Research Article
BibTex RIS Cite

Plant Growth, Ion Accumulation and Essential Oil Content of Salvia officinalis Mill. and S. tomentosa L. Grown under Different Salt Stress

Year 2021, Volume: 24 Issue: 3, 505 - 514, 30.06.2021
https://doi.org/10.18016/ksutarimdoga.v24i60916.730477

Abstract

This study was conducted to determine the response of Salvia tomentosa Mill. and Salvia officinalis L. to different salinity levels. The salvia plants were grown in 8 L pots filled with the continuously aerated nutrient solution under different salt levels 1 (control), 2, 3, 4, 5 and 6 dS m-1 in fully automated climate chambers. The fresh and dry weight of shoot and root, stem length, leaf area, SPAD, CO2 fixation, root length, root diameter, root volume, leaf Na+, K+, Ca++ Cl- content, and amount of essential oil were determined. The increasing salt level decreased significantly plant growth of both Salvia species. However, highly significant differences were found between two Salvia species in terms of shoot and root biomass. Generally, S. tomentosa showed better plant growth performance in plant growth compared to S. officinalis. The Na+ and Cl- content of the leaves significantly increased with increasing salt concentration and the increase was higher in S. tomentosa. The amount of K+ in the leaves decreased due to the increasing salt concentration, while the amount of Ca++ varied depending on the dose. The study showed that the essential oil contents of the sage leaves could be increased with the moderate salt application. The increase in essential oil due to salt stress was higher in S. officinalis. The results showed that Salvia species can be cultivated in low and medium saline soils, second class waters can be used for irrigation of sages and essential oil yield of sages can be increased by using salt stress.

Supporting Institution

Scientific Projects Unit of Erciyes University8.

Project Number

FLY-2016-673

Thanks

The authors thank Erciyes University Scientific Research Projects Unit for their financial support.

References

  • Arzani A 2008. Improving salinity tolerance in crop plants: a biotechnological review. In Vitro Cell Dev Biol Plant 44: 373-383.
  • Baâtour O, Rym K, Tarchoun I, Nasri N, Mahmoudi H, Zaghdoudi M, Ghaith H, Marzouk B, Ben Nasri AM, Lachaâl M 2012. Modification of fatty acid, essential oil and phenolic contents of salt-treated sweet marjoram (Origanum majorana L.) according to developmental stage. J Food Sci 77(10): C1047-54.
  • Balkaya A,Yıldız S, Horuz A, Doğru SM 2016. Effects of salt stress on vegetative growth parameters and ıon accumulations in cucurbit rootstock genotypes. Ekin Journal of Crop Breeding and Genetics 2(2):11-24.
  • Ben Taarit M, Msaadaa K, Hosnia K, Hammamib M, Kchouka ME, Marzouka B 2009. Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products 30: 333-337.
  • Ben Taarit, M, Msaada K, Hosni K, Marzouk B 2010. Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119(3): 951-956.
  • Ben Taarit M, Msaada K, Hosni K, Marzouk B 2011. Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiol Plant 33(1): 153-162.
  • Ben Taarit M, Msaada K, Hosni K, Marzouk B 2012. Physiological changes phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J Sci Food Agr 92(8): 1614-1619.
  • Bhandal IS, Malik CP 1988. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110: 205–254.
  • Chuang H, Ryu T, Choi Y 2003. Selection of salt-tolerant bottle gourd (Lagenaria siceraria) rootstock for watermelon graft. J. Korean Soc Hortic Sci 44(5): 588-594.
  • Colla G, Rouphael Y, Cardarelli M, Massa D, Salerno A, Rea E 2006. Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J Hortic Sci Biotechnol 81: 146-152.
  • Colla G, Rouphael Y, Rea E, Cardarelli M 2012. Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci Hortic 135: 177-185.
  • Cramer GR, Läuchli A, Polito VS 1985. Displacement of Ca++ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol 79: 207-211.
  • Escalona A, Salas MC, Coutinho C, Guzman M 2014. Growth and tissue ion concentration of mint and sage irrigated with saline water for use in landscape. 7th Iberian Congress of Agricultural Engineering and Horticultural Sciences. 26-29 August 2013 Madrid-Spain.
  • FAO 2009. FAO land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush/ Acces Date: 03.09.2020.
  • Flowers TJ 2004. Improving crop salt tolerance. J Exp Bot 55: 307–319.
  • Grattan SR, Grieve CM 1999. Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78: 127-157.
  • Greenway H, Munns R 1980. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physio 31: 149-190.
  • Grzeszczuk M, Salachna P, Meller E 2018. Changes in photosynthetic pigments, total phenolic content, and antioxidant activity of Salvia coccinea Buc’hoz Ex Etl. induced by exogenous salicylic acid and soil salinity. Molecules 23: 1-11.
  • Hay RKM, Waterman PG 1993. Physiology (Volatile Oil Crops: Their Biology, Biochemistry, and Production, Longman, England: Ed. Hay RKM, Waterman PG) 23-47.
  • Hendawy SF, Khalid KA 2005. Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. J App Sci Res 1: 147-155.
  • Johnson CM, Ulrich A 1959. Analytical Methods For Use in Plant Analysis. California Agricultural Experiment Station Bull 766, 78 pp.
  • Kacar B, Katkat V 2010. Bitki Besleme. 5. Baskı, Nobel Yayın Dağıtım, Ankara, 678 pp.
  • Kılıç A, 2008. Essential oil extraction methods. Journal of Bartın Forestry Faculty 10(13): 37-45.
  • Kulak M 2011. The effect of different salt treatments on the development of sage (Salvia officinalis L.). Kilis 7 Aralık University Graduate School of Natural and Applied Sciences, Master Thesis, 71 pp.
  • Mahjan S, Tuteja N 2005. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444: 139–158.
  • Mamadalieva NZ, Akramo DK, Ovidi E, Tiezzi A, Nahar L, Azimova SS, Sarker SD 2017. Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines 4(8): 2-12.
  • Marin A, Rubio JS, Martinez V, Gil MI 2009. Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. J Sci Food Agric 89: 1352-1359.
  • Máthé JRI, Oláh L, Máthé A, Miklossy V, Bernáth J, Blunden G, Patel A, Máthé I 1992. Changes in the essential oil production of Salvia officinalis under climatic conditions of the temperate belt. Planta Med 58: 680–686.
  • Munns R 2002. Comparative physiology of salt and water stress. Plant Cell Environ 5(2): 239-250.
  • Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heanney AJ, McGimpsey JA, Smallfield BM 1999. Essential oils from dalmatian sage (Salvia officinalis L.): Variations among individuals, plant parts, seasons, and sites. J Agr Food Chem 47: 2048–2054.
  • Putievsky EE, Ravid U, Dudai N 1986. The influence of season and harvest frequency on essential oil and herbal yields from a pure clone of sage (Salvia officinalis) grown under cultivated conditions. J Nat Prod 49: 326-329.
  • Rengel Z 1992. The role of calcium in salt toxicity. Plant Cell Environ 15: 625-632.
  • Rouphael Y, Cardarelli M, Rea E, Colla G 2012. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica 50:180-188.
  • Rouphael Y, Kyriacou MC, Petropoulos SA, De Pascale S, Colla G 2018. Improving vegetable quality in controlled environments. Sci Hortic 234: 275-289.
  • Sakamoto K, Kogi M, Yanagisawa T 2014. Effects of salinity and nutrients in seawater on hydroponic culture of red leaf lettuce. Environ Control Biol 52: 189-195.
  • Santos-Gomes PC, Fernandes-Ferreira M 2001. Organ and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. J Agr Food Chem 49: 2908-2916.
  • Tanker M, Sarer E, Tanker N 1976. Investigations on the essential oil of Salvia triloba by gas chromatography. J Fac Pharm Ankara 6: 198-206.
  • Tounekti T, Hernandez, Muller M, Khemira H, Munne-Bosch S 2011. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis. Plant Physiol Bioch 49(10): 1165-1176.
  • Tounekti T, Abreu ME, Khemira H, Munne-Bosch S 2012. Canopy position determines the photoprotective demand and antioxidant protection of leaves in salt-stressed Salvia officinalis L. Plants Environ Exp Bot 78: 146-156.
  • Tounekti T, Khemira H 2015. NaCl stress-induced changes in the essential oil quality and abietane diterpene yield and composition in common sage. J Intercult Ethnopharmacol 4(3): 208-216.
  • Unlukara A, Kurunç A, Kesmez GD, Yurtseven E, Suare DL 2010. Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage 59: 203-214.
  • Yetişir H, Uygur V 2009. Plant growth and mineral element content of different gourd species and watermelon under salinity stress. Turk J Agric For 33(1): 65-77.
  • Yetisir H, Uygur V 2010. Responses of grafted watermelon onto different gourd species to salinity stress. J Plant Nutr 33: 315-327.
  • Zhu JK, Plant salt tolerance. 2001. Trends Plant Sci 6:66-71.
  • Zushi K, Matsuzoe N 2015. Metabolic profile of organoleptic and health-promoting qualities in two tomato cultivars subjected to salt stress and their interactions using correlation network analysis. Sci Hortic 184: 8-17.

Plant Growth, Ion Accumulation and Essential Oil Content of Salvia officinalis Mill. and S. tomentosa L. Grown under Different Salt Stress

Year 2021, Volume: 24 Issue: 3, 505 - 514, 30.06.2021
https://doi.org/10.18016/ksutarimdoga.v24i60916.730477

Abstract

Bu çalışmada, Salvia officinalis L. ve S. tomentosa Mill. türlerinin farklı tuz seviyelerine tepkisi belirlenmiştir. Ada çayı bitkileri iklim odasında, su kültüründe altı farklı tuz stresinde [1 (kontrol), 2, 3, 4, 5 ve 6 dS m-1] yetiştirilmişlerdir. Bitki organları taze ve kuru ağırlıkları, gövde uzunluğu, yaprak alanı, SPAD, CO2 asimilasyonu, kök uzunluğu, kök hacmi, kök kalınlığı, yaprak Na+, K+, Ca++ Cl- içerikleri ve esansiyel yağ asidi miktarı belirlenmiştir. Aratan tuz seviyesi iki adaçayı türünü de bitki gelişimi açısından önemli derecede etkilemiştir. Ancak, türler arasında biyomas gelişimi açısından önemli farklılıklar olmuştur. Genellikle, S. tomentosa türü S. officinalis’e göre daha iyi performans göstermiştir. Artan tuz stresi ile birlikte yaprakların Na+ ve Cl- içeriği artmış ve artış S. tometosa’da daha yüksek olmuştur. Yaprakların K+ içeriği tuz stresi ile birlikte sürekli azalırken, Ca+ içeriği tuz dozlarına karşı farklı tepkiler vermiştir. Çalışma, tuz stresi ile esansiyel yağ asitlerinin miktarının arttırılabileceğini göstermiştir. Yağ miktarındaki oransal artış S. officinalis’te daha yüksek olmuştur. Sonuçlar, Salvia türlerinin düşük ve orta tuzlu topraklarda yetiştirilebileceğini, adaçayını sulamak için ikinci sınıf suların kullanılabileceğini ve adaçayı esansiyel yağ veriminin tuz stresi kullanılarak arttırılabileceğini göstermiştir.

Project Number

FLY-2016-673

References

  • Arzani A 2008. Improving salinity tolerance in crop plants: a biotechnological review. In Vitro Cell Dev Biol Plant 44: 373-383.
  • Baâtour O, Rym K, Tarchoun I, Nasri N, Mahmoudi H, Zaghdoudi M, Ghaith H, Marzouk B, Ben Nasri AM, Lachaâl M 2012. Modification of fatty acid, essential oil and phenolic contents of salt-treated sweet marjoram (Origanum majorana L.) according to developmental stage. J Food Sci 77(10): C1047-54.
  • Balkaya A,Yıldız S, Horuz A, Doğru SM 2016. Effects of salt stress on vegetative growth parameters and ıon accumulations in cucurbit rootstock genotypes. Ekin Journal of Crop Breeding and Genetics 2(2):11-24.
  • Ben Taarit M, Msaadaa K, Hosnia K, Hammamib M, Kchouka ME, Marzouka B 2009. Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products 30: 333-337.
  • Ben Taarit, M, Msaada K, Hosni K, Marzouk B 2010. Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119(3): 951-956.
  • Ben Taarit M, Msaada K, Hosni K, Marzouk B 2011. Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiol Plant 33(1): 153-162.
  • Ben Taarit M, Msaada K, Hosni K, Marzouk B 2012. Physiological changes phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J Sci Food Agr 92(8): 1614-1619.
  • Bhandal IS, Malik CP 1988. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110: 205–254.
  • Chuang H, Ryu T, Choi Y 2003. Selection of salt-tolerant bottle gourd (Lagenaria siceraria) rootstock for watermelon graft. J. Korean Soc Hortic Sci 44(5): 588-594.
  • Colla G, Rouphael Y, Cardarelli M, Massa D, Salerno A, Rea E 2006. Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J Hortic Sci Biotechnol 81: 146-152.
  • Colla G, Rouphael Y, Rea E, Cardarelli M 2012. Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci Hortic 135: 177-185.
  • Cramer GR, Läuchli A, Polito VS 1985. Displacement of Ca++ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol 79: 207-211.
  • Escalona A, Salas MC, Coutinho C, Guzman M 2014. Growth and tissue ion concentration of mint and sage irrigated with saline water for use in landscape. 7th Iberian Congress of Agricultural Engineering and Horticultural Sciences. 26-29 August 2013 Madrid-Spain.
  • FAO 2009. FAO land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush/ Acces Date: 03.09.2020.
  • Flowers TJ 2004. Improving crop salt tolerance. J Exp Bot 55: 307–319.
  • Grattan SR, Grieve CM 1999. Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78: 127-157.
  • Greenway H, Munns R 1980. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physio 31: 149-190.
  • Grzeszczuk M, Salachna P, Meller E 2018. Changes in photosynthetic pigments, total phenolic content, and antioxidant activity of Salvia coccinea Buc’hoz Ex Etl. induced by exogenous salicylic acid and soil salinity. Molecules 23: 1-11.
  • Hay RKM, Waterman PG 1993. Physiology (Volatile Oil Crops: Their Biology, Biochemistry, and Production, Longman, England: Ed. Hay RKM, Waterman PG) 23-47.
  • Hendawy SF, Khalid KA 2005. Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. J App Sci Res 1: 147-155.
  • Johnson CM, Ulrich A 1959. Analytical Methods For Use in Plant Analysis. California Agricultural Experiment Station Bull 766, 78 pp.
  • Kacar B, Katkat V 2010. Bitki Besleme. 5. Baskı, Nobel Yayın Dağıtım, Ankara, 678 pp.
  • Kılıç A, 2008. Essential oil extraction methods. Journal of Bartın Forestry Faculty 10(13): 37-45.
  • Kulak M 2011. The effect of different salt treatments on the development of sage (Salvia officinalis L.). Kilis 7 Aralık University Graduate School of Natural and Applied Sciences, Master Thesis, 71 pp.
  • Mahjan S, Tuteja N 2005. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444: 139–158.
  • Mamadalieva NZ, Akramo DK, Ovidi E, Tiezzi A, Nahar L, Azimova SS, Sarker SD 2017. Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines 4(8): 2-12.
  • Marin A, Rubio JS, Martinez V, Gil MI 2009. Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. J Sci Food Agric 89: 1352-1359.
  • Máthé JRI, Oláh L, Máthé A, Miklossy V, Bernáth J, Blunden G, Patel A, Máthé I 1992. Changes in the essential oil production of Salvia officinalis under climatic conditions of the temperate belt. Planta Med 58: 680–686.
  • Munns R 2002. Comparative physiology of salt and water stress. Plant Cell Environ 5(2): 239-250.
  • Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heanney AJ, McGimpsey JA, Smallfield BM 1999. Essential oils from dalmatian sage (Salvia officinalis L.): Variations among individuals, plant parts, seasons, and sites. J Agr Food Chem 47: 2048–2054.
  • Putievsky EE, Ravid U, Dudai N 1986. The influence of season and harvest frequency on essential oil and herbal yields from a pure clone of sage (Salvia officinalis) grown under cultivated conditions. J Nat Prod 49: 326-329.
  • Rengel Z 1992. The role of calcium in salt toxicity. Plant Cell Environ 15: 625-632.
  • Rouphael Y, Cardarelli M, Rea E, Colla G 2012. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica 50:180-188.
  • Rouphael Y, Kyriacou MC, Petropoulos SA, De Pascale S, Colla G 2018. Improving vegetable quality in controlled environments. Sci Hortic 234: 275-289.
  • Sakamoto K, Kogi M, Yanagisawa T 2014. Effects of salinity and nutrients in seawater on hydroponic culture of red leaf lettuce. Environ Control Biol 52: 189-195.
  • Santos-Gomes PC, Fernandes-Ferreira M 2001. Organ and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. J Agr Food Chem 49: 2908-2916.
  • Tanker M, Sarer E, Tanker N 1976. Investigations on the essential oil of Salvia triloba by gas chromatography. J Fac Pharm Ankara 6: 198-206.
  • Tounekti T, Hernandez, Muller M, Khemira H, Munne-Bosch S 2011. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis. Plant Physiol Bioch 49(10): 1165-1176.
  • Tounekti T, Abreu ME, Khemira H, Munne-Bosch S 2012. Canopy position determines the photoprotective demand and antioxidant protection of leaves in salt-stressed Salvia officinalis L. Plants Environ Exp Bot 78: 146-156.
  • Tounekti T, Khemira H 2015. NaCl stress-induced changes in the essential oil quality and abietane diterpene yield and composition in common sage. J Intercult Ethnopharmacol 4(3): 208-216.
  • Unlukara A, Kurunç A, Kesmez GD, Yurtseven E, Suare DL 2010. Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage 59: 203-214.
  • Yetişir H, Uygur V 2009. Plant growth and mineral element content of different gourd species and watermelon under salinity stress. Turk J Agric For 33(1): 65-77.
  • Yetisir H, Uygur V 2010. Responses of grafted watermelon onto different gourd species to salinity stress. J Plant Nutr 33: 315-327.
  • Zhu JK, Plant salt tolerance. 2001. Trends Plant Sci 6:66-71.
  • Zushi K, Matsuzoe N 2015. Metabolic profile of organoleptic and health-promoting qualities in two tomato cultivars subjected to salt stress and their interactions using correlation network analysis. Sci Hortic 184: 8-17.
There are 45 citations in total.

Details

Primary Language English
Journal Section RESEARCH ARTICLE
Authors

Harun Göçer 0000-0002-3599-6675

Halit Yetişir

Abdullah Ulaş 0000-0001-9029-031X

Mehmet Arslan 0000-0002-0530-157X

Alim Aydın 0000-0002-9424-5556

Project Number FLY-2016-673
Publication Date June 30, 2021
Submission Date May 1, 2020
Acceptance Date October 21, 2020
Published in Issue Year 2021Volume: 24 Issue: 3

Cite

APA Göçer, H., Yetişir, H., Ulaş, A., Arslan, M., et al. (2021). Plant Growth, Ion Accumulation and Essential Oil Content of Salvia officinalis Mill. and S. tomentosa L. Grown under Different Salt Stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 24(3), 505-514. https://doi.org/10.18016/ksutarimdoga.v24i60916.730477


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149