Son yıllarda nanopartiküllerin birbirinden farklı alanlarda kullanımı araştırılmaktadır. Bu çalışmalar içinde özellikle yeşil sentez ile doğa dostu ve sağlığa faydalı nanopartiküllerin sentezi oldukça ilgi çekmektedir. Aynı zamanda bu çalışmalar ile değeri ve pek çok özelliği bilinmeyen çok sayıda bitki türünün önemi de açığa çıkarılmaktadır. Bu nedenle bu bitki türlerinden biri olan ve üzerinde nanopartikül çalışmaları yapılmayan bir tür olan Verbascum kotschyi’den çinko oksit ve selenium nanopartiküller sentezleyip bu nanopartiküllerin antimikrobiyal ve antioksidan özelliklerini belirlemek amaçlanmıştır. Verbascum kotschyi’den sentezlenen nanopartiküllerin SEM, EDX, FTIR analizleri yapıldıktan sonra üç farklı yöntemle (DPPH, CUPRAC ve FRAP) in vitro antioksidan kapasiteleri belirlenmiştir. Ayrıca disk difüzyon yöntemi ile gram-pozitif, gram-negatif bakteriler ve mantar üzerine antimikrobiyal etkisi belirlenmiştir. Sonuç olarak Verbascum kotschyi’den sentezlenen çinko oksit nanaopartiküller selenyum nanopartiküllere kıyasla daha fazla antimikrobiyal özellik sergilemiştir. Ancak selenyum nanaopartiküller çinko oksit nanaopartiküllerden daha etkin antioksidan özellik sergilemiştir. Böylece Verbascum kotschyi’nin nanopartikül sentezi ile oluşturulabilecek ürünleri sayesinde farklı alanlarda kullanılabilecek özelliklere sahip olduğu tespit edildi.
Araştırmamız etik kurul onayı gerektirmeyen bir çalışmadır.
Kaynakça
Agarwal, H., & Shanmugam, V. (2020). A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorganic Chemistry, 94, 103423. https://doi.org/10.1016/ j.bioorg.2019.103423
Akintelu, S. A., & Folorunso, A. S. (2020). A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. BioNanoScience, 10(4), 848–863. https://doi.org/10.1007/S12668-020-00774-6/METRICS
Al-Dhabi, N. A., & Arasu, M. V. (2018). Environmentally-Friendly Green Approach for the Production of Zinc Oxide Nanoparticles and Their Anti-Fungal, Ovicidal, and Larvicidal Properties. Nanomaterials (Basel, Switzerland), 8(7), 500. https://doi.org/10.3390/NANO8070500
Anjum, S., Hashim, M., Asad Malik, S., Khan ,M., Lorenzo, J. M., Haider Abbasi, B., & Hano, C. (2021). Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers, 2021, 13, 4570. https://doi.org/10.3390/cancers13184570
Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoǧlu, B., Berker, K. I., & Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules (Basel, Switzerland), 12(7), 1496–1547. https://doi.org/10.3390/12071496
Baytop, T. (1999). Türkiyede bitkiler ile Tedavi. Nobel Tıp kitapevleri.
Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61, https://doi.org/10.1016/j.mssp. 2014.12.053.
Dinakarkumar, Y., Masi, C., Rajabathar, J. R., Ramakrishnan, G., Ninawe, R., Al-Lohedan, H., & Veera, H. M. (2024). Phytoconstituents of a traditional herb, Verbascum sinaiticum Benth mediated zinc-ferric bimetallic nanoparticle synthesis and bioactive properties for sustainable application. Journal of Molecular Structure, 1310, 138307. https://doi.org/10.1016/J.MOLSTRUC.2024.138307
Dole, B. N., Mote, V. D., Huse, V. R., Purushotham, Y., Lande, M. K., Jadhav, K. M., & Shah, S. S. (2011). Structural studies of Mn doped ZnO nanoparticles. Current Applied Physics, 11(3), 762–766. https://doi.org/10.1016/J.CAP.2010.11.050
Donn, P., Barciela, P., Perez-Vazquez, A., Cassani, L., Simal-Gandara, J., & Prieto, M. A. (2023). Bioactive Compounds of Verbascum sinuatum L.: Health Benefits and Potential as New Ingredients for Industrial Applications. Biomolecules, 13(3), 427. https://doi.org/10.3390/BIOM13030427
Dülger, B., Kirmizi, S., Arslan, H., & Güleryüz, G. (2002). Antimicrobial Activity of Three Endemic Verbascum Species. Pharmaceutical Biology, 40(8), 587–589. https://doi.org/10.1076/PHBI.40.8.587.14657
Eksik, C. (2020). Ethnobotanic study of some Villages of Artuklu, Ömerli, Yeşilli District in Mardin Province. Harran University, Natural and Applied Sciences, Department of Biology, Master's thesis.
Elemike, E. E., Onwudiwe, D. C., & Mkhize, Z. (2016). Eco-friendly synthesis of AgNPs using Verbascum thapsus extract and its photocatalytic activity. Materials Letters, 185, 452–455. https://doi.org/ 10.1016/J.MATLET.2016.09.026
Emsen, B., Çinar, İ., & Doğan, M. (2023). Detoxification Efficiency of Micropropagated Alternanthera reineckii Briq. against Zinc Oxide Nanoparticles in Human Keratinocyte Cells. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(5), 1066–1074. https://doi.org/10.18016/ksutarimdoga.vi.1241907
Ercan, L., Gunbegi Caliskan, C., Kilic, M., Comparison of chemical and antimicrobial properties of different nanoparticles synthesized from Verbascum x calcicolum Hub.-Mor. Hybrid. Journal of the Indian Chemical Society 101(2024), 101133 https://doi.org/10.1016/j.jics.2024.101133
Fakhari, S., Jamzad, M., & Kabiri Fard, H. (2019). Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews, 12(1), 19–24. https://doi.org/10.1080/17518253.2018.1547925
Georgiev, M., Alipieva, K., Orhan, I., Abrashev, R., Denev, P., & Angelova, M. (2011). Antioxidant and cholinesterases inhibitory activities of Verbascum xanthophoeniceum Griseb. and its phenylethanoid glycosides. Food Chemistry, 128(1), 100–105. https://doi.org/10.1016/J.FOODCHEM.2011.02.083
Gülçin, I. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345–391. https://doi.org/10.1007/S00204-011-0774-2
Güner, A., Aslan, S., Ekim, T., Vural, M., & Babaç, M. T. (2012). Verbascum L. In Türkiye Bitkileri Listesi (Damarlı Bitkiler). Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, pp. 850–870.
Huber-Morath, A. 1978: Verbascum L., In: Davis, P. H. (ed.), Flora of Turkey and the East Aegean Islands, Edinburgh University Press, Edinburgh, vol. 6, 461–603.
Iranifam, M., Fathinia, M., Sadeghi Rad, T., Hanifehpour, Y., Khataee, A. R., & Joo, S. W. (2013). A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta, 107, 263–269. https://doi.org/10.1016/J.TALANTA.2012.12.043
Jiang, J., Pi, J., & Cai, J. (2018). The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorganic Chemistry and Applications, 2018(1), 1062562. https://doi.org/10.1155/2018/1062562
Kalishwaralal, K., Jeyabharathi, S., Sundar, K., & Muthukumaran, A. (2016). A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 471–477. https://doi.org/10.3109/21691401.2014.962744
Khurana, A., Tekula, S., Saifi, M. A., Venkatesh, P., & Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 111, 802–812. https://doi.org/10.1016/J.BIOPHA.2018.12.146
Kora, A. J., & Rastogi, L. (2016). Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management, 181, 231–236. https://doi.org/10.1016/J.JENVMAN.2016.06.029
Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorganic Chemistry and Applications, 2014, 523869. https://doi.org/10.1155/2014/523869
Lopez De Romaña, D., Brown, K. H., & Guinard, J. X. (2002). Sensory Trial to Assess the Acceptability of Zinc Fortificants Added to Iron-fortified Wheat Products. Journal of Food Science, 67(1), 461–465. https://doi.org/10.1111/J.1365-2621.2002.TB11429.X
Makhlouf-Gafsi, I., Krichen, F., Mansour, R. Ben, Mokni, A., Sila, A., Bougatef, A., Blecker, C., Attia, H., & Besbes, S. (2018). Ultrafiltration and thermal processing effects on Maillard reaction products and biological properties of date palm sap syrups (Phoenix dactylifera L.). Food Chemistry, 256, 397–404. https://doi.org/10.1016/J.FOODCHEM.2018.02.145.
Mishra, A., Kumar, S., & Pandey, A. K. (2013). Scientific validation of the medicinal efficacy of Tinospora cordifolia. The Scientific World Journal, 2013, 292934. https://doi.org/10.1155/2013/292934
Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S., & Vaidya, B. (2017). Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today, 22(12), 1825–1834.
https://doi.org/10.1016/J.DRUDIS.2017.08.006
Mishra, R. R., Prajapati, S., Das, J., Dangar, T. K., Das, N., & Thatoi, H. (2011). Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere, 84(9), 1231–1237. https://doi.org/10.1016/J.CHEMOSPHERE.2011.05.025
Mosalam, M., & Marzouk, F. (2013). Effect of gamma radiation on the microbial synthesis of metal nanoparticles, [MSc Thesis].
Mungan Kılıç, F., Kılıç, M. (2022). A Review On Verbascum Taxa Distributed In Mardin Province. II. International Siirt Scientific Research Congress 21-23 March 2022, Siirt, Turkey.
Nagajyothi, P. C., Minh An, T. N., Sreekanth, T. V. M., Lee, J. Il, Joo, D. L., & Lee, K. D. (2013). Green route biosynthesis: Characterization and catalytic activity of ZnO nanoparticles. Materials Letters, 108, 160–163. https://doi.org/10.1016/J.MATLET.2013.06.095
Nayak, V., Singh, K. R., Singh, A. K., & Singh, R. P. (2021). Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, 45(6), 2849–2878. https://doi.org/10.1039/D0NJ05884J
Park, Y., Hong, Y. N., Weyers, A., Kim, Y. S., & Linhardt, R. J. (2011). Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5(3), 69–78. https://doi.org/10.1049/IET-NBT.2010.0033
Pillai, A. M., Sivasankarapillai, V. S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf A, R., Rajesh, K., & Kyzas, G. Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211, 128107. https://doi.org/10.1016/J.MOLSTRUC.2020.128107
Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., & Chung, I. M. (2018). Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess and Biosystems Engineering, 41(1), 21–30. https://doi.org/10.1007/S00449-017-1840-9
Ramesh, P., Rajendran, A., & Sundaram, M. (2014). Green Syntheis of Zinc Oxide Nanoparticles Using Flower Extract Cassia Auriculata. Nanotechnology, 2, 41–45.
Saleh, M., Isik, Z., Aktas, Y., Arslan, H., Yalvac, M., & Dizge, N. (2021). Green synthesis of zero valent iron nanoparticles using Verbascum thapsus and its Cr (VI) reduction activity. Bioresource Technology Reports, 13, 100637. https://doi.org/10.1016/J.BITEB.2021.100637
Salem, S. S., Fouda, M. M. G., Fouda, A., Awad, M. A., Al-Olayan, E. M., Allam, A. A., & Shaheen, T. I. (2021). Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. Journal of Cluster Science, 32(2), 351–361. https://doi.org/10.1007/S10876-020-01794-8/TABLES/1
Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560–2566. https://doi.org/10.1016/J.MATERRESBULL.2011.07.046
Schomburg, L. (2017). Dietary Selenium and Human Health. Nutrients, 9(1), 22. https://doi.org/10.3390/NU9010022
Sezik, E., Yeşilada, E., Honda, G., Takaishi, Y., Takeda, Y., & Tanaka, T. (2001). Traditional medicine in Turkey X. Folk medicine in Central Anatolia. Journal of Ethnopharmacology, 75(2–3), 95–115. https://doi.org/10.1016/S0378-8741(00)00399-8
Siddiqi, K. S., ur Rahman, A., Tajuddin, & Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters, 13, 141.
Singh, N., Saha, P., Rajkumar, K., & Abraham, J. (2014). Biosynthesis of silver and selenium nanoparticles by Bacillus sp. JAPSK2 and evaluation of the antimicrobial activity. DerPharm Lett, 6(6), 175–181.
Soto, K. M., Luzardo-Ocampo, I., López-Romero, J. M., Mendoza, S., Loarca-Piña, G., Rivera-Muñoz, E. M., & Manzano-Ramírez, A. (2022). Gold Nanoparticles Synthesized with Common Mullein (Verbascum thapsus) and Castor Bean (Ricinus communis) Ethanolic Extracts Displayed Antiproliferative Effects and Induced Caspase 3 Activity in Human HT29 and SW480 Cancer Cells. Pharmaceutics, 14(10), 2069. https://doi.org/10.3390/PHARMACEUTICS14102069
Srivastava, N., & Mukhopadhyay, M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering, 38(9), 1723–1730. https://doi.org/10.1007/S00449-015-1413-8.
Tuzlaci, E., & Erol, M. K. (1999). Turkish folk medicinal plants. Part II: Eğirdir (Isparta). Fitoterapia, 70(6), 593–610. https://doi.org/10.1016/S0367-326X(99)00074-X
Wadhwani, S. A., Shedbalkar, U. U., Singh, R., & Chopade, B. A. (2016). Biogenic selenium nanoparticles: current status and future prospects. Applied Microbiology and Biotechnology, 100(6), 2555–2566. https://doi.org/10.1007/S00253-016-7300-7
Wayne, P. A. (1997). NCCLS(National Committee for Clinical Laboratory Standards) Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard Enclose -A 7 (April 1997 ed.). NCCLS.
Xiong, H. M. (2013). ZnO Nanoparticles Applied to Bioimaging and Drug Delivery. Advanced Materials, 25(37), 5329–5335. https://doi.org/10.1002/ADMA.201301732
Yabalak, E., Ibrahim, F., Eliuz, E. A. E., Everest, A., & Gizir, A. M. (2022). Evaluation of chemical composition, trace element content, antioxidant and antimicrobial activities of Verbascum pseudoholotrichum. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 156(2), 313–322. https://doi.org/10.1080/11263504.2020.1852332
Yang, L. B., Shen, Y. H., Xie, A. J., Liang, J. J., & Zhang, B. C. (2008). Synthesis of Se nanoparticles by using TSA ion and its photocatalytic application for decolorization of cango red under UV irradiation. Materials Research Bulletin, 43(3), 572–582. https://doi.org/10.1016/J.MATERRESBULL.2007.04.012
Zhang, Z.-Y., & Xiong, H.-M. (2015). Photoluminescent ZnO Nanoparticles and Their Biological Applications. Materials, 8(6), 3127. https://doi.org/10.3390/MA8063101
Zhuang, C., Yao, D., Li, F., Zhang, K., Feng, Q., & Gan, Z. (2007). Study of micron-thick MgB2 films on niobium substrates. Superconductor Science and Technology, 20(3), 291. https://doi.org/10.1088/0953-2048/20/3/030
Comparison of Antioxidant and Antimicrobial Properties of Zinc oxide and Selenium oxide Nanoparticles using Verbascum kotschyi Boiss. & Hohen.
Nanoparticle applications have been studied in many fields in recent years. Among these studies, the synthesis of nature-friendly and health-friendly nanoparticles through green synthesis attracts much attention. These investigations also highlight the significance of several plant species, many of whose worth and traits remain unknown. The goal of this work is to create zinc oxide and selenium nanoparticles from Verbascum kotschyi Boiss. & Hohen., a plant species that hasn't received much attention, and to ascertain the antioxidant and antibacterial qualities of these nanoparticles. To accomplish this, three distinct techniques (DPPH, CUPRAC, and FRAP) were used to assess the produced nanoparticles' in vitro antioxidant capabilities after SEM, EDX, and FTIR analyses. Furthermore, the disk diffusion technique was utilized to ascertain the antibacterial efficacy of these nanoparticles against both gram-positive and gram-negative bacteria and fungus In conclusion, V. kotschyi-derived zinc oxide nanoparticles outperformed selenium nanoparticles in terms of antibacterial activity. But when it came to antioxidant activity, selenium nanoparticles outperformed zinc oxide nanoparticles. Thus, it was determined that the products created by nanoparticle synthesis from Verbascum kotschyi have properties that can be used in different fields.
Agarwal, H., & Shanmugam, V. (2020). A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorganic Chemistry, 94, 103423. https://doi.org/10.1016/ j.bioorg.2019.103423
Akintelu, S. A., & Folorunso, A. S. (2020). A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. BioNanoScience, 10(4), 848–863. https://doi.org/10.1007/S12668-020-00774-6/METRICS
Al-Dhabi, N. A., & Arasu, M. V. (2018). Environmentally-Friendly Green Approach for the Production of Zinc Oxide Nanoparticles and Their Anti-Fungal, Ovicidal, and Larvicidal Properties. Nanomaterials (Basel, Switzerland), 8(7), 500. https://doi.org/10.3390/NANO8070500
Anjum, S., Hashim, M., Asad Malik, S., Khan ,M., Lorenzo, J. M., Haider Abbasi, B., & Hano, C. (2021). Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers, 2021, 13, 4570. https://doi.org/10.3390/cancers13184570
Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoǧlu, B., Berker, K. I., & Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules (Basel, Switzerland), 12(7), 1496–1547. https://doi.org/10.3390/12071496
Baytop, T. (1999). Türkiyede bitkiler ile Tedavi. Nobel Tıp kitapevleri.
Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61, https://doi.org/10.1016/j.mssp. 2014.12.053.
Dinakarkumar, Y., Masi, C., Rajabathar, J. R., Ramakrishnan, G., Ninawe, R., Al-Lohedan, H., & Veera, H. M. (2024). Phytoconstituents of a traditional herb, Verbascum sinaiticum Benth mediated zinc-ferric bimetallic nanoparticle synthesis and bioactive properties for sustainable application. Journal of Molecular Structure, 1310, 138307. https://doi.org/10.1016/J.MOLSTRUC.2024.138307
Dole, B. N., Mote, V. D., Huse, V. R., Purushotham, Y., Lande, M. K., Jadhav, K. M., & Shah, S. S. (2011). Structural studies of Mn doped ZnO nanoparticles. Current Applied Physics, 11(3), 762–766. https://doi.org/10.1016/J.CAP.2010.11.050
Donn, P., Barciela, P., Perez-Vazquez, A., Cassani, L., Simal-Gandara, J., & Prieto, M. A. (2023). Bioactive Compounds of Verbascum sinuatum L.: Health Benefits and Potential as New Ingredients for Industrial Applications. Biomolecules, 13(3), 427. https://doi.org/10.3390/BIOM13030427
Dülger, B., Kirmizi, S., Arslan, H., & Güleryüz, G. (2002). Antimicrobial Activity of Three Endemic Verbascum Species. Pharmaceutical Biology, 40(8), 587–589. https://doi.org/10.1076/PHBI.40.8.587.14657
Eksik, C. (2020). Ethnobotanic study of some Villages of Artuklu, Ömerli, Yeşilli District in Mardin Province. Harran University, Natural and Applied Sciences, Department of Biology, Master's thesis.
Elemike, E. E., Onwudiwe, D. C., & Mkhize, Z. (2016). Eco-friendly synthesis of AgNPs using Verbascum thapsus extract and its photocatalytic activity. Materials Letters, 185, 452–455. https://doi.org/ 10.1016/J.MATLET.2016.09.026
Emsen, B., Çinar, İ., & Doğan, M. (2023). Detoxification Efficiency of Micropropagated Alternanthera reineckii Briq. against Zinc Oxide Nanoparticles in Human Keratinocyte Cells. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(5), 1066–1074. https://doi.org/10.18016/ksutarimdoga.vi.1241907
Ercan, L., Gunbegi Caliskan, C., Kilic, M., Comparison of chemical and antimicrobial properties of different nanoparticles synthesized from Verbascum x calcicolum Hub.-Mor. Hybrid. Journal of the Indian Chemical Society 101(2024), 101133 https://doi.org/10.1016/j.jics.2024.101133
Fakhari, S., Jamzad, M., & Kabiri Fard, H. (2019). Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews, 12(1), 19–24. https://doi.org/10.1080/17518253.2018.1547925
Georgiev, M., Alipieva, K., Orhan, I., Abrashev, R., Denev, P., & Angelova, M. (2011). Antioxidant and cholinesterases inhibitory activities of Verbascum xanthophoeniceum Griseb. and its phenylethanoid glycosides. Food Chemistry, 128(1), 100–105. https://doi.org/10.1016/J.FOODCHEM.2011.02.083
Gülçin, I. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345–391. https://doi.org/10.1007/S00204-011-0774-2
Güner, A., Aslan, S., Ekim, T., Vural, M., & Babaç, M. T. (2012). Verbascum L. In Türkiye Bitkileri Listesi (Damarlı Bitkiler). Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, pp. 850–870.
Huber-Morath, A. 1978: Verbascum L., In: Davis, P. H. (ed.), Flora of Turkey and the East Aegean Islands, Edinburgh University Press, Edinburgh, vol. 6, 461–603.
Iranifam, M., Fathinia, M., Sadeghi Rad, T., Hanifehpour, Y., Khataee, A. R., & Joo, S. W. (2013). A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta, 107, 263–269. https://doi.org/10.1016/J.TALANTA.2012.12.043
Jiang, J., Pi, J., & Cai, J. (2018). The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorganic Chemistry and Applications, 2018(1), 1062562. https://doi.org/10.1155/2018/1062562
Kalishwaralal, K., Jeyabharathi, S., Sundar, K., & Muthukumaran, A. (2016). A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 471–477. https://doi.org/10.3109/21691401.2014.962744
Khurana, A., Tekula, S., Saifi, M. A., Venkatesh, P., & Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 111, 802–812. https://doi.org/10.1016/J.BIOPHA.2018.12.146
Kora, A. J., & Rastogi, L. (2016). Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management, 181, 231–236. https://doi.org/10.1016/J.JENVMAN.2016.06.029
Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorganic Chemistry and Applications, 2014, 523869. https://doi.org/10.1155/2014/523869
Lopez De Romaña, D., Brown, K. H., & Guinard, J. X. (2002). Sensory Trial to Assess the Acceptability of Zinc Fortificants Added to Iron-fortified Wheat Products. Journal of Food Science, 67(1), 461–465. https://doi.org/10.1111/J.1365-2621.2002.TB11429.X
Makhlouf-Gafsi, I., Krichen, F., Mansour, R. Ben, Mokni, A., Sila, A., Bougatef, A., Blecker, C., Attia, H., & Besbes, S. (2018). Ultrafiltration and thermal processing effects on Maillard reaction products and biological properties of date palm sap syrups (Phoenix dactylifera L.). Food Chemistry, 256, 397–404. https://doi.org/10.1016/J.FOODCHEM.2018.02.145.
Mishra, A., Kumar, S., & Pandey, A. K. (2013). Scientific validation of the medicinal efficacy of Tinospora cordifolia. The Scientific World Journal, 2013, 292934. https://doi.org/10.1155/2013/292934
Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S., & Vaidya, B. (2017). Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today, 22(12), 1825–1834.
https://doi.org/10.1016/J.DRUDIS.2017.08.006
Mishra, R. R., Prajapati, S., Das, J., Dangar, T. K., Das, N., & Thatoi, H. (2011). Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere, 84(9), 1231–1237. https://doi.org/10.1016/J.CHEMOSPHERE.2011.05.025
Mosalam, M., & Marzouk, F. (2013). Effect of gamma radiation on the microbial synthesis of metal nanoparticles, [MSc Thesis].
Mungan Kılıç, F., Kılıç, M. (2022). A Review On Verbascum Taxa Distributed In Mardin Province. II. International Siirt Scientific Research Congress 21-23 March 2022, Siirt, Turkey.
Nagajyothi, P. C., Minh An, T. N., Sreekanth, T. V. M., Lee, J. Il, Joo, D. L., & Lee, K. D. (2013). Green route biosynthesis: Characterization and catalytic activity of ZnO nanoparticles. Materials Letters, 108, 160–163. https://doi.org/10.1016/J.MATLET.2013.06.095
Nayak, V., Singh, K. R., Singh, A. K., & Singh, R. P. (2021). Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, 45(6), 2849–2878. https://doi.org/10.1039/D0NJ05884J
Park, Y., Hong, Y. N., Weyers, A., Kim, Y. S., & Linhardt, R. J. (2011). Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5(3), 69–78. https://doi.org/10.1049/IET-NBT.2010.0033
Pillai, A. M., Sivasankarapillai, V. S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf A, R., Rajesh, K., & Kyzas, G. Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211, 128107. https://doi.org/10.1016/J.MOLSTRUC.2020.128107
Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., & Chung, I. M. (2018). Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess and Biosystems Engineering, 41(1), 21–30. https://doi.org/10.1007/S00449-017-1840-9
Ramesh, P., Rajendran, A., & Sundaram, M. (2014). Green Syntheis of Zinc Oxide Nanoparticles Using Flower Extract Cassia Auriculata. Nanotechnology, 2, 41–45.
Saleh, M., Isik, Z., Aktas, Y., Arslan, H., Yalvac, M., & Dizge, N. (2021). Green synthesis of zero valent iron nanoparticles using Verbascum thapsus and its Cr (VI) reduction activity. Bioresource Technology Reports, 13, 100637. https://doi.org/10.1016/J.BITEB.2021.100637
Salem, S. S., Fouda, M. M. G., Fouda, A., Awad, M. A., Al-Olayan, E. M., Allam, A. A., & Shaheen, T. I. (2021). Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. Journal of Cluster Science, 32(2), 351–361. https://doi.org/10.1007/S10876-020-01794-8/TABLES/1
Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560–2566. https://doi.org/10.1016/J.MATERRESBULL.2011.07.046
Schomburg, L. (2017). Dietary Selenium and Human Health. Nutrients, 9(1), 22. https://doi.org/10.3390/NU9010022
Sezik, E., Yeşilada, E., Honda, G., Takaishi, Y., Takeda, Y., & Tanaka, T. (2001). Traditional medicine in Turkey X. Folk medicine in Central Anatolia. Journal of Ethnopharmacology, 75(2–3), 95–115. https://doi.org/10.1016/S0378-8741(00)00399-8
Siddiqi, K. S., ur Rahman, A., Tajuddin, & Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters, 13, 141.
Singh, N., Saha, P., Rajkumar, K., & Abraham, J. (2014). Biosynthesis of silver and selenium nanoparticles by Bacillus sp. JAPSK2 and evaluation of the antimicrobial activity. DerPharm Lett, 6(6), 175–181.
Soto, K. M., Luzardo-Ocampo, I., López-Romero, J. M., Mendoza, S., Loarca-Piña, G., Rivera-Muñoz, E. M., & Manzano-Ramírez, A. (2022). Gold Nanoparticles Synthesized with Common Mullein (Verbascum thapsus) and Castor Bean (Ricinus communis) Ethanolic Extracts Displayed Antiproliferative Effects and Induced Caspase 3 Activity in Human HT29 and SW480 Cancer Cells. Pharmaceutics, 14(10), 2069. https://doi.org/10.3390/PHARMACEUTICS14102069
Srivastava, N., & Mukhopadhyay, M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering, 38(9), 1723–1730. https://doi.org/10.1007/S00449-015-1413-8.
Tuzlaci, E., & Erol, M. K. (1999). Turkish folk medicinal plants. Part II: Eğirdir (Isparta). Fitoterapia, 70(6), 593–610. https://doi.org/10.1016/S0367-326X(99)00074-X
Wadhwani, S. A., Shedbalkar, U. U., Singh, R., & Chopade, B. A. (2016). Biogenic selenium nanoparticles: current status and future prospects. Applied Microbiology and Biotechnology, 100(6), 2555–2566. https://doi.org/10.1007/S00253-016-7300-7
Wayne, P. A. (1997). NCCLS(National Committee for Clinical Laboratory Standards) Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard Enclose -A 7 (April 1997 ed.). NCCLS.
Xiong, H. M. (2013). ZnO Nanoparticles Applied to Bioimaging and Drug Delivery. Advanced Materials, 25(37), 5329–5335. https://doi.org/10.1002/ADMA.201301732
Yabalak, E., Ibrahim, F., Eliuz, E. A. E., Everest, A., & Gizir, A. M. (2022). Evaluation of chemical composition, trace element content, antioxidant and antimicrobial activities of Verbascum pseudoholotrichum. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 156(2), 313–322. https://doi.org/10.1080/11263504.2020.1852332
Yang, L. B., Shen, Y. H., Xie, A. J., Liang, J. J., & Zhang, B. C. (2008). Synthesis of Se nanoparticles by using TSA ion and its photocatalytic application for decolorization of cango red under UV irradiation. Materials Research Bulletin, 43(3), 572–582. https://doi.org/10.1016/J.MATERRESBULL.2007.04.012
Zhang, Z.-Y., & Xiong, H.-M. (2015). Photoluminescent ZnO Nanoparticles and Their Biological Applications. Materials, 8(6), 3127. https://doi.org/10.3390/MA8063101
Zhuang, C., Yao, D., Li, F., Zhang, K., Feng, Q., & Gan, Z. (2007). Study of micron-thick MgB2 films on niobium substrates. Superconductor Science and Technology, 20(3), 291. https://doi.org/10.1088/0953-2048/20/3/030
Ercan, L., Günbegi Çalışkan, C., & Mungan Kılıç, F. (2025). Comparison of Antioxidant and Antimicrobial Properties of Zinc oxide and Selenium oxide Nanoparticles using Verbascum kotschyi Boiss. & Hohen. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(1), 9-19. https://doi.org/10.18016/ksutarimdoga.vi.1404682