Araştırma Makalesi
BibTex RIS Kaynak Göster

Süne, Eurygaster integriceps’in Put. (Heteroptera: Scutelleridae) Diyapoz Öncesi ve Diyapoz Sonrası Erginlerinden Hazırlanan Fosfolipit Altsınıflarının Yağ Asidi Bileşiminindeki Değişiklikler

Yıl 2020, Cilt: 23 Sayı: 5, 1314 - 1321, 31.10.2020
https://doi.org/10.18016/ksutarimdoga.vi.685815

Öz

Bu çalışmada, süne, Eurygaster integriceps’in diyapoz öncesi ergin ve diyapoz sonrası erginlerinin fosfatidilkolin (PC), fosfatidiletanolamin (PE), fosfatidilinositol (PI) ve fosfatidilserin (PS) gibi fosfolipit (PL) altsınıflarının yağ asidi kompozisyonundaki değişiklikler araştırılmıştır. Fosfolipit alt sınıflarının ayrılmasında İnce Tabaka Kromatoğrafisi tekniği, yağ asitlerinin analizinde ise Gaz kromatoğrafi cihazı kullanılmıştır. Eurygaster integriceps’in PL altsınıflarında gözlenen dominant yağ asitleri, doymuş yağ asitlerinden (SFA) palmitik asit (16:0), tekli doymamış yağ asitlerinden (MUFA) oleik asit (18:1n-9) ve çoklu doymamış yağ asitlerinden (PUFA) linoleik asit (18:2n-6) idi. Diyapoz öncesi ve diyapoz sonrası erginlerin PC, PE ve PS fraksiyonlarının yağ asidi içeriğindeki değişikliklerin benzer olduğu bulunmuştur. Diyapoz sonrası erginlerin bu fraksiyonlarında 16:0, 18:0 ve ∑SFA yüzdeleri diyapoz öncesi erginlere oranla daha düşük; ancak16:1n-7, ∑MUFA, 18:2n-6 ve ∑PUFA ise daha yüksek olarak bulunmuştur. Sünenin diyapoz sonrası bireylerin PE ve PC fraksiyonlarındaki 18:1n-9 düzeyi, diyapoz öncesi bireylerden önemli derecede daha yüksek olarak tespit edilmiştir. Diyapoz sonrası erginlerin tüm PL altsınıflarındaki doymamış yağ asitlerinin doymuş yağ asitlere oranı (UFA/SFA), diyapoz öncesi erginlerden daha yüksek bulunmuştur.

Destekleyen Kurum

Dicle üniversitesi

Proje Numarası

FEN. 18.002

Teşekkür

Çalışmayı maddi kaynak sağlayarak destekleyen (Proje No: FEN. 18.002 ) Dicle üniversitesi Bilimsel Araştırma Projeleri (DÜBAP) Koordinatörlüğüne çok teşekkür ederiz.

Kaynakça

  • Arrese EL, Soulages JL 2010. Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology, 55: 207–225.
  • Bashan M, Akbas H, Yurdakoc K 2002. Phospholipid and triacylglycerol fatty acid composition of major life stages of sunn pest, Eurygaster integriceps (Heteroptera:Scutelleridae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132: 375–380.
  • Bashan M, Cakmak O 2005. Changes in composition of phospholipid and tracylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Annals of the Entomological Society of America, 95: 575–579.
  • Bennett VA, Lee RE 1997. Modeling seasonal changes in intracellular freeze-tolerance of fat body cells of the gall fly Eurosta solidaginis (Diptera, Tephritidae). Journal of Experimental Biology,200: 185–192.
  • Buckner JS, Hagen MM 2003. Triacylglycerol and Phospholipid Fatty Acids of the Silverleaf Whitefly: Composition and Biosynthesis. Archives of Insect Biochemistry and Physiology, 53: 66-79.
  • Colinet H, Renault D, Javal M, Berková P, Šimek P, Koštál V 2016. Uncovering the benefits of fluctuating thermal regimes on cold tolerance of Drosophila flies by combined metabolomic and lipidomic approach. Biochimica et Biophysica Acta, 1861: 1736–1745.
  • Cossins AR, Murray PA, Gracey AY, Logue J, Polley S, Caddick M, Brooks S, Postle T, Maclean N 2002. The role of desaturases in cold-induced lipid restructuring. Biochemical Society Transactions, 30: 1082–1086.
  • Duncan DB 1955. Multiple Range and Multiple F-Test. Biometrics, 11, 1-5.
  • Fast PG 1966. A comparative study of phospholipids and fatty acids of some insects. Lipids, 1: 209–215.
  • Fast PG, 1971. Insect lipids. Progress in the Chemistry of Fats and Other Lipids, 11: 179-142.
  • Folch J, Lees M, Sladane-Stanley GHA. 1957. Simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry, 226: 497-509.
  • Furusawa T, Nishida M, Narutaki A 1994. Changes in fatty acid composition of phosphoglycerides during the diapause and embryonic development of the Japanese oak silkworm, Antheraea yamamai. Journal of Sericultural Science of Japan, 63: 57–63.
  • Gardocki ME, Jani NJ, Lopes M 2005. Phosphatidylinositol biosynthesis: biochemistry and regulation, Biochimica et Biophysica Acta, 1735: 89–100.
  • Gurr MI, Harwood JL 1991. Lipid Biochemistry. Chapman & Hall, London. 387 p.
  • Hanson BJ, Cummins KW, Cargill AS, Lowery RR 1985. Lipid content, fatty acid composition and the effect of diet on fats of aquatic insects. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 80B: 257–276.
  • Hazel JR 1979. Influence of thermal acclimation on membrane lipid composition of rainbow trout liver. American Journal of Physiology, 236: 91–101.
  • Hazel JR 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology, 57: 19–42.
  • Hodkova M, Simek P, Ckova HZ, Novakova O 1999. Seasonal changes in the phospholipids composition in thoracic muscles of a heteropteran, Pyrrhocoris apterus. Insect Biochemistry and Molecular Biology, 4: 367–376.
  • Käkelä R, Mattila M, Hermansson M, Haimi P, Uphoff A, Paajanen V, Somerharju P, Vornanen M 2008. Seasonal acclimatization of brain lipidome in a eurythermal fish (Carassius carassius) is mainly determined by temperature, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294: R1716–R1728.
  • Kostal V 2010. Cell structural modifications in insects at low temperatures. Low Temperature Biology of Insects. (ed. by D. L. Denlinger and R. E. Lee), Cambridge University Press, U.K. 116–140.
  • Koštál V, Berkova P, Simek P, 2003. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135: 407–419.
  • Kostal V, Korbelova J, Rozsypal J, Zahradníčková H, Cimlová J, Tomčala A, Šimek P 2011. Long-term cold acclimation extends survival time at 0 oC and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS ONE, 6, e25025.
  • Lee RE 2010. A primer on insect cold tolerance. Low Temperature Biology of Insects (ed. by D. L. Denlinger and R. E. Lee) Cambridge University Press, U.K.pp. 3–34.
  • Los DA, Murata N 2004. Membrane fluidity and its roles in the perception of environmental signals, Biochimica et Biophysica Acta (BBA) - Biomembranes Biochim, 1666: 142–157.
  • Michaud MR, Denlinger DL 2006. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 52: 1073–1082.
  • Overgaard J, Tomcala A, Sørensen JG, Holmstrup M, Krogh PH, Simek P, Kostál V 2008. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.Journal of Insect Physiology, 54: 619–629.
  • Pol A, Gross, S P, Parton RG 2014. Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites. Jornal of Cell Biology, 204: 635–646. Salt RW 1961. Principles of insect cold-hardiness. Annual Review of Entomology, 6: 55–74.
  • Sinclair BJ, Addo-Bediako A, Chown SL 2003 Climatic variability and the evolution of insect freeze tolerance. Biological Reviews, 78: 181–195.
  • Sinensky M 1974. Homeoviscous adaptation – homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 71: 522–525.
  • Slachta M, Berkova P, Vambera J, Kostal V, 2002. Physiology of cold-acclimation in non-diapausing adults of Pyrrhocoris apterus (Heteroptera). European Journal of Entomology, 99: 181–187.
  • Spike BP, Wright RJ, Danielson SD, Stanley DW 1991. The fatty acid compositions of phospholipids and triacylglycerols from two chinch bug species Blissus leucopterus and B. iowensis (Insecta: Hemiptera: Lygaeidae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 99B: 799–802.
  • Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M 1988. Fatty acids in insects: composition, metabolism, and biological significance. Archives of. Insect Biochemistry and Physiology, 9: 1–33.
  • Stanley-Samuelson DW, Dadd RH 1983. Long chain polyunsaturated fatty acids: Patterns of occurrence in insects. Biochemistry, 13: 549-558.
  • Suzuki M, Shinohara Y, Ohsaki Y, Fujimoto T 2011. Lipid droplets: Size matters. Journal of Electron Microscopy, (Tokyo). 60: 101–116.
  • Thompson SN 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology, 45: 467–482.
  • Thompson SN 2003. Trehalose – the insect ‘blood’ sugar. Advances in Insect Physiology, 31: 205–285.
  • Tomcala A, Tollarova M, Overgaard J, Simek P, Kostál V 2006. Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. Journal of Experimental Biology, 209: 4102–4114.
  • Vaden DL, Gohil VM, Gu Z, Greenberg ML 2005. Separation of yeast phospholipids using one-dimensional thin-layer chromatography. Analytical Biochemistry, 338: 162-164.

The Changes in Composition of Phospholipid Subclasses Fatty Acids Prepared from Prediapausing and Postdiapausing Adults of Sunn Pest, Eurygaster integriceps Put. (Heteroptera: Scutelleridae)

Yıl 2020, Cilt: 23 Sayı: 5, 1314 - 1321, 31.10.2020
https://doi.org/10.18016/ksutarimdoga.vi.685815

Öz

In this study, the changes in fatty acid composition of phospholipid (PL) subclasses such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS) of pre-diapausing and post-diapausing adults of sunn pest Eurygaster integriceps were investigated. Thin Layer Chromatography technique was used to separate phospholipid subclasses and Gas Chromatography equipment was used for the analysis of fatty acids. The dominant fatty acids observed in PL subclasses of E. integriceps were palmitic acid (16:0) among saturated fatty acids (SFAs), oleic acid (18:1n-9) among monounsaturated fatty acids (MUFAs) and linoleic acid (18:2n-6) among polyunsaturated fatty acids (PUFAs). It was found that the changes in fatty acid compositions from the PC, PE and PS fractions of prediapausing and postdiapausing adults were similar. In these fractions of postdiapausing adults, the percentages of 16: 0, stearic acid (18:0) and ∑SFA were lower than in prediapausing adults; however, palmitoleic acid (16: 1n-7, ∑MUFA, 18: 2n-6 and ∑PUFA were higher. The level of oleic acid in PE and PC fractions of postdiapausing individuals of the E. integriceps was determined to be significantly higher than prediapausing individuals. The ratio of unsaturated fatty acids to saturated fatty acids (UFA / SFA) in all PL subclasses of postdiapausing adults was found to be higher than those of prediapausing adults.

Proje Numarası

FEN. 18.002

Kaynakça

  • Arrese EL, Soulages JL 2010. Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology, 55: 207–225.
  • Bashan M, Akbas H, Yurdakoc K 2002. Phospholipid and triacylglycerol fatty acid composition of major life stages of sunn pest, Eurygaster integriceps (Heteroptera:Scutelleridae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132: 375–380.
  • Bashan M, Cakmak O 2005. Changes in composition of phospholipid and tracylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Annals of the Entomological Society of America, 95: 575–579.
  • Bennett VA, Lee RE 1997. Modeling seasonal changes in intracellular freeze-tolerance of fat body cells of the gall fly Eurosta solidaginis (Diptera, Tephritidae). Journal of Experimental Biology,200: 185–192.
  • Buckner JS, Hagen MM 2003. Triacylglycerol and Phospholipid Fatty Acids of the Silverleaf Whitefly: Composition and Biosynthesis. Archives of Insect Biochemistry and Physiology, 53: 66-79.
  • Colinet H, Renault D, Javal M, Berková P, Šimek P, Koštál V 2016. Uncovering the benefits of fluctuating thermal regimes on cold tolerance of Drosophila flies by combined metabolomic and lipidomic approach. Biochimica et Biophysica Acta, 1861: 1736–1745.
  • Cossins AR, Murray PA, Gracey AY, Logue J, Polley S, Caddick M, Brooks S, Postle T, Maclean N 2002. The role of desaturases in cold-induced lipid restructuring. Biochemical Society Transactions, 30: 1082–1086.
  • Duncan DB 1955. Multiple Range and Multiple F-Test. Biometrics, 11, 1-5.
  • Fast PG 1966. A comparative study of phospholipids and fatty acids of some insects. Lipids, 1: 209–215.
  • Fast PG, 1971. Insect lipids. Progress in the Chemistry of Fats and Other Lipids, 11: 179-142.
  • Folch J, Lees M, Sladane-Stanley GHA. 1957. Simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry, 226: 497-509.
  • Furusawa T, Nishida M, Narutaki A 1994. Changes in fatty acid composition of phosphoglycerides during the diapause and embryonic development of the Japanese oak silkworm, Antheraea yamamai. Journal of Sericultural Science of Japan, 63: 57–63.
  • Gardocki ME, Jani NJ, Lopes M 2005. Phosphatidylinositol biosynthesis: biochemistry and regulation, Biochimica et Biophysica Acta, 1735: 89–100.
  • Gurr MI, Harwood JL 1991. Lipid Biochemistry. Chapman & Hall, London. 387 p.
  • Hanson BJ, Cummins KW, Cargill AS, Lowery RR 1985. Lipid content, fatty acid composition and the effect of diet on fats of aquatic insects. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 80B: 257–276.
  • Hazel JR 1979. Influence of thermal acclimation on membrane lipid composition of rainbow trout liver. American Journal of Physiology, 236: 91–101.
  • Hazel JR 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology, 57: 19–42.
  • Hodkova M, Simek P, Ckova HZ, Novakova O 1999. Seasonal changes in the phospholipids composition in thoracic muscles of a heteropteran, Pyrrhocoris apterus. Insect Biochemistry and Molecular Biology, 4: 367–376.
  • Käkelä R, Mattila M, Hermansson M, Haimi P, Uphoff A, Paajanen V, Somerharju P, Vornanen M 2008. Seasonal acclimatization of brain lipidome in a eurythermal fish (Carassius carassius) is mainly determined by temperature, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294: R1716–R1728.
  • Kostal V 2010. Cell structural modifications in insects at low temperatures. Low Temperature Biology of Insects. (ed. by D. L. Denlinger and R. E. Lee), Cambridge University Press, U.K. 116–140.
  • Koštál V, Berkova P, Simek P, 2003. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135: 407–419.
  • Kostal V, Korbelova J, Rozsypal J, Zahradníčková H, Cimlová J, Tomčala A, Šimek P 2011. Long-term cold acclimation extends survival time at 0 oC and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS ONE, 6, e25025.
  • Lee RE 2010. A primer on insect cold tolerance. Low Temperature Biology of Insects (ed. by D. L. Denlinger and R. E. Lee) Cambridge University Press, U.K.pp. 3–34.
  • Los DA, Murata N 2004. Membrane fluidity and its roles in the perception of environmental signals, Biochimica et Biophysica Acta (BBA) - Biomembranes Biochim, 1666: 142–157.
  • Michaud MR, Denlinger DL 2006. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 52: 1073–1082.
  • Overgaard J, Tomcala A, Sørensen JG, Holmstrup M, Krogh PH, Simek P, Kostál V 2008. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.Journal of Insect Physiology, 54: 619–629.
  • Pol A, Gross, S P, Parton RG 2014. Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites. Jornal of Cell Biology, 204: 635–646. Salt RW 1961. Principles of insect cold-hardiness. Annual Review of Entomology, 6: 55–74.
  • Sinclair BJ, Addo-Bediako A, Chown SL 2003 Climatic variability and the evolution of insect freeze tolerance. Biological Reviews, 78: 181–195.
  • Sinensky M 1974. Homeoviscous adaptation – homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 71: 522–525.
  • Slachta M, Berkova P, Vambera J, Kostal V, 2002. Physiology of cold-acclimation in non-diapausing adults of Pyrrhocoris apterus (Heteroptera). European Journal of Entomology, 99: 181–187.
  • Spike BP, Wright RJ, Danielson SD, Stanley DW 1991. The fatty acid compositions of phospholipids and triacylglycerols from two chinch bug species Blissus leucopterus and B. iowensis (Insecta: Hemiptera: Lygaeidae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 99B: 799–802.
  • Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M 1988. Fatty acids in insects: composition, metabolism, and biological significance. Archives of. Insect Biochemistry and Physiology, 9: 1–33.
  • Stanley-Samuelson DW, Dadd RH 1983. Long chain polyunsaturated fatty acids: Patterns of occurrence in insects. Biochemistry, 13: 549-558.
  • Suzuki M, Shinohara Y, Ohsaki Y, Fujimoto T 2011. Lipid droplets: Size matters. Journal of Electron Microscopy, (Tokyo). 60: 101–116.
  • Thompson SN 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology, 45: 467–482.
  • Thompson SN 2003. Trehalose – the insect ‘blood’ sugar. Advances in Insect Physiology, 31: 205–285.
  • Tomcala A, Tollarova M, Overgaard J, Simek P, Kostál V 2006. Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. Journal of Experimental Biology, 209: 4102–4114.
  • Vaden DL, Gohil VM, Gu Z, Greenberg ML 2005. Separation of yeast phospholipids using one-dimensional thin-layer chromatography. Analytical Biochemistry, 338: 162-164.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Mehmet Başhan 0000-0002-1228-9548

Mehmet Talay 0000-0002-5864-1500

Vedat Karaca 0000-0002-1144-047X

Proje Numarası FEN. 18.002
Yayımlanma Tarihi 31 Ekim 2020
Gönderilme Tarihi 6 Şubat 2020
Kabul Tarihi 9 Nisan 2020
Yayımlandığı Sayı Yıl 2020Cilt: 23 Sayı: 5

Kaynak Göster

APA Başhan, M., Talay, M., & Karaca, V. (2020). Süne, Eurygaster integriceps’in Put. (Heteroptera: Scutelleridae) Diyapoz Öncesi ve Diyapoz Sonrası Erginlerinden Hazırlanan Fosfolipit Altsınıflarının Yağ Asidi Bileşiminindeki Değişiklikler. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 23(5), 1314-1321. https://doi.org/10.18016/ksutarimdoga.vi.685815

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149