Research Article
BibTex RIS Cite

Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi

Year 2018, Volume: 21 Issue: 4, 520 - 528, 31.08.2018
https://doi.org/10.18016/ksudobil.359165

Abstract

Metal
iyonları, kalıcı etkilerinden dolayı hem canlı sistemler hem de çevre sağlığı
yönünden önem taşımakta olup, belirli bir sınırı aşınca da son derece toksik
etki gösterirler. Özellikle ağır metaller bu konuda en riskli grubu oluşturur.
Bu çalışmada Saccharomyces cerevisiae'da,
mangan (Mn), kadmiyum (Cd), demir (Fe) ve magnezyumun (Mg) antioksidan enzimler
üzerindeki etkisinin ortaya konması amaçlanmıştır.
Deney materyali olan S. cerevisiae FMC16, YEDP besiyerinde
çoğaltılmış ve geliştirilmiştir. Uygulama grupları için; Mn, Cd, Fe ve Mg
metallerinin her biri son derişimi 100 mL’de 1 mg olacak şekilde kültür
ortamına ilave edilmiş ve uygulama yapılan (deneysel grup) ve yapılmayan
(kontrol grubu) mayalarda süperoksit dismutaz (SOD), glutatyon S-transferaz
(GST) ve glutatyon redüktaz (GSH-Rd) enzim aktiviteleri spektrofometrik
yöntemlerle belirlenmiştir. Sonuç olarak; kontrol grubuna göre tüm deneysel
gruplarda SOD aktivitesinin arttığı ve bu artışın istatiksel açıdan önemli
olduğu ( p<0.001), ve özellikle Cd ile muamele edilen grupta SOD enzim
aktitesi artışının daha belirgin olduğu gözlemlenmiştir. GST aktivitesinin
uygulama yapılan tüm gruplarda kontrol grubuna göre arttığı (p<0.0001) ve Fe
ile muamele edilen mayalarda GST enzim aktivitesindeki artışın diğer gruplara
oranla fazla olduğu, GSH-Rd aktivitesinin ise bütün metal uygulama gruplarında
kontrole göre azaldığı ve bu azalmanın Cd grubunda oldukça belirgin olduğu
saptanmıştır (p<0.0001). Sonuçlar; S.
Cerevisae
’da farklı metallerin antioksidan savunma sistemi üzerinde farklı
etkilere sahip olduğunu göstermiştir.

References

  • Adamis PDB, Gomes DS, Pereira MD, Mesquita JF, Pinto MLCC, Panek AD, Eleutherıo ECA 2004. The effect of superoxide dismutase deficiency on cadmium stress. Jornal of Biochemical and Molecular Toxicology, 18: 1–6 (2004).
  • Ajila CM, Prasada Rao UJS 2008. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Magnifera indica L. peel extract. Food and Chemical Toxicology, 46: 303-309.
  • Asagba SO, Isamah GK, Ossai EK, Ekakitie, AO 2002. Effect of oral exposure to cadmium on the levels of vitamin A and lipid peroxidation in the eye. Bullet in Enviromental Contamination and Toxicology, 68: 18-21.
  • Atkins P, Jones L 1997. Chemistry—Molecules, Matter and Change, 3rd ed., W. H. Freeman, New York.
  • Bast A, Haenen GRMM, Cees JAD 1997. Oxidants and antioxidants: State of the art. The American Journal of Medicine, 91 (Supll 3C): 30,3C-2S_3C-13S.
  • Bliefert C 2004. Umweltchemie. Auflage,Wiley-UCH.
  • Cardoso LA, Ferreira ST, Hermes-Lima M 2008. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comparative Biochemistry and Physiology Part A, 151: 313–321.
  • Carlberg I, Mannervik B 1985. Glutathione reductase. Methods in Enzymology, 113: 484-490.
  • Dönmez G, Aksu Z 1999. The effect of copper(II) ions on growth and bioaccumulation properties of some yeasts. Process Biochemistry, 35: 135-142
  • Grant R, Grant C (Eds.) 1987. Grant and Hackh’s Chemical Dictionary, McGraw-Hill, New York.
  • Guan-Zetic VG, Stehlik-Tomas V, Grba S, Lutilsky L, Kozlek D 2001. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass. Journal of Biosciences, 26 (2): 217–223.
  • Gülçin I, Küfrevioğlu ÖI, Oktay M, Büyükokuroğlu ME 2004. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90: 205–215.
  • Habig WH, Pabst MJ, Jakoby WB 1974. Glutathione-S-Transferases: The First Enzymatic Steo İn Mercapturic Acid Formation. Journal of Biological Chemistry, 249: 7130-7139.
  • Jarup L 2003. Hazards of heavy metal contamination. British Medical Bulletin. 68:167-82.
  • Jeong JB, Park JH, Lee HK, Ju SY, Hong SC, Lee JR, Chung GY, Lim JH, Jeong HJ 2009. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food and Chemical Toxicology, 47: 525-529.
  • Lee JH, Choi IY, Kil IS, Kim SY, Yang ES, Park J 2001. Protective role of superoxide dismutases against ionizing radiation in yeast. Biochimica et Biophysica Acta, 1526: 191–198.
  • Lozet J, Mathieu C 1991. Dictionary of Soil Science, 2nd ed., Balkema AA, Rotterdam.
  • Marklund SL, Westman NG, Roos G, Carlsson J 1984. Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines. Radiation Research, 100: 115-123.
  • Morris C (Ed.) 1992. Academic Press Dictionary of Science and Technology, Academic Press, San Diego.
  • Muthukumar K, Nachiappan V 2010. Cadmium-induced oxidative stress in Saccharomyces cerevisae. Indian Journal of Biochemistry & Biophysic, 47: 383-387.
  • Nedjoud G, Fadila K, Mouna A, Zohra G, Sana G 2013. Effect of zinc on growth, metabolism and activity of antioxidant enzymes in the yeast Saccharomyces cerevisiae. Global Journal Of Biodiversity Science And Management, 3(2): 243-248
  • Nostrand V 1964. International Encyclopaedia of Chemical Science. Van Nostrand, New Jersey.
  • Özbolat G, Tuli A 2016. Ağır Metal Toksisitesinin İnsan Sağlığına Etkileri. Arşiv Kaynak Tarama Dergisi, 25(4): 502-521.
  • Parker PS (Ed.) 1989. McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed., McGrawHill, New York.
  • Sairam RK, Rao KV, Srivastava GC 2002. Differential response of wheat genotypes to term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037– 46.
  • Scott MD, Meshnick SR, Eaton JW 1989. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. Journal of Biological Chemistry, 264: 2489–2501.
  • Stoll A, Duncan JR 1996. Enhanced heavy metal removal from wastewater by viable, glucose pretreated Sacchromyces cerevisiae cells. Biotechnology Letters, 18(10): 1209-1212.
  • Streit B 1994. Lexikon der Okotoxikologie, VCH, Weinheim.
  • Sun Y, Oberley LW, Li Y 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34: 497-500.
  • Thornton I 1995. Metals in the Global Environment—Facts and Misconceptions, ICME, Ottawa.
  • Villegas LB, Amoroso MJ, De Figueroa LIC 2009. Responses of Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11 to copper stress. Journal of Basic Microbiology, 49: 395-403.

The Effects of Mn, Mg, Cd, Fe Metals on The Avtivitiy of Antioxidant Enzymes in Saccharomyces cerevisiae

Year 2018, Volume: 21 Issue: 4, 520 - 528, 31.08.2018
https://doi.org/10.18016/ksudobil.359165

Abstract

Metal ions, despite being important for both live systems and
environmental health due to their permanent effects, and may become extremely
toxic effect if they exceed a certain limit. Especially heavy metals are
considered as the most risky group in this regard. In this study it is intended
to reveal the effect of manganese (Mn), cadmium (Cd), iron (Fe) and magnesium
(Mg) on antioxidant enzymes in Saccharomyces cerevisiae. S. cerevisiae FMC16,
the strain used in this experiments, was proliferated and developed on YEDP
medium. For application groups; Mn, Cd, Fe and Mg metals were separately added
to the culture medium at the final concentration of 1 mg at 100 mL. Superoxide
dismutase (SOD), glutathione S-transferase (GST) and glutathione reductase
(GSH-Rd) enzyme activities were determined spectrophotometrically in the
treated (experimental group) and non-treated (control group) yeasts. As a
result; it was observed that SOD activity was increased and the increase was
statistically significant (p <0.001) in all experimental groups compared to
the control group altough rise of SOD enzyme activity was more prominent
especially in the group treated with Cd. While the activity of GST was found to
be higher in all treated groups compared to the control (p <0.0001) and the
increase in Fe-treated yeast was observed to be higher than in the other
groups, the level of GSH-Rd decreased in all groups compared to the control,
and it was especially prominent in the Cd group (p <0.0001).  The results showed that, different metals
have different effects on the antioxidant defense system in S. cerevisae.

References

  • Adamis PDB, Gomes DS, Pereira MD, Mesquita JF, Pinto MLCC, Panek AD, Eleutherıo ECA 2004. The effect of superoxide dismutase deficiency on cadmium stress. Jornal of Biochemical and Molecular Toxicology, 18: 1–6 (2004).
  • Ajila CM, Prasada Rao UJS 2008. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Magnifera indica L. peel extract. Food and Chemical Toxicology, 46: 303-309.
  • Asagba SO, Isamah GK, Ossai EK, Ekakitie, AO 2002. Effect of oral exposure to cadmium on the levels of vitamin A and lipid peroxidation in the eye. Bullet in Enviromental Contamination and Toxicology, 68: 18-21.
  • Atkins P, Jones L 1997. Chemistry—Molecules, Matter and Change, 3rd ed., W. H. Freeman, New York.
  • Bast A, Haenen GRMM, Cees JAD 1997. Oxidants and antioxidants: State of the art. The American Journal of Medicine, 91 (Supll 3C): 30,3C-2S_3C-13S.
  • Bliefert C 2004. Umweltchemie. Auflage,Wiley-UCH.
  • Cardoso LA, Ferreira ST, Hermes-Lima M 2008. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comparative Biochemistry and Physiology Part A, 151: 313–321.
  • Carlberg I, Mannervik B 1985. Glutathione reductase. Methods in Enzymology, 113: 484-490.
  • Dönmez G, Aksu Z 1999. The effect of copper(II) ions on growth and bioaccumulation properties of some yeasts. Process Biochemistry, 35: 135-142
  • Grant R, Grant C (Eds.) 1987. Grant and Hackh’s Chemical Dictionary, McGraw-Hill, New York.
  • Guan-Zetic VG, Stehlik-Tomas V, Grba S, Lutilsky L, Kozlek D 2001. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass. Journal of Biosciences, 26 (2): 217–223.
  • Gülçin I, Küfrevioğlu ÖI, Oktay M, Büyükokuroğlu ME 2004. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90: 205–215.
  • Habig WH, Pabst MJ, Jakoby WB 1974. Glutathione-S-Transferases: The First Enzymatic Steo İn Mercapturic Acid Formation. Journal of Biological Chemistry, 249: 7130-7139.
  • Jarup L 2003. Hazards of heavy metal contamination. British Medical Bulletin. 68:167-82.
  • Jeong JB, Park JH, Lee HK, Ju SY, Hong SC, Lee JR, Chung GY, Lim JH, Jeong HJ 2009. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food and Chemical Toxicology, 47: 525-529.
  • Lee JH, Choi IY, Kil IS, Kim SY, Yang ES, Park J 2001. Protective role of superoxide dismutases against ionizing radiation in yeast. Biochimica et Biophysica Acta, 1526: 191–198.
  • Lozet J, Mathieu C 1991. Dictionary of Soil Science, 2nd ed., Balkema AA, Rotterdam.
  • Marklund SL, Westman NG, Roos G, Carlsson J 1984. Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines. Radiation Research, 100: 115-123.
  • Morris C (Ed.) 1992. Academic Press Dictionary of Science and Technology, Academic Press, San Diego.
  • Muthukumar K, Nachiappan V 2010. Cadmium-induced oxidative stress in Saccharomyces cerevisae. Indian Journal of Biochemistry & Biophysic, 47: 383-387.
  • Nedjoud G, Fadila K, Mouna A, Zohra G, Sana G 2013. Effect of zinc on growth, metabolism and activity of antioxidant enzymes in the yeast Saccharomyces cerevisiae. Global Journal Of Biodiversity Science And Management, 3(2): 243-248
  • Nostrand V 1964. International Encyclopaedia of Chemical Science. Van Nostrand, New Jersey.
  • Özbolat G, Tuli A 2016. Ağır Metal Toksisitesinin İnsan Sağlığına Etkileri. Arşiv Kaynak Tarama Dergisi, 25(4): 502-521.
  • Parker PS (Ed.) 1989. McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed., McGrawHill, New York.
  • Sairam RK, Rao KV, Srivastava GC 2002. Differential response of wheat genotypes to term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037– 46.
  • Scott MD, Meshnick SR, Eaton JW 1989. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. Journal of Biological Chemistry, 264: 2489–2501.
  • Stoll A, Duncan JR 1996. Enhanced heavy metal removal from wastewater by viable, glucose pretreated Sacchromyces cerevisiae cells. Biotechnology Letters, 18(10): 1209-1212.
  • Streit B 1994. Lexikon der Okotoxikologie, VCH, Weinheim.
  • Sun Y, Oberley LW, Li Y 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34: 497-500.
  • Thornton I 1995. Metals in the Global Environment—Facts and Misconceptions, ICME, Ottawa.
  • Villegas LB, Amoroso MJ, De Figueroa LIC 2009. Responses of Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11 to copper stress. Journal of Basic Microbiology, 49: 395-403.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section RESEARCH ARTICLE
Authors

Oğuz Ayhan Kireçci

Publication Date August 31, 2018
Submission Date November 29, 2017
Acceptance Date February 12, 2018
Published in Issue Year 2018Volume: 21 Issue: 4

Cite

APA Kireçci, O. A. (2018). Mn, Cd, Fe ve Mg Metallerinin Saccharomyces cerevisiae Mayasında Antioksidan Enzim Aktiviteleri Üzerine Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 21(4), 520-528. https://doi.org/10.18016/ksudobil.359165


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149