Research Article
BibTex RIS Cite

Bazı Toprak Bakterilerinin Domates Bitkisindeki Kök-Ur Nematodu Meloidogyne javanica (Treub) Chitwood Populasyonlarına Etkisi

Year 2021, Volume: 24 Issue: 2, 337 - 343, 30.04.2021
https://doi.org/10.18016/ksutarimdoga.vi.749425

Abstract

Bu çalışmada, 10 farklı toprak bakteri izolatının, domates (Lycopersicon lycopersicum cv. Dynamo) bitkisinde üç nematod inokulasyon seviyesinde (0, 500 ve 1000 L2 veya yumurta/saksı) bulaştırılan Meloidogyne javanica’ya olan etkileri araştırılmıştır. Deneme, Kahramanmaraş Sütçü İmam Üniversitesi, Ziraat Fakültesi seralarında 10×3×6 (10 adet toprak bakteri izolatı, 3 nematod inokulum seviyesi, 6 tekerrür) tesadüfi bloklar deneme desenine göre kurulmuştur. Araştırma sonuçlarına göre; ZHA287 (Bacillus subtilis), ZHA246 (Mycobacterium confluentis) ve ZHA579 (Tanımlanmamış) izolatlarının bitki kök-ur sayısını ve yumurta paket sayısını azalttığı, ancak bitki büyümesine etki etmediği gözlenmiştir. Tsukamurella paurometabola’nın ZHA569 izolatının kök-ur nematodu popülasyonunu baskı altında tuttuğu ve bitki kök yaş ve kuru, gövde yaş ve kuru ağırlıklarını arttırdığı gözlenmiştir. Paenibacillus castaneae’nin ZHA178 izolatı ve Mycobacterium immunogeum ZHA57 izolatı, kontrole (+) göre yumurta paketi ve kök-ur sayılarına etkili olmadıkları fakat bitki büyümesini arttırdığı gözlenmiştir. Çalışılan 10 bakteri arasında, ZHA246 (M. confluentis), ZHA579 (Tanımlanmamış), ZHA569 (T. paurometabola) ve ZHA287 (B. subtilis) izolatlarının gelecekte bitki paraziti nematodlarının biyolojik mücadelesinde kullanılabilecek potansiyele sahip olabilecekleri düşünülmektedir.

Supporting Institution

BAP

Project Number

2016/5-39 YLS

Thanks

Bu makale; Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından 2016/5-39 YLS nolu proje ile desteklenen Neziha Gamze AKBAY’ ın Yüksek Lisans Tezinden hazırlanmıştır.

References

  • Anonim 2015. Production of top 5 producers, 2013 data. http://faostat3.fao.org/browse/Q/QC/E. Baghaee Ravari S, Mahdikhani Moghaddam E 2015. Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica. Plant Protect. Science, 51: 46-51.
  • Bleve-Zacheo T, Melillo MT, Castagnone-Sereno P 2007. The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technology. Global Science Books, 1: 1-16.
  • Çapanoğlu E, Boyacıoğlu D 2010. Domatesin gelişimi sırasında antioksidan bileşiklerinde meydana gelen değişimler. Akademik Gıda Dergisi, 8(1): 44-48.
  • Devran Z, Söğüt MA 2010. Occurrence of virulent root knot nematode populations on tomatoes bearing the Mi gene in protected vegetable growing areas of Turkey. Phytoparasitica, 38: 245-251.
  • Erkan S, Eser B, Yorgancı Ü 1992. Domates Mozayik Virüs’ünün bazı domates çeşitlerine olan etkileri. I. Ulusal Bahçe Bitkileri Kongresi Cilt II. s. 411, 13-16 Ekim 1991, İzmir.
  • FAO 2013. Database of the Food and Agriculture Organization of the United Nations. http://faostat. fao.org/.
  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K 2010. Bacillus and Paenibacillus spp.: Potential PGPR for Sustainable Agriculture. In Plant Growth and Health Promoting Bacteria, Springer Berlin Heidelberg. 333-364 pp.
  • Günay A 2005. Sebze Yetiştiriciliği Cilt II. s. 531, İzmir.
  • Hussey RS, Barker KR 1973. A comparison of methods for collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57: 1025-1028.
  • Khan MR, Waseem Abbasi M, Javed Zaki M, Khan SA 2010. Evaluation of Bacillus thuringiensis Isolates Against Root-Knot Nematodes Following Seed Application in Okra and Mungbean. Pakistan Journal of Botany 42 (4): 2903-2910.
  • Lebuhn M, Heulin T, Hartmann A 1997. Production of Auxin and Other Indolic and Phenolic Compounds by Paenibacillus polymyxa Strains Isolated from Different Proximity to Plant Roots. FEMS Microbiology Ecology 22(4): 325-334.
  • Lelliott RA, Stead DE 1987. Methods for the diagnosis of bacterial diseases of plants, Blackwell Scientific Publications, Oxford. 216 p.
  • Marin M, Wong I, Mena J, Morán R, Pimentel E, Sánchez I, Basulto R, Moreira A 2013. Promoción del crecimiento de plantas de Zea mays L. por Tsukamurella paurometabola cepa C-924. Biotecnología Aplicada 30(2): 105-110.
  • Sasser JN, Carter CC, Hartman KM 1984. Standardization of host suitability studies and reporting of resistance to root-knot nematodes, Cooperative Publication of The Department of Plant Pathology, North Carolina State University and the United States Agency for International Development, Raleigh, North Carolina, U.S.A.,7.
  • Sellstedt A, Richau KH 2013. Aspects of Nitrogen-Fixing Actinobacteria, in Particular Free-Living and Symbiotic Frankia. FEMS Microbiology Letters 342(2): 179-186.
  • Southey JF 1986. Laboratory methods for work with plant and soil nematodes. Reference Book 402. MAAF, Her Majesty’s Stationery Office, London, UK, 2002 pp.
  • Stirling GR 1991. Biological Control of Plant-Parasitic Nematodes. CAB International, Wallingford, Oxon. 50-85.
  • Taylor AI, Sasser JN 1978. Biology, identification and control of root-knot nematode (Meloidogyne sp.) North Carolina State University Graphics, Raleigh. NC 27607.
  • Tsavkelova EA, Cherdyntseva TA, Netrusov AI 2005. Auxin Production by Bacteria Associated with Orchid Roots. Microbiology 74(1): 46-53.
  • Zavaleta-Mejia E, Van Gundy SD 1982. Effects of rhizobacteria on Meloidogyne infection. Journal of Nematology, 14: 475A-475B.

The Effect of Some Soil Bacteria on Root-Knot Nematode Meloidogyne javanica (Treub) Chitwood Populations on Tomatoes

Year 2021, Volume: 24 Issue: 2, 337 - 343, 30.04.2021
https://doi.org/10.18016/ksutarimdoga.vi.749425

Abstract

In this study, the effect of 10 bacterial isolates against Meloidogyne javanica (inoculated at three levels of 0, 500 and 1000 J2 or eggs pot) were determined on tomato (Lycopersicon lycopersicum cv. Dynamo). The trial was designed as a randomized complete block design, consisting 10 plant soil bacteria strains and 2 control group (–, +) treatments with 6 replications, conducted in Kahramanmaraş Sütçü İmam University, Agricultural Faculty green houses. Results of the study indicated that (Bacillus subtilis) ZHA287, (Mycobacterium confluentis) ZHA246, (unidentified) ZHA579 isolates reduced root galling and the number of egg masses, however they did not have effect on the plant growth. Isolate ZHA569 of Tsukamurella paurometabola repressed the root knot nematode numbers and increased the dry and fresh root weight, and dry and fresh green plant part weights. Isolate ZHA178 of Paenibacillus castaneae and ZHA57 Mycobacterium immunogeum did not affect the root galling nevertheless, increased the plant growth as compared to control (+). Results indicated that among 10 bacterial isolated studied, ZHA246 (Mycobacterium confluentis), ZHA579 (unidentified), ZHA569 (Tsukamurella paurometabola) and ZHA287 (Bacillus subtilis) could be promising as bio control agents for the future nematode disease managements.

Project Number

2016/5-39 YLS

References

  • Anonim 2015. Production of top 5 producers, 2013 data. http://faostat3.fao.org/browse/Q/QC/E. Baghaee Ravari S, Mahdikhani Moghaddam E 2015. Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica. Plant Protect. Science, 51: 46-51.
  • Bleve-Zacheo T, Melillo MT, Castagnone-Sereno P 2007. The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technology. Global Science Books, 1: 1-16.
  • Çapanoğlu E, Boyacıoğlu D 2010. Domatesin gelişimi sırasında antioksidan bileşiklerinde meydana gelen değişimler. Akademik Gıda Dergisi, 8(1): 44-48.
  • Devran Z, Söğüt MA 2010. Occurrence of virulent root knot nematode populations on tomatoes bearing the Mi gene in protected vegetable growing areas of Turkey. Phytoparasitica, 38: 245-251.
  • Erkan S, Eser B, Yorgancı Ü 1992. Domates Mozayik Virüs’ünün bazı domates çeşitlerine olan etkileri. I. Ulusal Bahçe Bitkileri Kongresi Cilt II. s. 411, 13-16 Ekim 1991, İzmir.
  • FAO 2013. Database of the Food and Agriculture Organization of the United Nations. http://faostat. fao.org/.
  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K 2010. Bacillus and Paenibacillus spp.: Potential PGPR for Sustainable Agriculture. In Plant Growth and Health Promoting Bacteria, Springer Berlin Heidelberg. 333-364 pp.
  • Günay A 2005. Sebze Yetiştiriciliği Cilt II. s. 531, İzmir.
  • Hussey RS, Barker KR 1973. A comparison of methods for collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57: 1025-1028.
  • Khan MR, Waseem Abbasi M, Javed Zaki M, Khan SA 2010. Evaluation of Bacillus thuringiensis Isolates Against Root-Knot Nematodes Following Seed Application in Okra and Mungbean. Pakistan Journal of Botany 42 (4): 2903-2910.
  • Lebuhn M, Heulin T, Hartmann A 1997. Production of Auxin and Other Indolic and Phenolic Compounds by Paenibacillus polymyxa Strains Isolated from Different Proximity to Plant Roots. FEMS Microbiology Ecology 22(4): 325-334.
  • Lelliott RA, Stead DE 1987. Methods for the diagnosis of bacterial diseases of plants, Blackwell Scientific Publications, Oxford. 216 p.
  • Marin M, Wong I, Mena J, Morán R, Pimentel E, Sánchez I, Basulto R, Moreira A 2013. Promoción del crecimiento de plantas de Zea mays L. por Tsukamurella paurometabola cepa C-924. Biotecnología Aplicada 30(2): 105-110.
  • Sasser JN, Carter CC, Hartman KM 1984. Standardization of host suitability studies and reporting of resistance to root-knot nematodes, Cooperative Publication of The Department of Plant Pathology, North Carolina State University and the United States Agency for International Development, Raleigh, North Carolina, U.S.A.,7.
  • Sellstedt A, Richau KH 2013. Aspects of Nitrogen-Fixing Actinobacteria, in Particular Free-Living and Symbiotic Frankia. FEMS Microbiology Letters 342(2): 179-186.
  • Southey JF 1986. Laboratory methods for work with plant and soil nematodes. Reference Book 402. MAAF, Her Majesty’s Stationery Office, London, UK, 2002 pp.
  • Stirling GR 1991. Biological Control of Plant-Parasitic Nematodes. CAB International, Wallingford, Oxon. 50-85.
  • Taylor AI, Sasser JN 1978. Biology, identification and control of root-knot nematode (Meloidogyne sp.) North Carolina State University Graphics, Raleigh. NC 27607.
  • Tsavkelova EA, Cherdyntseva TA, Netrusov AI 2005. Auxin Production by Bacteria Associated with Orchid Roots. Microbiology 74(1): 46-53.
  • Zavaleta-Mejia E, Van Gundy SD 1982. Effects of rhizobacteria on Meloidogyne infection. Journal of Nematology, 14: 475A-475B.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Neziha Gamze Akbay 0000-0002-3132-8186

Ramazan Çetintaş 0000-0002-5738-6915

Mustafa Küsek 0000-0002-6320-5869

Project Number 2016/5-39 YLS
Publication Date April 30, 2021
Submission Date June 8, 2020
Acceptance Date July 27, 2020
Published in Issue Year 2021Volume: 24 Issue: 2

Cite

APA Akbay, N. G., Çetintaş, R., & Küsek, M. (2021). Bazı Toprak Bakterilerinin Domates Bitkisindeki Kök-Ur Nematodu Meloidogyne javanica (Treub) Chitwood Populasyonlarına Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 24(2), 337-343. https://doi.org/10.18016/ksutarimdoga.vi.749425


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149