Year 2018, Volume 21 , Issue 2, Pages 126 - 130 2018-04-30

Borik Asit’in Farklı Gelişim Evrelerindeki Drosophila melonagaster’in Dış İskeleti Üzerine Etkisi
The Effect of Boric Acid on The External Skeleton of Drosophila melonagaster at Different Developmental Stages

Eda GÜNEŞ [1] , Durmus SERT [2]


Hedef olmayan organizmalar üzerinde daha az toksik etkiye sahip insektisit kullanımı, tarımsal zararlılarla mücadelede yaygınlaşmaktadır. Eklembacaklı canlılarda kutikul adı verilen koruyucu bir dış iskelet bulunmaktadır. Çalışmamızda, Drosophila melanogaster'in larva, pupa ve ergin gelişimi boyunca dış iskelete Borik asit (BA)'in etkisini anlamak için tekstür analizi tekniği kullanılmıştır. Pup ve larva periyodunun aksine, BA dozajı ne kadar yüksek olursa sertlik o kadar artmıştır. Bu çalışma ile, tek başına kullanımı uygun olmasa da tekstür analizi gibi yaklaşımların biyolojik örneklerin analizinde uygulanabilir ek bir yöntem olduğunu göstermiştir.

The use of insecticides with less toxic effect on non-target organisms are widely used to combat agricultural pests. Arthropods have a protective exoskeleton called cuticle. In our study, a texture analysis technique was used to identify the effect of Boric acid (BA) during development on the larval, pupal and adult exoskeleton of Drosophila melanogaster. The higher the dosage of the BA, the stiffness increased so much unlike the pupa and larval period. This study has shown that such as textural analysis approaches are an additional method for analyzing biological samples, although not suitable for use alone.

  • Andersen SO 1979. Biochemistry of the Insect Cuticle. Annual Review of Entomology, 24: 29-61.
  • Apple RT, Fristrom JW 1991. 20-Hydroxyecdysone îs Required for, and Negatively Regulates, Transcription of Drosophila Pupal Cuticle Protein Genes. Developmental Biology, 146: 569-582.
  • Altun D 2007. Usnea longissima Ach. Likeninin Drosophila melanogaster’in çeşitli gelişim parametreleri ve ömür uzunluğu üzerine etkileri. Atatürk Üniversitesi Fen Bil. Ens., Biyoloji ABD, Yüksek Lisans Tezi, 27-28.
  • Cohen E 1987. Chitin Biochemistry: Synthesis and Inhibition. Annual Review of Entomology, 32: 71-93.
  • Çalışkan M, Yavuz Kocaman A 2002. Drosophila Genetiği. Mustafa Kemal Üniversitesi, Fen-Edebiyat Fakültesi Biyoloji Bölümü Genetik Laboratuar Kılavuzu, Hatay.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz F 1987. Araştırma ve Deneme Metotları. Ankara Üniversitesi, Ziraat Fakültesi Yayınları, Ankara, 381s.
  • EFSA 2004. Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a Request from the Commission Related to the Tolerable Upper Intake Level of Boron (Sodium Borate And Boric Acid) (Request N_ EFSAQ- 2003-018). European Food Safety Authority Journal, 80: 1-22.
  • Fontaine EI, Zabala F, Dickinson MH, Burdick JW 2009. Wing and Body Motion During Flight Initiation in Drosophila Revealed by Automated Visual Tracking. The Journal of Experimental Biology, 212: 1307-1323.
  • Gangishetti U, Breitenbach S, Zander M, Saheb SK, Müller U, Schwarz H, Moussian B 2009. Effects of Benzoylphenylurea on Chitin Synthesis and Orientation in the Cuticleof the Drosophila Larva. European Journal of Cell Biology,88:167-180.
  • Güneş E, Büyükgüzel E 2017. Oxidative Effects of Boric Acid on Different Developmental Stagesof Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Türkiye Entomoloji Derneği Dergisi, 41(1): 3-15.
  • Güneş E, Şimşek Sezer EN, Bozkurt M, Uysal M 2015.The Determinationof Boric Acid Effects on Different Developmental Stages of Drosophila melanogaster by Sds-Page. Journal of Biochemistry International, 1(1): 1-5.
  • Güneş E 2015. Drosophila melanogaster'deYulaf Unu (Avena sativa L.)'nun Total Oksidatif Stres Üzerinde Etkisi. Anadolu Doğa Bilimleri Dergisi, 6(2): 134-140.
  • Güneş E 2013. Borik Asitin Drosophila melanogaster’in Meigen (Diptera: Drosophiladae) Bazı Biyolojik Özellikleri ve Antioksidan Enzim Aktiviteleri Üzerine Etkisi. BEÜN Fen Bil. Ens.,Biyoloji ABD, Doktora Tezi.
  • Habes D, Morakchi S, Aribi N, Farine JP, Soltani N 2006. Boric Acid Toxicity to the German cockroach, Blattella germanica: Alterations in Midgut Structure, and Acetylcholinestrease and Glutathione S-transferase Activity. Pesticide Biochemistry and Physiology, 84: 17-24.
  • Heindel J, Fail P, George J, Grizzle T 1997. Reproduction Toxicology of Boric Acid. Environmental Health Perspectives, 105: 275-276.
  • Hiruma K, Hardie J, Riddiford LM 1991. Hormonal Regulation of Epidermal Metamorphosis in Vitro: Control of Expression of a Larval Specific Cuticle Gene. Developmental Biology, 144: 369-378.
  • Hopkins TL, Kramer KJ 1992. Insect Cuticle Sclerotization. Annual Review of Entomology, 37:273-302.
  • Kaya B, Yanıkoglu A, Creus A, Marcos R 2000. The Use of The Drosophila Wing Spot Test in The Genotoxicity Testing of Different Herbicides. Environmental and Molecular Mutagenesis, 36: 40-46.
  • Kılınçer N, Güz N 2010. Ephestia kuehniella’da Transferin Geninin Moleküler Karakterizasyonu ve Savunma Reaksiyonlarındaki Rolü Üzerinde Araştırmalar.Ankara Üniversitesi Bilimsel Araştırma Projesi Kesin Raporu, Proje No: 08B4347005.
  • Kramer KJ, Hopkins TL, Schaefer J 1995. Applications of Solids NMR to the Analysis of Insect Sclerotized Structures. Insect Biochemistry and Molecular Biology, 25: 1067-1080.
  • Kohane M, Daugela A, Kutomi H, Charlson L, Wyrobek A, Wyrobek J 2003. Nanoscale in Vivo Evaluation of the Stiffness of Drosophila melanogaster Integument During Development. Journal of Biomedical materials research, 66A(3): 633-642.
  • Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, Theopold U 2007. A Role for Hemolectin in Coagulation and Immunity in Drosophila melanogaster. Developmental and Comparative Immunology, 31: 1255-1263.
  • Lucero HA, Kuranda MJ, Bulik DA 2002. A non radioactive, high through put assay for chitinsynthase activity. Analytical Biochemistry, 305: 97-105.
  • Majtan J, Bilikova K, Markoviˇc O, Grof J, KoganG, Simuth J 2007. Isolation and Characterization of Chitinfrom Bumble bee (Bombusterrestris). International Journal of Biological Macromolecules, 40 : 237-241.
  • Merzendorfer H, Zimoch L 2003. Chitin Metabolism in Insects: Structure, Function and Regulationof Chitin Synthases and Chitinases. Journal of Experimental Biology, 206: 4393-4412.
  • Moussian B, Schwarz H, Bartoszewski S, Nüsslein-Volhard C 2005. Involvement of Chitin in Exoskeleton Morphogenesisin Drosophila melanogaster. Journal of Morphology, 264(1): 117-130.
  • Nemtsev S, Zueva OY, Khismatullin RG, Khismatullin MR, Varlamov VP 2001. Bees As Potential Source of Chitosan. Proceedings of the 37th International Apicultural Congress, APIMONDIA.
  • Ostrowski S, Dierick HA, Bejsovec A 2002. Genetic Control of Cuticle Formation DuringEmbryonic Development of Drosophila melanogaster. Genetics, 161:171-182.
  • Payre F 2004. Genetic Control of Epidermis Differentiation in Drosophila. International Journal of Developmental Biology, 48: 207-215.
  • Petkau G, Wingen C, Jussen LC, Radtke T, Behr M 2012. Obstructor-a is Required for Epithelial Extracellular Matrix Dynamics, Exoskeleton Function, and Tubulogenesis. Journal of Biological Chemistry, 287(25): 21396-21405.
  • Rogina B, Reenan RA, Nilsen SP, Helfand SL 2000. Extended Life-Span Conferred by Cotransporter Gene Mutationsin Drosophila. Biogerontology Science, 290:2137-2140.
  • Sarıkaya R, Solak K 2003. Benzoikasit'in Drosophila melanogaster'de Somatik Mutasyon ve Rekombinasyon Testi ile Genotoksisitesinin Araştırılması. Gazi Eğitim Fakültesi Dergisi, 19(32).
  • Shlemov A, Golyandina N, Holloway D, Spirov A 2014. Shaped Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Drosophila Embryo. Bio Med Research International, 1-14.
  • Sugumaran M, Giglio L, Kundzicz H, Saul S, Semensi V 1992. Studies on the Enzymes Involved in Puparial Cuticle Sclerotizationin Drosophila melanogaster. Archives of Insect Biochemistry and Physiology,19:271-283.
  • Sugumaran M 1998. Unified Mechanism for Sclerotization of Insect Cuticle. In: Evans PD, editor. Advances in insectphysiology, Academic Press, New York, 229-334s.
  • Tellam RL 1996. The Peritrophic Matrix (Biology of the Insect Midgut: Ed. Lehane MJ, Billingsley PF) Cambridge: Chapmanand Hall, 86-114.
  • Tonning A, Hemphala J, Tang E, Nannmark U, Samakovlis C, Uv A 2005. A Transient Luminal Chitinous Matrixis Required to Model Epithelial Tube Diameter in the Drosophila Trachea. Developmental Cell, 9: 423-430.
  • Weir RJJ, Fisher RS 1972. Toxicologic Studies on Boraxand Boric Acid. Toxicology and Applied Pharmacology, 23: 351-364.
  • Wright TR 1987. The Genetics of Biogenic Amine Metabolism, Sclerotization, and Melanization in Drosophila melanogaster. Advances in Genetics, 24:127-222.
  • Zhang X, Zhu KY 2013. Biochemical characterization of chitinsynthase activity and inhibition in the African malari amosquito, Anopheles gambiae. Insect Sci., 20 (2): 158-166.
Primary Language tr
Subjects Science
Journal Section RESEARCH ARTICLE
Authors

Orcid: 0000-0000-0000-0000
Author: Eda GÜNEŞ (Primary Author)

Orcid: 0000-0000-0000-0000
Author: Durmus SERT

Dates

Application Date : April 27, 2017
Acceptance Date : May 29, 2017
Publication Date : April 30, 2018

APA Güneş, E , Sert, D . (2018). Borik Asit’in Farklı Gelişim Evrelerindeki Drosophila melonagaster’in Dış İskeleti Üzerine Etkisi . Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi , 21 (2) , 126-130 . Retrieved from http://dogadergi.ksu.edu.tr/en/pub/issue/36752/419233