Year 2018, Volume 21 , Issue 2, Pages 220 - 228 2018-04-30

Farklı Mikroalg ve Ticari Yemlerin Rotifer (Brachionus plicatilis, Müller 1786) Büyümesi, Protein ve Yağ Asidi Profiline Etkisi
Effect of Different Microalgae and Commercial Feeds on Growth, Protein and Fatty Acid Profile of Rotifer (Brachionus plicatilis)

Kamil Mert ERYALÇIN [1]


Rotifer (Brachionus plicatilis) deniz balıkları yetiştiriciliğinde larval dönemde kullanılan ilk canlı yemdir. Bu dönemde besince zengin ve kaliteli rotifer kullanımı larvaların hayatta kalma oranlarının yüksek olmasında rol oynamaktadır. Rotiferler esansiyel yağ asitleri, amino asitler, vitamin ve mineraller bakımından deniz balığı larvalarının doğal besinleri olan kopepodlara kıyasla besince daha eksiktir. Bu sebeple, rotifer kültüründe kısa sürede rotifer sayısının çoğaltılması ve besin değeri yüksek rotiferler elde edilmesi önem göstermektedir. Bu çalışmadaki amaç, taze olarak kültür edilen mikroalgler (Chlorella vulgaris ve Dunaliella salina) ve ticari rotifer yemleri (Ekmek mayası®, S.parkle® ve Ekmek mayası+W-3®) ile beslenen rotiferlerin büyüme performansı, besin maddeleri ve yağ asidi kompozisyonunlarının incelenmesidir. Chlorella vulgaris ve Dunaliella salina sırasıyla 3N-BBM+V ve f/2 besi yerlerinde kültür edilmiş ve 7 gün süresince 5 deney yemi ile rotiferler beslenmiştir. Deney sonunda, ‘’Ekmek mayası+W-3’’ karışımı ile beslenen rotifer grubu en yüksek rotifer yoğunluğuna ulaşmıştır. Chlorella vulgaris ile beslenen rotiferler yüksek oranda oleik asit içermiştir. Ekmek mayası ile beslenen rotifer grubunda ise EPA yüksek oranda bulunmuştur (P<0.05). Rotifer kültüründe ticari yemlerin rotiferlerin büyüme oranlarını olumlu etkilediği, bununla birlikte besin kalitesi yönünden mikroalglerin halen öneme sahip olduğu ve esansiyel besin maddelerini sağladıkları çalışmamızda görülmüştür.

Rotifer is the first live prey for marine fish larvae. At that stage, the quality of live prey such as rotifer (Brachionus plicatilis), which is the first feed of larvae, play an important role in survival. Rotifers are known to lack essential fatty acids (EFA), essential amino acids (EAA), vitamins and minerals in comparison to the copepods, the natural feed of marine fish larvae. Therefore, before the enrichment process, increasing growth rate of rotifer in short time with high nutritional value is very important. In this study, effects of two freshly cultured microalgae (Chlorella vulgaris and Dunaliella salina) and three commercial rotifer feeds (Beaker’s yeast®, S.parkle® and Beaker’s yeast+W-3®) were evaluated for growth performance, proximate composition and fatty acid profile of rotifers. Chlorella vulgaris ve Dunaliella salina were cultivated in 3N-BBM+V and f/2 medium respectively. Rotifers were fed with five experimental diets during 7 days of feeding experiment. At the end of the experiment, rotifers fed ‘’Beaker’s yeast+W3’’ showed highest rotifer population among experimental groups. Oleic acid level was found higher in rotifer fed Chlorella vulgaris group and another important fatty acid EPA was found higher in rotifer fed Beaker’s yeast. In conclusion, that commercial products have high potential on the numbers of produced rotifers, however, microalgae are still important for obtaining high essential fatty acid profile in terms of delivering essential nutrients.

  • AOAC 1998a. Official method 980.46, Moisture in meat. Meat and meat products (Official Methods of Analysis of AOAC International: Ed. Soderberg, D.L. Gaitherbury, Maryland, USA).
  • AOAC 1998b. Official method 955.04, Nitrogen (total) in seafood. Fish and other marine products (Official methods of analysis of AOAC International: Ed: James M. Hungerford and P. Cunniff).
  • Arndt C, Sommer U 2014. Effect of algal species and concentration on development and fatty acid composition of two harpacticoid copepods, Tisbe sp. and Tachidius discipes, and a discussion about their suitability for marine fish larvae. Aquaculture Nutrition, 20(1): 44-59.
  • Borowitzka MA, 2013. High-value products from microalgae their development and commercialisation. Journal of Applied Phycology, 25(3): 743-756.
  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA 1997. Nutritional properties of microalgae for mariculture. Aquaculture, 151(1): 315-331. Christie WW 1982. Lipid Analysis. Pergamon Press, Oxford, UK.
  • Dhert P, Rombaut G, Suantika G, Sorgeloos P 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture, 200(1): 129-146.
  • Dhert P, King N, O'Brien E 2014. Stand-alone live food diets, an alternative to culture and enrichment diets for rotifers. Aquaculture, 431: 59-64.
  • Drillet G, Frouël S, Sichlau MH, Jepsen PM, Højgaard JK, Joarder AK, Hansen BW 2011. Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture, 315(3): 155-166.
  • Ferreira M, Maseda A, Fábregas J, Otero A 2008. Enriching rotifers with “premium” microalgae. Isochrysis aff. galbana clone T-ISO. Aquaculture, 279(1), 126-130.
  • Folch JL, Lees M, Stanley GHS 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226:497-509.
  • Ganuza E, Benitez-Santana T, Atalah E, Vega-Orellana O, Ganga R, Izquierdo M 2008. Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture, 277:109-116.
  • Hayashi M, Yukino T, Watanabe F, Miyamoto E, Nakano Y 2007. Effect of vitamin B12-enriched thraustochytrids on the population growth of rotifers. Bioscience, biotechnology, and biochemistry, 71(1): 222-225.
  • Hemaiswarya S, Raja R, Kumar RR, Ganesan V, Anbazhagan C 2011. Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27(8): 1737-1746.
  • Hirayama K, Maruyama I, Maeda T 1989. Nutritional effect of freshwater Chlorella on growth of the rotifer Brachionus plicatilis. Hydrobiologia, 186(1): 39-42.
  • IUPAC 1987. Standart Methods for The Analysis of Oils, Fats and Derivatives. 6th Edition (Fifth Edition Method II.D.19), Pergamon Press, Oxford, 96-102.
  • Izquierdo MS, Watanabe T, Takeuchi T, Arakawa T, Kitajima C 1990. Optimal EFA levels in Artemia to meet the EFA requirements of red seabream (Pagrus major) (The Current Status of Fish Nutrition in Aquaculture: Ed. by Takeda M, Watanabe T) 221–232.
  • Izquierdo MS 2005. Essential fatty acid requirements in Mediterranean fish species. Cah. Options Mediterr, 63: 91-102.
  • Lee YK 2001. Microalgal mass culture systems and methods: their limitation and potential. Journal of Applied Phycology, 13(4): 307-315.
  • Lee BI, Kim DJ, Kim SK, Lee NS, Hagiwara A, Kwon ON, Park HG, Park JC 2016. Optimal Food and Concentration for Growth of Small Rotifer, Proales similis. Journal of Fisheries and Marine Sciences Education, 28(2): 315-322.
  • Kennari AA, Ahmadifard N, Seyfabadi J, Kapourchali MF 2008. Comparison of growth and fatty acids composition of freshwater rotifer, Brachionus calyciflorus Pallas, fed with two types of microalgae at different concentrations. Journal of the World Aquaculture Society, 39(2): 235-242.
  • Kim HJ, Nakamura K, Hagiwara A 2014. Dietary effect of selenium‐fortified Chlorella vulgaris on reproduction of Brachionus plicatilis species complex (Rotifera: Monogononta). International Review of Hydrobiology, 99(1-2): 161-165.
  • Kobayashi T, Nagase T, Hino A, Takeuchi T 2008. Effect of combination feeding of Nannochloropsis and freshwater Chlorella on the fatty acid composition of rotifer Brachionus plicatilis in a continuous culture. Fisheries science, 74(3): 649-656.
  • Li K, Olsen Y 2015. Effect of enrichment time and dietary DHA and non-highly unsaturated fatty acid composition on the efficiency of DHA enrichment in phospholipid of rotifer (Brachionus Cayman). Aquaculture, 446: 310-317.
  • Maruyama I, Nakao T, Shigeno I, Ando Y, Hirayama K 1997. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia, 358(1-3): 133-138.
  • Maruyama I, Yamamoto S, Hayashi M, Murata O 2006. Rotifers fed with n-3 highly unsaturated fatty acid-enriched Chlorella vulgaris are suitable for the rearing of larval red sea bream Pagrus major. Aquaculture Science, 54(2): 229-230.
  • Nanton DA, Castell JD 1999. The effects of temperature and dietary fatty acids on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture 175: 167–181.
  • Nhu CV 2004. A Comparison of yield and quality of the rotifer (Brachionus plicatilis-L. Strain) fed different diets under aquaculture conditions, Vietnam. Asian Fisheries Science, 17: 357-363.
  • Nordgreen A, Penglase S, Hamre K 2013. Increasing the levels of the essential trace elements Se, Zn, Cu and Mn in rotifers (Brachionus plicatilis) used as live feed. Aquaculture, 380:120-129.
  • Olsen Y, Van der Meeren T, Reitan KI 2004. First Feeding Technology (Moksness E, Kjørsvik E, Olsen Y) 279-333.
  • Qie G, Reitan KI, Olsen Y 1994. Comparison of rotifer culture quality with yeast plus oil and algal-based cultivation diets. Aquaculture International, 2(4): 225-238.
  • Penglase S, Hamre K, Sweetman JW, Nordgreen A 2011. A new method to increase and maintain the concentration of selenium in rotifers (Brachionus spp.). Aquaculture, 315(1): 144-153.
  • Pulz O, Gross W 2004. Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology, 65(6): 635-648.
  • Ribeiro ARA, Ribeiro L, Dinis MT, Moren M 2011. Protocol to enrich rotifers (Brachionus plicatilis) with iodine and selenium. Aquaculture Research, 42(11): 1737-1740.
  • Reitan KI, Rainuzzo JR, Øie G, Olsen Y 1993. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture, 118(3): 257-275.
  • Sargent JR, McEvoy LA, Bell JG 1997. Requirements, presentation and sources of Polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155: 117–127.
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2): 87-96.
  • Sayın S, Ișık O, Polat S 2000. The feeding of the rotifer Brachionus plicatilis Müller, 1786 with different microalgae species, Isochrysis galbana Parke, Tetraselmis chuii (Bucker), Rhinomonas reticulata (Lucas) Novamizo, Pavlova lutheri (Droop) Green and Chlorella vulgaris (Beijerinck). Turkish Journal of Biology, 24: 87-95.
  • Zaki MI, Saad H 2010. Comparative study on growth and survival of larval and juvenile Dicentrarchus labrax rearing on rotifer and Artemia enriched with four different microalgae species. African Journal of Biotechnology, 9(24): 3676-3688.
Primary Language tr
Subjects Science
Journal Section RESEARCH ARTICLE
Authors

Orcid: 0000-0000-0000-0000
Author: Kamil Mert ERYALÇIN (Primary Author)

Dates

Application Date : April 11, 2017
Acceptance Date : June 19, 2017
Publication Date : April 30, 2018

APA Eryalçın, K . (2018). Farklı Mikroalg ve Ticari Yemlerin Rotifer (Brachionus plicatilis, Müller 1786) Büyümesi, Protein ve Yağ Asidi Profiline Etkisi . Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi , 21 (2) , 220-228 . DOI: 10.18016/ksudobil.305572