Research Article
BibTex RIS Cite

Rubia tinctorum L. (Kökboya) Bitkisinin in vitro Kök Kültürlerinde Hormon ve Eksplant Kaynaklarının Sekonder Metabolit Üretimi ve Antioksidan Aktivitelerine Etkileri

Year 2021, Volume: 24 Issue: 5, 939 - 947, 31.10.2021
https://doi.org/10.18016/ksutarimdoga.vi.861997

Abstract

Bu çalışmada, kökboya (Rubia tinctorum L.) bitkisinde kök ve adventif kök indüksiyonuna eksplant kaynağı ve oksin grubu hormonların etkilerinin belirlenmesi ve elde edilen köklerin sekonder metabolit içeriği ve antioksidan aktivitelerinin belirlenmesi amaçlanmıştır. Kök ve adventif kök kültürünün oluşturulmasında in vitro koşullarda yetiştirilen 45 günlük bitkilerin gövde, yaprak ve kök kısımları eksplant kaynağı olarak kullanılmıştır. Eksplantlar 4.4 g L-1 MS (Murashige ve Skoog), 30 g L-1 sukroz ve 2 g L-1 phytagel ve 2 mg L-1 oksin içeren besin ortamında karanlık koşullarda kültüre alınmıştır. Besin ortamına oksin grubu hormonlardan indol-3-bütirik asit (IBA), naftalenasetik asit (NAA) ve indol-3-asetik asit (IAA) ilave edilmiştir. Bu ortamda gelişen kök ve adventif kökler 30. gün hasat edilerek kök gelişim parametreleri belirlendikten sonra kökler kurutularak toplam antrakinon, fenolik ve flavonoid içeriği belirlenmiştir. Ayrıca köklerin antioksidan kapasiteleri katyon radikali giderme (ABTS), indirgeme gücü (FRAP) ve serbest radikal giderme (DPPH) metotları ile belirlenmiştir. Toplam antrakinon, toplam fenolik ve flavonoid içeriği en yüksek IAA besin ortamında gövde eksplantlarından gelişen adventif köklerde sırasıyla 9.83 ± 0.11 mg g-1, 14.45 ± 0.29 mg GAE g-1 ve 3.85 ± 0.03 mg KUE g-1 olarak belirlenmiştir. En yüksek DPPH, ABTS ve FRAP aktivitesi de IAA besin ortamında gövde eksplantlarından gelişen adventif köklerde belirlenmiştir.

References

  • Aras Aşcı Ö, Demirci T, Göktürk Baydar N 2018. Effects of NaCl Applications on Root Growth and Secondary Metabolite Production in Madder (Rubia tinctorum L.) Root Cultures. International Journal of Secondary Metabolite 3:210-216.
  • Ba´nyai P, Kuzovkina IN, Kursinszki L, Szőke E´ 2006. HPLC Analysis of Alizarin and Purpurin Produced by Rubia tinctorum L. Hairy Root Cultures. Chromatographia Supplement 63: 111–114.
  • Baque MA, Hahn EJ, Paek KY 2010. Growth, Secondary Metabolite Production and Antioxidant Enzyme Response of Morinda Citrifolia Adventitious Root as Affected by Auxin and Cytokinin. Plant Biotechnol Rep 4:109–116.
  • Baskaran P, Jayabalan N 2009. Psoralen Production in Hairy Roots and Adventitious Roots Cultures of Psoralea corylifolia. Biotechnol Lett 31:1073–1077.
  • Baydar H, Karadoğan T 2006. Agronomic Potential and Industrial Value of Madder (Rubia tinctorum L.) as a Dye Crop. Turk J Agric for 30:287-293. Blois MS 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 26 1199-1200.
  • Chien SC, Wu YC, Chen ZG, Yang WC 2015. Naturally Occurring Anthraquinones: Chemistry and Therapeutic Potential in Autoimmune Diabetes. Evidence-Based Complementary and Alternative Medicine Article ID 357357, 13.
  • Cui HY, Baque MA, Lee EJ, Paek KY 2013. Scale-up of Adventitious Root Cultures of Echinacea angustifolia in a Pilot-Scale Bioreactor for the Production of Biomass and Caffeic acid Derivatives. Plant Biotechnol Rep 7:297–308.
  • Demirci T, Aras Ascı Ö, Göktürk Baydar N 2020. Influence of Salicylic Acid and L‑Phenylalanine on The Accumulation of Anthraquinone and Phenolic Compounds in Adventitious Root Cultures of Madder (Rubia tinctorum L.). Plant Cell, Tissue and Organ Culture (PCTOC) https://doi.org/10.1007/s11240-020-01952-w.
  • Derksen GCH, Niederla¨nder HAG, van Beek TA 2002. Analysis of Anthraquinones in Rubia tinctorum L. by Liquid Chromatography Coupled with Diode-Array UV and Mass Spectrometric Detection. Journal of Chromatography A 978:119–127.
  • Duncan BD 1955. Multiple Range and Multiple Ftests. Biometrics. P.1-42.
  • Duval J, Pecher V, Poujol M, Lesellier E 2016. Research Advances for The Extraction, Analysis and Uses of Anthraquinones: A review. Industrial Crops and Products 94: 812–833.
  • Essaidi I, Snoussi A, Koubaier HBH, Casabianca H, Bouzouita N 2017. Effect of Acid Hydrolysis on Alizarin Content, Antioxidant and Antimicrobial Activities of Rubia tinctorum Extracts. Pigment & Resin Technology 46/5 379–384.
  • Genç M 2014. Başbakanlık Osmanlı Arşiv Belgelerinde Kökboya ve Cehri ile İlgili Kayıtlar. Art-e Sanat Dergisi 7(13)174-212.
  • Karataş İ, Polat F, Karataş R, Dal T, Elmastaş M 2018. Determination of Antioxidant Activity and Phenolic Compound Content of Black Carrot Callus Culture, Ecological Life Sciences (NWSAELS), 13(2):87-93. DOI: 10.12739/NWSA.2018.13.2.5A0097.
  • Karataş İ, Karataş R, Elmastaş M 2016. Antosiyaninlerin Kallus ve Hücre Süspansiyon Kültürüyle Üretimi. Gaziosmanpaşa Bilimsel Araştırma Dergisi (12): 80-91.
  • Le KC, Im WT, Paek KY, Park SY 2018. Biotic Elicitation of Ginsenoside Metabolism of Mutant Adventitious Root Culture in Panax ginseng. Applied Microbiology and Biotechnology 102:1687–1697.
  • Ling APK, Chin MF, Hussein S 2009. Adventitious Root Production of Centella asiatica in Response to Plant Growth Regulators and Sucrose Concentration. Medicinal Aromatic Plant Science Biotechnol 3(1):36-41.
  • Malik EM, Müller CE 2016. Anthraquinones as Pharmacological Tools and Drugs. Medicinal Research Reviews 36, No. 4: 705–748.
  • Mouri C, Laursen R 2012. Identification of Anthraquinone Markers for Distinguishing Rubia species in Madder-Dyed Textiles by HPLC. Microchim Acta 179:105–113.
  • Murashige T, Skoog F 1962. A revised Medium for Rapid Growth and Bioassays With Tobacco Tissue Cultures. Physiol Plant, 15: 473-497.
  • Murthy HN, Hahn EJ, Paek KY 2008. Adventitious Roots and Secondary Metabolism. Chinese Journal of Biotechnology 24,5:711-716.
  • Nartop P, Akay Ş, Gürel A 2013. Immobilization of Rubia tinctorum L. Suspension Cultures and Its Effects on Alizarin and Purpurin Accumulation and Biomass Production. Plant Cell Tiss Organ Cult 112:123–128.
  • Orba´n N, Boldizsa´r I, Szűcs Z, Da´nos B 2008. Influence of Different Elicitors on The Synthesis of Anthraquinone Derivatives in Rubia tinctorum L. Cell Suspension Cultures. Dyes and Pigments 77:249-257.
  • Orbán N, Boldızsár I, Bóka K 2007. Structural and Chemical Study of Callus Formation from Leaves of Rubia tinctorum. Bıologıa Plantarum 51 (3): 421-429. Oyaizu M 1986. Studies on Product of Browning Reaction Prepared from Glucose Amine. Jpn. J. Nutr., 44 307.
  • Pekal A, Pyrzynska K 2014. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods, 7:1776–1782.
  • Perassolo M, Cardillo AB, Mugas ML, Montoya SCN, Giulietti AM, Talou JR 2017. Enhancement of Anthraquinone Production and Release by Combination of Culture Medium Selection and Methyl Jasmonate Elicitation in Hairy Root Cultures of Rubia tinctorum. Industrial Crops Products 105: 124–132.
  • Perassolo M, Quevedo CV, Giulietti AM, Talou JR 2011. Stimulation of The Proline Cycle and Anthraquinone Accumulation in Rubia tinctorum Cell Suspension Cultures in The Presence of Glutamate and Two Proline Analogs. Plant Cell Tiss Organ Cult. 106:153–159.
  • Rahmat E, Kang Y 2019. Adventitious Root Culture for Secondary Metabolite Production in Medicinal Plants: A Review. J Plant Biotechnol 46:143–157.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C 1999. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med, 26(9- 10) 1231-1237.
  • Saranya Krishnan SR, Siril EA 2018. Elicitor Mediated Adventitious Root Culture for The Large-Scale Production of Anthraquinones from Oldenlandia umbellata L. Industrial Crops & Products 114:173–179.
  • Slinkard K, Singleton VL 1977. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am J Enol Viticult 28:49-55.
  • Sreeranjini S, Siril EA 2013. Production of Anthraquinones from Adventitious Root Derived Callus and Suspension Cultures of Morinda citrifolia L. in Response to Auxins, Cytokinin and Sucrose Levels. Asian Journal of Plant Science and Research 3(3):131-138.
  • SPSS 20. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Released 2011.
  • Steffens B, Rasmussen A 2016. The Physiology of Adventitious Roots, Topical Review on Adventitious Root Physiology. Plant Physiology170:603–617.
  • Sujatha G, Ranjitha Kumari BD 2012. Establishment of Fast growing in vitro Root Culture System in Artemisia vulgaris. Journal of Agricultural Technology 8(5): 1779-1790.
  • Vasconsuelo A, Giulietti AM, Boland R 2004. Signal Transduction Events Mediating Chitosan Stimulation of Anthraquinone Synthesis in Rubia tinctorum. Plant Science 166:405–413.
  • Wu CH, An D, Sun LN, Wang M, Chang GN, Zhao CY, Lian ML 2017. A Novel Co-Culture System of Adventitious Roots of Echinacea Species in Bioreactors for High Production of Bioactive Compounds. Plant Cell Tiss Organ Cult 130:301–311.

Effects of Hormone and Explant Sources on Secondary Metabolite Production and Antioxidant Activities in in vitro Root Cultures of Rubia tinctorum L. (Madder)

Year 2021, Volume: 24 Issue: 5, 939 - 947, 31.10.2021
https://doi.org/10.18016/ksutarimdoga.vi.861997

Abstract

In this study, it was aimed to determine the effects of explant source and hormones on root and adventitious root induction in madder (Rubia tinctorum L.) plant and to determine the secondary metabolite content and antioxidant activities of the obtained roots. The stem, leaf, and root parts of 45-day-old plants grown under in vitro conditions were used as the source of explants for the establishment of root and adventitious root culture. The explants were cultured in dark conditions in nutrient medium containing 4.4 g L-1 MS (Murashige and Skoog), 30 g L-1 sucrose, 2 g L-1 phytagel and 2 mg L-1 auxin. Among the auxin group hormones, indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and naphthaleneacetic acid (NAA) were added to the nutrient medium. Root and adventitious roots growing in this nutrient medium were harvested on the 30th day and their root growth parameters were determined. These roots were dried and total anthraquinone, total phenolic and flavonoid contents were determined. In addition, the antioxidant capacities of the roots were determined by reducing power (FRAP), free radical scavenging (DPPH) and cation radical scavenging (ABTS) methods. The highest total anthraquinone, total phenolic and flavonoid contents were determined as 9.83 ± 0.11 mg g-1, 14.45 ± 0.29 mg GAE g-1 and 3.85 ± 0.03 mg KUE g-1 in adventitious roots growing from stem explants in IAA nutrient medium, respectively. The highest DPPH, ABTS and FRAP activities were also determined in adventitious roots growing from stem explants in IAA nutrient medium.

References

  • Aras Aşcı Ö, Demirci T, Göktürk Baydar N 2018. Effects of NaCl Applications on Root Growth and Secondary Metabolite Production in Madder (Rubia tinctorum L.) Root Cultures. International Journal of Secondary Metabolite 3:210-216.
  • Ba´nyai P, Kuzovkina IN, Kursinszki L, Szőke E´ 2006. HPLC Analysis of Alizarin and Purpurin Produced by Rubia tinctorum L. Hairy Root Cultures. Chromatographia Supplement 63: 111–114.
  • Baque MA, Hahn EJ, Paek KY 2010. Growth, Secondary Metabolite Production and Antioxidant Enzyme Response of Morinda Citrifolia Adventitious Root as Affected by Auxin and Cytokinin. Plant Biotechnol Rep 4:109–116.
  • Baskaran P, Jayabalan N 2009. Psoralen Production in Hairy Roots and Adventitious Roots Cultures of Psoralea corylifolia. Biotechnol Lett 31:1073–1077.
  • Baydar H, Karadoğan T 2006. Agronomic Potential and Industrial Value of Madder (Rubia tinctorum L.) as a Dye Crop. Turk J Agric for 30:287-293. Blois MS 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 26 1199-1200.
  • Chien SC, Wu YC, Chen ZG, Yang WC 2015. Naturally Occurring Anthraquinones: Chemistry and Therapeutic Potential in Autoimmune Diabetes. Evidence-Based Complementary and Alternative Medicine Article ID 357357, 13.
  • Cui HY, Baque MA, Lee EJ, Paek KY 2013. Scale-up of Adventitious Root Cultures of Echinacea angustifolia in a Pilot-Scale Bioreactor for the Production of Biomass and Caffeic acid Derivatives. Plant Biotechnol Rep 7:297–308.
  • Demirci T, Aras Ascı Ö, Göktürk Baydar N 2020. Influence of Salicylic Acid and L‑Phenylalanine on The Accumulation of Anthraquinone and Phenolic Compounds in Adventitious Root Cultures of Madder (Rubia tinctorum L.). Plant Cell, Tissue and Organ Culture (PCTOC) https://doi.org/10.1007/s11240-020-01952-w.
  • Derksen GCH, Niederla¨nder HAG, van Beek TA 2002. Analysis of Anthraquinones in Rubia tinctorum L. by Liquid Chromatography Coupled with Diode-Array UV and Mass Spectrometric Detection. Journal of Chromatography A 978:119–127.
  • Duncan BD 1955. Multiple Range and Multiple Ftests. Biometrics. P.1-42.
  • Duval J, Pecher V, Poujol M, Lesellier E 2016. Research Advances for The Extraction, Analysis and Uses of Anthraquinones: A review. Industrial Crops and Products 94: 812–833.
  • Essaidi I, Snoussi A, Koubaier HBH, Casabianca H, Bouzouita N 2017. Effect of Acid Hydrolysis on Alizarin Content, Antioxidant and Antimicrobial Activities of Rubia tinctorum Extracts. Pigment & Resin Technology 46/5 379–384.
  • Genç M 2014. Başbakanlık Osmanlı Arşiv Belgelerinde Kökboya ve Cehri ile İlgili Kayıtlar. Art-e Sanat Dergisi 7(13)174-212.
  • Karataş İ, Polat F, Karataş R, Dal T, Elmastaş M 2018. Determination of Antioxidant Activity and Phenolic Compound Content of Black Carrot Callus Culture, Ecological Life Sciences (NWSAELS), 13(2):87-93. DOI: 10.12739/NWSA.2018.13.2.5A0097.
  • Karataş İ, Karataş R, Elmastaş M 2016. Antosiyaninlerin Kallus ve Hücre Süspansiyon Kültürüyle Üretimi. Gaziosmanpaşa Bilimsel Araştırma Dergisi (12): 80-91.
  • Le KC, Im WT, Paek KY, Park SY 2018. Biotic Elicitation of Ginsenoside Metabolism of Mutant Adventitious Root Culture in Panax ginseng. Applied Microbiology and Biotechnology 102:1687–1697.
  • Ling APK, Chin MF, Hussein S 2009. Adventitious Root Production of Centella asiatica in Response to Plant Growth Regulators and Sucrose Concentration. Medicinal Aromatic Plant Science Biotechnol 3(1):36-41.
  • Malik EM, Müller CE 2016. Anthraquinones as Pharmacological Tools and Drugs. Medicinal Research Reviews 36, No. 4: 705–748.
  • Mouri C, Laursen R 2012. Identification of Anthraquinone Markers for Distinguishing Rubia species in Madder-Dyed Textiles by HPLC. Microchim Acta 179:105–113.
  • Murashige T, Skoog F 1962. A revised Medium for Rapid Growth and Bioassays With Tobacco Tissue Cultures. Physiol Plant, 15: 473-497.
  • Murthy HN, Hahn EJ, Paek KY 2008. Adventitious Roots and Secondary Metabolism. Chinese Journal of Biotechnology 24,5:711-716.
  • Nartop P, Akay Ş, Gürel A 2013. Immobilization of Rubia tinctorum L. Suspension Cultures and Its Effects on Alizarin and Purpurin Accumulation and Biomass Production. Plant Cell Tiss Organ Cult 112:123–128.
  • Orba´n N, Boldizsa´r I, Szűcs Z, Da´nos B 2008. Influence of Different Elicitors on The Synthesis of Anthraquinone Derivatives in Rubia tinctorum L. Cell Suspension Cultures. Dyes and Pigments 77:249-257.
  • Orbán N, Boldızsár I, Bóka K 2007. Structural and Chemical Study of Callus Formation from Leaves of Rubia tinctorum. Bıologıa Plantarum 51 (3): 421-429. Oyaizu M 1986. Studies on Product of Browning Reaction Prepared from Glucose Amine. Jpn. J. Nutr., 44 307.
  • Pekal A, Pyrzynska K 2014. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods, 7:1776–1782.
  • Perassolo M, Cardillo AB, Mugas ML, Montoya SCN, Giulietti AM, Talou JR 2017. Enhancement of Anthraquinone Production and Release by Combination of Culture Medium Selection and Methyl Jasmonate Elicitation in Hairy Root Cultures of Rubia tinctorum. Industrial Crops Products 105: 124–132.
  • Perassolo M, Quevedo CV, Giulietti AM, Talou JR 2011. Stimulation of The Proline Cycle and Anthraquinone Accumulation in Rubia tinctorum Cell Suspension Cultures in The Presence of Glutamate and Two Proline Analogs. Plant Cell Tiss Organ Cult. 106:153–159.
  • Rahmat E, Kang Y 2019. Adventitious Root Culture for Secondary Metabolite Production in Medicinal Plants: A Review. J Plant Biotechnol 46:143–157.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C 1999. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med, 26(9- 10) 1231-1237.
  • Saranya Krishnan SR, Siril EA 2018. Elicitor Mediated Adventitious Root Culture for The Large-Scale Production of Anthraquinones from Oldenlandia umbellata L. Industrial Crops & Products 114:173–179.
  • Slinkard K, Singleton VL 1977. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am J Enol Viticult 28:49-55.
  • Sreeranjini S, Siril EA 2013. Production of Anthraquinones from Adventitious Root Derived Callus and Suspension Cultures of Morinda citrifolia L. in Response to Auxins, Cytokinin and Sucrose Levels. Asian Journal of Plant Science and Research 3(3):131-138.
  • SPSS 20. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Released 2011.
  • Steffens B, Rasmussen A 2016. The Physiology of Adventitious Roots, Topical Review on Adventitious Root Physiology. Plant Physiology170:603–617.
  • Sujatha G, Ranjitha Kumari BD 2012. Establishment of Fast growing in vitro Root Culture System in Artemisia vulgaris. Journal of Agricultural Technology 8(5): 1779-1790.
  • Vasconsuelo A, Giulietti AM, Boland R 2004. Signal Transduction Events Mediating Chitosan Stimulation of Anthraquinone Synthesis in Rubia tinctorum. Plant Science 166:405–413.
  • Wu CH, An D, Sun LN, Wang M, Chang GN, Zhao CY, Lian ML 2017. A Novel Co-Culture System of Adventitious Roots of Echinacea Species in Bioreactors for High Production of Bioactive Compounds. Plant Cell Tiss Organ Cult 130:301–311.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

İlhami Karataş 0000-0002-7965-7878

Publication Date October 31, 2021
Submission Date January 15, 2021
Acceptance Date March 1, 2021
Published in Issue Year 2021Volume: 24 Issue: 5

Cite

APA Karataş, İ. (2021). Rubia tinctorum L. (Kökboya) Bitkisinin in vitro Kök Kültürlerinde Hormon ve Eksplant Kaynaklarının Sekonder Metabolit Üretimi ve Antioksidan Aktivitelerine Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 24(5), 939-947. https://doi.org/10.18016/ksutarimdoga.vi.861997


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149