigle, J. M., Bernau, J. A., Bowen, B. B. & Brazelton, W. J. (2021). Metabolic Potential of Microbial Communities in the Hypersaline Sediments of the Bonneville Salt Flats. BioRxiv, 2021.10.18.464844. https://doi.org/10.1101/ 2021. 10.18.464844
- Michoud, G., Ngugi, D. K., Barozzi, A., Merlino, G., Calleja, M. L., Delgado-Huertas, A., Morán, X. A. G. & Daffonchio, D. (2021). Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline. The ISME Journal, 15(8), 2351–2365. https://doi.org/10.1038/s41396-021-00931-z
- Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 30(21), 3123–3124. https://doi.org/10.1093/ bioinformatics/ btu494
- Robertson, G. P. & Groffman, P. M. (2015). Nitrogen Transformations. In Soil Microbiology, Ecology and Biochemistry (pp. 421–446). Elsevier. https ://doi.org/10.1016/B978-0-12-415955-6.00014-1
- Shapleigh, J. P. (2009). Dissimilatory and Assimilatory Nitrate Reduction in the Purple Photosynthetic Bacteria (pp. 623–642). https://doi.org/10.1007/978-1-4020-8815-5_31
- Shi, W., Tang, S., Huang, W., Zhang, S. & Li, Z. (2021). Distribution Characteristics of C–N–S Microorganism Genes in Different Hydraulic Zones of High-Rank Coal Reservoirs in Southern Qinshui Basin. ACS Omega, 6(33), 21395–21409. https://doi.org/10.1021/acsomega.1c02169
- Song, Y., Lee, J. S., Shin, J., Lee, G. M., Jin, S., Kang, S., Lee, J.-K., Kim, D. R., Lee, E. Y., Kim, S. C., Cho, S., Kim, D. & Cho, B.-K. (2020). Functional cooperation of the glycine synthase-reductase and Wood–Ljungdahl
pathways for autotrophic growth of Clostridium drakei. Proceedings of the National Academy of Sciences, 117(13), 7516–7523. https://doi.org/10.1073/pnas.1912289117
- Sorokin, D. Y., Berben, T., Melton, E. D., Overmars, L., Vavourakis, C. D. & Muyzer, G. (2014). Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles, 18(5), 791–809. https://doi.org/ 10.1007/s00792-014-0670-9
- Sternai, P., Caricchi, L., Garcia-Castellanos, D., Jolivet, L., Sheldrake, T. E. & Castelltort, S. (2017). Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. Nature Geoscience, 10(10), 783–787. https:// doi.org/10.1038/ngeo3032
- Vavourakis, C. D., Andrei, A.-S., Mehrshad, M., Ghai, R., Sorokin, D. Y. & Muyzer, G. (2018). A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome, 6(1), 168. https://doi.org/10.1186/ s40168-018-0548-7
- Ventosa, A. (2006). Unusual micro-organisms from unusual habitats: Hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance: Published for the Society for General Microbiology (pp. 223–254). Cambridge University Press. https://doi.org/10.1017/CBO9780511754913.015
- Wasmund, K., Mußmann, M. & Loy, A. (2017). The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environmental Microbiology Reports, 9(4), 323–344. https://doi.org/10.1111/ 1758-2229.12538
- Youssef, N. H., Farag, I. F., Rudy, S., Mulliner, A., Walker, K., Caldwell, F., Miller, M., Hoff, W. & Elshahed, M. (2019). The Wood–Ljungdahl pathway as a key component of metabolic versatility in candidate phylum
Bipolaricaulota (Acetothermia, OP1). Environmental Microbiology Reports, 11(4), 538–547. https://doi.org/ 10.1111/1758-2229.12753
- Yuan, Z., Druzhinina, I. S., Labbé, J., Redman, R., Qin, Y., Rodriguez, R., Zhang, C., Tuskan, G. A. & Lin, F. (2016). Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity. Scientific Reports, 6(1), 32467. https://doi.org/10.1038/srep32467
- Zeng, B., Han, S., Wang, P., Wen, B., Jian, W., Guo, W., Yu, Z., Du, D., Fu, X., Kong, F., Yang, M., Si, X., Zhao, J. & Li, Y. (2015). The bacterial communities associated with fecal types and body weight of rex rabbits. Scientific Reports, 5(1), 9342. https://doi.org/10.1038/srep09342
- Zhu, D., Han, R., Long, Q., Gao, X., Xing, J., Shen, G., Li, Y. & Wang, R. (2020). An evaluation of the core bacterial communities associated with hypersaline environments in the Qaidam Basin, China. Archives of Microbiology, 202(8), 2093–2103. https://doi.org/10.1007/s00203-020-01927-7
Seasonal Gene Profiling in Tuz Lake with Regard to Biogeochemical Cycling
Yıl 2024,
, 273 - 284, 01.04.2024
Suzan Sahin Dogan
,
Aytaç Kocabaş
Öz
Tuz Lake, a thalassohaline lake with a salt rate of 32%, is a unique habitat for a halophilic microbiome. Culture-dependent and independent methods have been applied to identify prokaryotic microbial diversity in Tuz Lake. However, the key processes and genes involved in biogeochemical cycles in Tuz Lake have not been investigated seasonally. The aim of the study is to investigate seasonal gene profiling in Tuz Lake associated with biogeochemical cycling and thereby reveal more about the ecosystem dynamics of this extreme environment. Therefore, the PICRUSt2 tool was applied to analyze the metabolic function of archaeal and bacterial diversity in Tuz Lake. As a result of metabolic functions based on 16S rDNA amplicon sequencing data, it was observed that methane production by H2 and CO2 by anaerobic archaea in Tuz Lake was the predominant methanogenesis pathway. It was determined that sulfur oxidation was the dominant sulfur metabolism, while the reductive citric acid cycle was the dominant carbon fixation pathway.
Destekleyen Kurum
TUBITAK (Turkish Scientific and Technical Research Council)
Kaynakça
- Akyol, İ., Yıldız, M.A., & Tutar, E. (2017). Yeni Nesil Nükleotid Dizileme Metotlarının Biyokimyasal Temelleri. KSU Doğa Bilimleri Dergisi, 20(1), 1–15.
- Alfreider, A., Baumer, A., Bogensperger, T., Posch, T., Salcher, M.M., & Summerer, M (2017). CO 2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environmental Microbiology, 19(7), 2754–2768. https://doi.org/10.1111/1462-2920.13786
- Alfreider, A. & Tartarotti, B. (2019). Spatiotemporal dynamics of different CO2 fixation strategies used by prokaryotes in a dimictic lake. Scientific Reports, 9(1), 15068. https://doi.org/10.1038/s41598-019-51584-0
- Başkaya, Y. & Kocabaş, A. (2016). Topraktan İzole Edilen Mikroorganizmaların Antimikrobiyal Madde Üretim Potansiyellerinin Belirlenmesi. KSU Doğa Bilimleri Dergisi, 19(4), 393–398.
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B.
J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and
extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857.
https://doi.org/10.1038/s41587-019-0209-9
- Check Hayden, E. (2014). Technology: The $1,000 genome. Nature, 507(7492), 294–295. https:// doi.org/10.1038/507294a
- Doğan, S. Ş. & Kocabaş, A. (2021). Metagenomic Assessment of Prokaryotic Diversity within Hypersaline Tuz Lake, Turkey. Microbiology, 90(5), 647–655. https://doi.org/10.1134/S00262617210 50118
- Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C. & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6), 685–688. https://doi.org/10.1038/s41587-020-0548-6
- Feng, H., Sun, Y., Zhi, Y., Wei, X., Luo, Y., Mao, L. & Zhou, P. (2014). Identification and characterization of the nitrate assimilation genes in the isolate of Streptomyces griseorubens JSD-1. Microbial Cell Factories, 13(1), 174. https://doi.org/10.1186/ s12934-014-0174-4
- Fernández, A. B., Ghai, R., Martin-Cuadrado, A.-B., Sánchez-Porro, C., Rodriguez-Valera, F. & Ventosa, A. (2014). Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiology Ecology, 88(3), 623–635. https://doi.org/10.1111/1574-6941.12329
- Ferrer, M., Werner, J., Chernikova, T. N., Bargiela, R., Fernández, L., La Cono, V., Waldmann, J., Teeling, H., Golyshina, O. V., Glöckner, F. O., Yakimov, M. M. & Golyshin, P. N. (2012). Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environmental Microbiology, 14(1), 268–281. https://doi.org/ 10.1111/j.1462-2920.2011.02634.x
- Goyal, N., Zhou, Z. & Karimi, I. A. (2016). Metabolic processes of Methanococcus maripaludis and potential applications. Microbial Cell Factories, 15(1), 107. https://doi.org/10.1186/s12934-016-0500-0
- Hu, B. -l., Shen, L. -d., Lian, X., Zhu, Q., Liu, S., Huang, Q., He, Z. -f., Geng, S., Cheng, D. -q., Lou, L. -p., Xu, X. -y., Zheng, P. & He, Y. -f. (2014). Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proceedings of the National Academy of Sciences, 111(12), 4495–4500. https://doi.org/ 10.1073/pnas.1318393111
- Isaji, Y., Kawahata, H., Ogawa, N. O., Kuroda, J., Yoshimura, T., Jiménez-Espejo, F. J., Makabe, A., Shibuya, T., Lugli, S., Santulli, A., Manzi, V., Roveri, M. & Ohkouchi, N. (2019). Efficient recycling of nutrients in modern and past hypersaline environments. Scientific Reports, 9(1), 3718. https://doi.org/10.1038/s41598-019-40174-9
- Kırkağaç, M., Gümüş, E. & Yokuş, G. (2017). Tuz Gölü’nde Çevresel Faktörlerin Artemia Populasyonu’na Etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 303–312.
- Kuypers, M. M. M., Marchant, H. K. & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263–276. https://doi.org/10.1038/nrmicro.2018.9
- Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G. & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676
- Lopes, L. D., Pereira e Silva, M. de C. & Andreote, F. D. (2016). Bacterial Abilities and Adaptation Toward the Rhizosphere Colonization. Frontiers in Microbiology, 7. https://doi.org/10.3389/ fmicb.2016. 01341
- Maier, R. M. (2015). Biogeochemical Cycling. In Environmental Microbiology (pp. 339–373). Elsevier. https://doi.org/10.1016/B978-0-12-394626-3.00016-8
- McGonigle, J. M., Bernau, J. A., Bowen, B. B. & Brazelton, W. J. (2021). Metabolic Potential of Microbial Communities in the Hypersaline Sediments of the Bonneville Salt Flats. BioRxiv, 2021.10.18.464844. https://doi.org/10.1101/ 2021. 10.18.464844
- Michoud, G., Ngugi, D. K., Barozzi, A., Merlino, G., Calleja, M. L., Delgado-Huertas, A., Morán, X. A. G. & Daffonchio, D. (2021). Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline. The ISME Journal, 15(8), 2351–2365. https://doi.org/10.1038/s41396-021-00931-z
- Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 30(21), 3123–3124. https://doi.org/10.1093/ bioinformatics/ btu494
- Robertson, G. P. & Groffman, P. M. (2015). Nitrogen Transformations. In Soil Microbiology, Ecology and Biochemistry (pp. 421–446). Elsevier. https ://doi.org/10.1016/B978-0-12-415955-6.00014-1
- Shapleigh, J. P. (2009). Dissimilatory and Assimilatory Nitrate Reduction in the Purple Photosynthetic Bacteria (pp. 623–642). https://doi.org/10.1007/978-1-4020-8815-5_31
- Shi, W., Tang, S., Huang, W., Zhang, S. & Li, Z. (2021). Distribution Characteristics of C–N–S Microorganism Genes in Different Hydraulic Zones of High-Rank Coal Reservoirs in Southern Qinshui Basin. ACS Omega, 6(33), 21395–21409. https://doi.org/10.1021/acsomega.1c02169
- Song, Y., Lee, J. S., Shin, J., Lee, G. M., Jin, S., Kang, S., Lee, J.-K., Kim, D. R., Lee, E. Y., Kim, S. C., Cho, S., Kim, D. & Cho, B.-K. (2020). Functional cooperation of the glycine synthase-reductase and Wood–Ljungdahl
pathways for autotrophic growth of Clostridium drakei. Proceedings of the National Academy of Sciences, 117(13), 7516–7523. https://doi.org/10.1073/pnas.1912289117
- Sorokin, D. Y., Berben, T., Melton, E. D., Overmars, L., Vavourakis, C. D. & Muyzer, G. (2014). Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles, 18(5), 791–809. https://doi.org/ 10.1007/s00792-014-0670-9
- Sternai, P., Caricchi, L., Garcia-Castellanos, D., Jolivet, L., Sheldrake, T. E. & Castelltort, S. (2017). Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. Nature Geoscience, 10(10), 783–787. https:// doi.org/10.1038/ngeo3032
- Vavourakis, C. D., Andrei, A.-S., Mehrshad, M., Ghai, R., Sorokin, D. Y. & Muyzer, G. (2018). A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome, 6(1), 168. https://doi.org/10.1186/ s40168-018-0548-7
- Ventosa, A. (2006). Unusual micro-organisms from unusual habitats: Hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance: Published for the Society for General Microbiology (pp. 223–254). Cambridge University Press. https://doi.org/10.1017/CBO9780511754913.015
- Wasmund, K., Mußmann, M. & Loy, A. (2017). The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environmental Microbiology Reports, 9(4), 323–344. https://doi.org/10.1111/ 1758-2229.12538
- Youssef, N. H., Farag, I. F., Rudy, S., Mulliner, A., Walker, K., Caldwell, F., Miller, M., Hoff, W. & Elshahed, M. (2019). The Wood–Ljungdahl pathway as a key component of metabolic versatility in candidate phylum
Bipolaricaulota (Acetothermia, OP1). Environmental Microbiology Reports, 11(4), 538–547. https://doi.org/ 10.1111/1758-2229.12753
- Yuan, Z., Druzhinina, I. S., Labbé, J., Redman, R., Qin, Y., Rodriguez, R., Zhang, C., Tuskan, G. A. & Lin, F. (2016). Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity. Scientific Reports, 6(1), 32467. https://doi.org/10.1038/srep32467
- Zeng, B., Han, S., Wang, P., Wen, B., Jian, W., Guo, W., Yu, Z., Du, D., Fu, X., Kong, F., Yang, M., Si, X., Zhao, J. & Li, Y. (2015). The bacterial communities associated with fecal types and body weight of rex rabbits. Scientific Reports, 5(1), 9342. https://doi.org/10.1038/srep09342
- Zhu, D., Han, R., Long, Q., Gao, X., Xing, J., Shen, G., Li, Y. & Wang, R. (2020). An evaluation of the core bacterial communities associated with hypersaline environments in the Qaidam Basin, China. Archives of Microbiology, 202(8), 2093–2103. https://doi.org/10.1007/s00203-020-01927-7