Year 2019, Volume 22 , Issue 5, Pages 751 - 762 2019-10-31

Bir Torefikasyon Reaktörünün Geliştirilmesi ve Kızıl Meşe “Quercus Rubra” Kullanılarak Farklı Torefikasyon Sıcaklıklarında Elde Edilen Biyokömür Yakıt Özelliklerinin Saptanması
Development of a Torrefaction Reactor and Determination of Biocoal Fuel Properties Obtained at Different Torrefaction Temperatures using Red Oak “Quercus Rubra”

Türkan AKTAŞ [1] , Tolga BATUR [2]


Bu araştırmada, geleneksel üretime kıyasla daha kaliteli, hızlı ve kontrollü koşullarda biyokömür elde etmek amacıyla bir torefikasyon reaktörünün imalatı ve en uygun torefikasyon sıcaklığının belirlenmesi amaçlanmıştır. Elde edilen örneklerin yakıt özellikleri klasik yöntemlerle (torluk oluşturma ve ticari fırın metodu) elde edilen biyokömür örneklerinin yakıt özellikleri ile karşılaştırılmıştır. Bu amaçla, biyokömür elde etmek için geliştirilmiş reaktör kullanılarak 5 farklı sıcaklıkta (220, 245, 260, 280, 300 °C)  kızıl meşe “Quercus Rubra” örnekleri torefiye edilmiş ve elde edilen örneklerin kısa analizleri yapılarak ısıl değerleri ölçülmüştür. Elde edilen sonuçlar klasik yöntemlerle elde edilmiş olan ve piyasada satılan ticari ürünler ile karşılaştırılmıştır. Analizler sonucu torefiye edilmiş ürünlerde en yüksek ısıl değer, 7135 cal g-1 ile 300 °C’de elde edilmiş örnekte saptanırken, en düşük ısıl değer ise 220 °C’ de elde edilmiş olan örnekte 5421.33 cal g-1 olarak belirlenmiştir. Ayrıca, 300 °C’de elde edilen altı numaralı numune sahip olduğu nem ve kül oranı ile ticari anlamda satışı yapılan piyasa ürününü geride bırakmıştır.  Numunelerde uçucu madde oranları %70-%80 aralığında, sabit karbon oranları ise %20-%25 aralığında saptanmıştır. Uygulama sıcaklığı arttıkça ısıl değerin arttığı, nem ve kül oranının düştüğü saptanmıştır. Nem, kül ve uçucu madde miktarları açısından reaktörden elde edilen örneklerin, geleneksel yöntemlerle elde edilen örneklere kıyasla daha iyi özelliklere sahip olduğu belirlenmiştir. 300 °C' de elde edilmiş olan biyokömür örneklerinin ortalama ısıl değeri (7135 cal g-1) ticari fırından elde edilen biyokömürlerin ısıl değerinden (6003 cal g-1) oldukça yüksek bulunurken,  klasik torluk oluşturma yöntemiyle elde edilen örneklerinkine de oldukça yakın olduğu saptanmıştır. 

In this research, it was aimed to manufacture a torrefaction reactor and determine the optimum torrefaction temperature to obtain biocoal with better quality under faster and controlled conditions compared to traditional production methods (construction wood piles and commercial kiln method). For this purpose, red oak “Quercus Rubra” samples were torrefied at 5 different temperatures (220, 245, 260, 280, 300 °C) using the reactor, proximate analyses of the obtained samples were made and the heat values were measured. According to the results, sample with highest heating value, which was obtained from torrefication system, was the sample having a value of 7135 cal g-1 obtained at 300 whereas the product obtained at 220  having the least value of 5421.33 cal g-1. Also, the sixth sample obtained at 300 was found better in respect of its ash and moisture ratios compare to commercially sold ones. Volatile substance ratios and fixed carbon ratios in the samples were determined between %70-%80 and 20%-25%; respectively. Calorific value increased and the ratio of moisture and ash amount decreased with increasing of temperature. In terms of moisture, ash and volatile matter; the samples obtained from the reactor were determined to have better properties compared to the samples obtained using conventional methods. The heating value (7135 cal g-1) of biocoal obtained at 300 °C were found significantly higher than the heating value (6003 cal g-1) obtained from commercial furnaces while it is rather close to heating value of sample obtained by traditional earth mound creating method.

  • Akçay T, Aktaş T 2014. Estimation of Biomass Potential, Energy Values, and Characterization of Field Wastes: Example of Paddy Wastes in Tekirdag City. 12th International Congress on Mechanization and Energy in Agriculture. 3-6 September, 2014, Cappadocia-Nevsehir.
  • Aktas T, Thy P, Williams R, McCaffrey Z, Khatami R, Jenkins BM 2015. Characterization of Almond Processing Residues from the Central Valley of California for Thermal Conversion.Fuel Processing Technology. 140: 132-147.
  • Aylak Özdemir G, Saraçoğlu Ö 2016. Trakya Meşe Ormanlarında Artım ve Büyüme İlişkileri. Journal of the Faculty of Forestry Istanbul University, 66(1): 211-243.
  • Arias B, Pedida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ 2008. Influence of Torrefaction on The Grindability and Reactivity of Woody Biomass. Fuel Process Technology Journal. 89(2): 169-175.
  • Bergman PCA, Kiel JHA 2005. Torrefaction for biomass upgrading. Proceeding of 14th European Biomass Conference & Exhibition, 17-21 October, Paris, France. Bioenergy Update April 2000, Vol. 2 No. 4, URL: https://www.bioenergyupdate.com/magazine/security/NL0400/bioenergy_update_april_2000.htm
  • Bridgeman TG, Jones JM, Shield I, Williams PT 2008. Torrefaction of Reed Canary Grass, Wheat Straw and Willow to Enhance Solid Fuel Qualities and Combustion Properties. Journal of Fuels. 87: 844-856.
  • Bozkurt AY, Göker Y 1987. Fiziksel ve Mekanik Ağaç Teknolojisi. İ.Ü. Üniversite Yayın No: 3445, Orman Fakültesi Yayın No: 388, İstanbul.
  • Carrasco JC, Oporto GS, Zondlo J, Wang J 2013. Torrefaction Kinetics of Red Oak (Quercus rubra) in a Fluidized Reactor. BioResources. 8(4): 5067-5082.
  • Chandran AN, Rao SS, Varma YBG 1990. Fluidized Bed Drying of Solids. AlChE Journal. 36(1): 29-38.
  • Chen W, Kuo P 2010. A Study on Torrefaction of Various Biomass Materials and Its Impact on Lignocellulosic Structure Simulated by A Thermogravimetry. Energy Journal. 35(6): 2580-2586.
  • Ciolkosz D, Wallace R 2011. A Review of Torrefaction for Bioenergy Feedstock Production. Biofuels, Bioproducts and Biorefining. 5(3): 317-329.
  • Demirbaş A 2001. Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals. Energy Conversion and Management, 42(11): 1357-1378.
  • Emrich W 1985. Handbook of Charcoal Making: The Traditional and. Industrial Methods, Solar Energy R&D in the European. Community. Series E. Volume 7.
  • FAO 1987. Simple Technologies for Charcoal Making. Forest Products Division, FAO Forestry Paper 41, Rome.
  • Göker Y, Akbulut T 1994. Odun Kömürü ve Seyyar Madeni Kömür Ocaklarında Üretimi. İÜ Orman Fakültesi Dergisi. Cilt 44(3-4):35-49.
  • Kumar L, Koukoulas AA, Mani S, Satyavolu J 2016. Integrating Torrefaction in the Wood Pellet Industry: A Critical Review. Energy Fuels. 31: 37-54.
  • Magdziarz A, Wilk M, Straka R 2017. Combustion Process of Torrefied Wood Biomass. Journal of Thermal Analysis and Calorimetry. 127: 1339-1349.
  • Nahayo A , Ekise I, Mukarugwiza A 2013. Comparative Study on Charcoal Yield Produced by Traditional and Improved Kilns: A Case Study of Nyaruguru and Nyamagabe Districts in Southern Province of Rwanda. Energy and Environment Research. 3(1): 40-48.
  • Pimchuai A, Dutta A, Basu P 2010. Torrefaction of Agricultural Residue to Enhance Combustible Properties. Energy Fuel Journal. 24(9): 4638-4645.
  • Prins MJ, Ptasinski KJ, Janssen FJJG 2006. More Efficient Biomass Gasification via Torrefaction. Energy Fuels Journal. 31(15): 3458-3470.
  • Rokni E, Ren X, Panahi A, Levendis YA 2018. Emissions of SO2, NOx, CO2, and HCl from Co-firing of Coals with Raw and Torrefied Biomass Fuels. Fuel. 211: 363-374.
  • Rousset P, Davrieux F, Macedo L, Perre´ P 2011. Characterisation of the Torrefaction of Beech Wood using NIRS: Combined Effects of Temperature and Duration. Biomass and Bioenergy Journal. 35(3): 1219-1226.
  • Sadaka S, Negi S 2009. Improvements of Biomass Physical and Thermochemical Characteristics via Torrefaction Process. Environmental Progress and Sustainable Energy, AlChE Journal. 28(3): 427-434.
  • Strandberg M 2015. From Torrefaction to Gasification - Pilot Scale Studies for Upgrading of Biomass. Doktora Tezi. Department of Applied Physics and Electronics, Umeå Üniversity, İsveç.
  • Sözen E, Gündüz G, Aydemir D, Güngör E 2017. Biyokütle Kullanımının Enerji, Çevre, Sağlık ve Ekonomi Açısından Değerlendirilmesi. Bartın Orman Fakultesi Dergisi. 19(1): 148-160.
  • Sümer SK, Kavdır Y, Çiçek G 2016. Türkiye’de Tarımsal ve Hayvansal Atıklardan Biyokömür Üretim Potansiyelinin Belirlenmesi. KSÜ Doğa Bilimleri Dergisi. 19(4): 379-387.
  • Waje SS, Patel AK, Thorat BN, Mujumdar AS 2006. An Experimental Study of the Thermal Performance of a Screw Conveyor Dryer. Drying Technology. 24(3): 293- 301.
  • Yanık J, Uçar S 2016. Sürdürülebilir Kaynak Olarak Biyokömür. TÜBİTAK 1001 Proje Raporu. Proje No: 114M001.
  • Zwart RWJ, Boerrigter H, Drift AVD 2006. The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer-Tropsch Products. Energy Fuels Journal. 20(5): 2192-2197.
Primary Language tr
Subjects Agriculture
Journal Section RESEARCH ARTICLE
Authors

Orcid: 0000-0001-9977-859X
Author: Türkan AKTAŞ (Primary Author)
Institution: NAMIK KEMAL ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-6717-2718
Author: Tolga BATUR
Institution: NAMIK KEMAL ÜNİVERSİTESİ
Country: Turkey


Thanks Bu makale Tolga BATUR’un yüksek lisans tezinden türetilmiştir (This paper was derived from Tolga BATUR’s master thesis).
Dates

Publication Date : October 31, 2019

APA AKTAŞ, T , BATUR, T . (2019). Bir Torefikasyon Reaktörünün Geliştirilmesi ve Kızıl Meşe “Quercus Rubra” Kullanılarak Farklı Torefikasyon Sıcaklıklarında Elde Edilen Biyokömür Yakıt Özelliklerinin Saptanması. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi , 22 (5) , 751-762 . DOI: 10.18016/ksutarimdoga.vi.485914