Year 2020, Volume 23 , Issue 3, Pages 687 - 696 2020-06-30

Bazı Soya Fasulyesi [Glycine Max (L.) Merr.] Genotipleri Arasında Agronomik Özelliklerin ve ISSR Yönteminin Karşılaştırmalı Analizi
Comparative Analysis of Agronomic Traits and ISSR Method among Some Soybeans [Glycine Max (L.) Merr.] Genotypes

Emine ARSLAN [1] , Elif GÜLBAHÇE MUTLU [2] , Ömer DURSUN [3] , Seydi Ahmet BAĞCI [4]


Bu çalışmada, 12 soya fasulyesi genotipi arasındaki genetik çeşitliliği, rastlantısal basit dizi tekrarları (ISSR) ve agronomik özellikler kullanarak araştırdık. Bu genotiplerin yapraklarından DNA izole edildi. Moleküler karakterizasyon için, toplam 26 ISSR primeri ve sekiz agronomik özellik değerlendirildi. ISSR analizi 88 polimorfik bant ortaya çıkardı. ISSR analizine ve agronomik özelliklere göre genotipler arasındaki genetik çeşitlilik sırasıyla Nei homolojisi ve Euclidian mesafesine göre hesaplandı ve genetik benzerliği yansıtan dendrogramlar sırasıyla UPGMA ve NTSYSpc kullanılarak yapıldı. ISSR analizi için kullanılan Nei’nin homoloji katsayısı değerleri %78-84 arasında ve tarımsal veriler için kullanılan ortalama Euclidean mesafesi 1.96-9.77 arasında değişmiştir. Bu çalışmada değerlendirilen soya fasulyesi genotipleri oldukça benzer olmasına rağmen, dendrogramlar bu genotiplerin hem morfolojik hem de genetik olarak ayırt edilebileceğini göstermiştir.

In this study, the genetic diversity was investigated among 12 soybeans genotypes using inter simple sequence repeats (ISSR) and agronomic traits. DNA was isolated from the leaves of the genotypes. For molecular characterization, a total of 26 primers of ISSRs and eight agronomic characteristics were evaluated. ISSR analysis revealed 88 polymorphic bands. The genetic diversity among the genotypes according to ISSR analysis and agronomic traits were estimated based on Nei homology and Euclidian distance, respectively, and dendrograms reflecting genetic similarity were constructed using UPGMA and NTSYSpc, respectively. Nei’s homology coefficient values used for ISSR analysis ranged from 78%-84%, and the average Euclidean distance used for agronomic data ranged from 1.96-9.77. Although soybean genotypes evaluated in this study were highly similar, dendrograms showed that these genotypes could be distinguished both morphologically and genetically.

  • Bardak A, Bolek Y 2012. Genetic diversity of diploid and tetraploid cottons determined by SSR and ISSR markers. Turkish Journal of Field Crops, 17(2):139-144
  • Belaj A, Satovic Z, Cdpriani G, Baldoni L, Testolev R., Rallo L, Trujtllo I 2003. Comparative study of the discriming capacity of RAPD, AFLP and SSR markers and of their effectiveness inestablishing genetic relationships in olive. Theoretical and Applied Genetics, 107(4): 736-744.
  • Cardy BJ, Beversdorf WD 1984. A procedure for the starch gel electrophoretic detection of isozymes in soybean [Glycine max (L.) Merr.]. Dep. Crop Sci. Tech. Bull 119/8401. Univ. of Guelph, Ontario, Canada.
  • Chaudhary L, Sindhu A, Kumar M, Kumar R, Saini M 2010. Estimation of genetic divergence among some cotton varieties by RAPD analysis. In Journal of Plant Breeding and Crop Science, 2:39-43.
  • Doyle JJ, Doyle JL 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochemical Bulletin, 19(1): 11-15.
  • Erkılınç A, Karaca M 2005. Assessment of Genetic Variation in Some Cotton Varieties (Gossypium hirsutum L.) Grown in Turkey Using Microsatellite. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 18(2): 201-206.
  • FAO 2018. Food and Agriculture Organization of the United Nations. http://www.fao.org Erişim Tarihi: 27.12.2018
  • Gorman MB, Kiang YT 1977. Variety-specific electrophoretic variants of four soybean enzymes. Crop Science 17: 963-965
  • Hamrick JL, Godt MJW, Murawski DA, Loveless MD 1991. Correlations between species traits and allozyme diversity: implications for conservation biology. In: Genetic and conservation of rare plants (Falk DA and Holsinger KE, eds.). Oxford University Press, New York, 75-86.
  • Hussein EHA, Mohamed AA, Attia S, Adawy SS 2006. Molecular characterization and genetic relationships among cotton genotypes 1- RAPD, ISSR and SSR analysis. Arab Journal of Biotechnology, 9: 313-328.
  • Kwon YS, Ryu TH, Kim CH, Song ICH, Kim KM 2004. A Comparative Study of the RAPD and SSR Markers in Establishing a Genetic Relationship of the Various Types of Cucurbita. Korean Journal of Genetics, 26 (2): 115-122.
  • Liu B, Wendel JF 2001. Intersimple sequence repeat (ISSR) polymorphisms as a genetic marker system in cotton. Molecular Ecology Notes, 1(3): 205-208.
  • Mert, M., 2009. Lif Bitkileri. Nobel Yayın Dağıtım, 1446, 278 s, Ankara.
  • Mignouna HD, Abanf MM, Fagbemi SA 2003. A Comparative Assessment of molecular marker assays (AFLP, RAPD and SSR) for White yam (Dioscirea rotundata Poir )germ plasm characterisation. Annals of Applied Biology, 142 :269-276.
  • Nei M 1972. Genetic distance between populations. American Naturalist, 106: 283-292
  • Nei M, Li WH 1979. Mathematical model for studying variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci., 76: 5269-5273.
  • Peirce LC, Brewbaker JL 1973. Applications of isozyme analysis in horticultural science. Hort. Science, 8: 17-22
  • Pillay M, Myers GO 1999. Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers. Crop Science, November-December. 39:1881-1886.
  • Rana MK, Bhat KV 2004. A Comparison of AFLP and RAPD Markers for Genetic Diversity and Cultivar Identification in Cotton. J. Plant Biochemistry & Biotechnology, 13: 19-24.
  • Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH 1994. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics, 138:829-847.
  • Sammour RH 1991. Using electrophoretic techniques in varietal identification, biosystematic analysis, phylogenetic relations and genetic resources management. J. Islamic Acad. Sci., 4: 221-226.
  • Tanksley SD, Young ND, Peterson AH, Bonierbale MW 1989. RFLP mapping in plant breeding:new tools for old sciences. Biotechnology, 7:257-264.
  • TTSM 2018. Tohumluk Tescil ve Sertifikasyon Merkez Müdürlüğü. http://www.ttsm.gov.tr Erişim Tarihi: 27.12.2018
  • TÜİK 2018. Türkiye İstatistik Kurumu. http://www.tuik.gov.tr Erişim Tarihi: 27.12.2018
  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531–6535.
  • Zietkiewicz E, Rafalski A, Labuda D 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2):176-183
Primary Language en
Subjects Agriculture
Journal Section RESEARCH ARTICLE
Authors

Orcid: 0000-0002-0782-506X
Author: Emine ARSLAN (Primary Author)
Institution: Selçuk University
Country: Turkey


Orcid: 0000-0003-2391-2152
Author: Elif GÜLBAHÇE MUTLU
Institution: KTO KARATAY UNIVERSITY
Country: Turkey


Orcid: 0000-0001-5850-0452
Author: Ömer DURSUN
Institution: Selçuk University
Country: Turkey


Orcid: 0000-0002-6513-8890
Author: Seydi Ahmet BAĞCI
Institution: Sarayönü Vocational School
Country: Turkey


Supporting Institution Coordination Committee of Scientific Research Projects of Selçuk University
Project Number BAP: 11401025
Dates

Application Date : October 9, 2019
Acceptance Date : January 27, 2020
Publication Date : June 30, 2020

APA Arslan, E , Gülbahçe Mutlu, E , Dursun, Ö , Bağcı, S . (2020). Comparative Analysis of Agronomic Traits and ISSR Method among Some Soybeans [Glycine Max (L.) Merr.] Genotypes. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi , 23 (3) , 687-696 . DOI: 10.18016/ksutarimdoga.v23i53104.631286