Araştırma Makalesi
BibTex RIS Kaynak Göster

UV-C’nin, Deinonoccus radiodurans ve Vitreoscilla Hemoglobin (vgb) Geni Aktarılmış Rekombinantlarında; SOD, KAT ve Karoten Miktarı Üzerine Etkisi

Yıl 2022, Cilt: 25 Sayı: 3, 476 - 484, 30.06.2022
https://doi.org/10.18016/ksutarimdoga.vi.916575

Öz

UV radyasyonu, biyolojik dokularda reaktif oksijen türlerinin meydana gelmesine neden olarak oksidatif stres oluşturmaktadır. UV’ nin indüklediği reaktif oksijen türleri, bunların etkileri ve bunlara karşı hücresel savunma mekanizmaları ve reaktif oksijen türlerinin temizlenmesinden sorumlu antioksidan sistemleri günümüzde üzerinde oldukça fazla araştırma yapılan konulardır. Bu çalışmada, yüksek seviyede iyonize radyasyon ve UV radyasyon, kuraklık ve DNA’ ya zarar veren kimyasallar gibi birçok ajan ve koşula olan direnciyle iyi bilinen bir ekstremofil olan Deinococcus radiodrans ile Vitreoscilla hemoglobin (vgb) geni klonlanmış rekombinantı ve kontrol olarak da vgb¯ rekombinant suşu kullanılmıştır. UV-C’ nin D. radiodurans' ın antioksidan savunma sistemleri (süperoksit dismutaz, katalaz ve karoten) üzerine etkisi araştırılıp, buna ek olarak organizmaya daha fazla oksijenli ortam sağlayarak daha fazla büyümesini sağlayan vgb geninin, bakterinin UV direncine yapacağı katkısı araştırılmıştır. Buna göre, D. radiodurans (vgb¯)' in UV-C uygulanan örneklerini kontrol gruplarıyla kıyasladığımızda süperoksit dismutaz ve katalaz enzim aktivitesinin yabanıl ve vgb genini taşıyan rekombinantına oranla daha düşük olduğu tespit edilmiştir. Yine yüksek karoten içeren yabanıl tipi bakterilerde, UV-C uygulamasına bağlı olarak karoten miktar artışı net bir şekilde gözlenmiştir.

Destekleyen Kurum

İnönü Üniversitesi

Proje Numarası

2012-192 nolu BAP projesi

Teşekkür

D. radiodurans’ ın Dr[pUC8] ve Dr[pUC8:15] rekombinantları İnönü Üniversitesi Moleküler Biyoloji Bölümünde Prof. Dr. Hikmet Geçkil' in laboratuvarından temin edilmiştir. Ayrıca bu çalışma 2012-192 no’lu proje ile İnönü Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir.

Kaynakça

  • Akbas M, Tugrul D, Serhat O, Benjamin S 2011. Further İnvestigation of the Mechanism of Vitreoscilla Hemoglobine Protection from Oxidative stress in Escherichia coli. Section Cellular and Molecular Biology, 66(5): 735-740.
  • Anonim 2006. Elektromanyetik Dalgalar, http://astom.omu.edu.tr.
  • Battista JR, Raney FA 1997. Deinococcus- Thermus. Nobre, Schumann, Stackebrandt, 513.
  • Bhosole P, Gadre RV 2001. Optimization of Carotenoid Production from Hyper-Producing Rhodotorula glutinis Mutant 32 by a Factorial Approach, Letters in Applied Microbiology, 33: 12-16.
  • Carbonneau MA, Melin AM, Perromat A, Clerc M 1989. The action of free radicals on Deinococcus radiodurans carotenoids, Archives of Biochemistry and Biophysics, 275(1): 244-251.
  • Caspari T 2000. How to Activate p53, Current Biology, 10: 315-317.
  • Duncan B 1995. Multiple Range and multiple F Tests. Biometrics, 11: 1-14.
  • Dunford HB 1987. Free radicals in iron-containing systems. Free Radic. Biol. Med, 3: 405–421.
  • Henden E 2000. Enstrümantel Analiz II, Spektroskopik Analiz Yöntemleri, Ankara Imlay JA 2006. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol, 59: 1073–1082.
  • Jagannatham MV, Cattopadhyay MK, Subbalakshmı C, Vaıramanı M, Narayanan K, Rao CM, Shıvajı S 2000. Carotenoids of an Antarctic psychrotolerant bacterium. Sphingobacterium antarcticus and a mesophilic bacterium Sphingobacterium multivorum. Arch. Microbiol, 173: 418-424.
  • John MC, Gutteridge Barry H 2010. Antioxidants: Molecules, medicines, and myths, Biochemical and Biophysical Research Communications, 393,4(19): 561-564.
  • Khosla C, Bailey JE 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 331: 633–635.
  • Latonen L, Laiho M 2005. Cellular UV damage responses—Functions of tumor supressor p53, BBA, 1755: 71-89. Leena L , Marikki L 2005. Hücresel UV hasar tepkileri Tümör baskılayıcı p53'ün işlevleri, Biochim Biophys Acta, 1755 (2): 71-89.
  • Lipton MS, Paša-Tolić L, Anderson GA, Anderson DJ, Auberry DL 2002. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl. Acad. Sci, 99: 11049–11054.
  • Liu SC, Webster DA, Stark BC 1995. Cloning and expression of the Vitreoscilla Hemoglobine gene in Pseudomonas: Effect on cell growth. Applied Microbiology and Biotecnology, 44(3): 419-424.
  • Luck H 1963. Catalase. Methods of Enzymatic Analysis 885–888.
  • Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev, 65: 44–7.
  • Markillie LM, Varnum SMP, Hradecky and Wong KK 1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J. Bacteriol, 181: 666–669.
  • Mary S, Lipton L, Gordon A, Anderson DJ, Deanna L, Auberry J 2002. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl. Acad. Sci, 99: 11049–11054.
  • McCord JM, Fridovich I 1969. Superoxide Dismutase: An Enzymic Function for Erytreoeuprein (Hemoeuprein), J. Biol. Chem, 244(22): 6049–6055.
  • Mello F, Meneghini R 1984. In vivo formation of singlestrand breaks in DNA by hydrogen peroxide is mediated by the Haber- Weiss reaction. Biochim. Biophys. Acta, 781: 56–63. Minton KW, 1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol, 13: 9–15.
  • Moseley BE, Mattingly A, Copland HJ 1972. Sensitization to radiation by loss of recombination ability in a temperature-sensitive DNA mutant of Micrococcus radiodurans held at its restrictive temperature. J. Gen. Microbiol, 72: 329–338.
  • Moseley BE, Copland HJ 1975. Isolation and properties of a recombinationdeficient mutant of Micrococcus radiodurans. J. Bacteriol, 121: 422–428.
  • Moseley BE, Evans DM 1983. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. J. Gen. Microbiol, 129: 2437–2445.
  • Özalpan A 2001. İyonlaştırıcı radyasyonlar ve radyasyon enerjisinin absorpsiyonu Temel radyobiyoloji. Vol. 1, Haliç Üniversitesi Yayınları, İstanbul. (pp:31).
  • Setlow JK, Duggan DE 1964. The resistance of Micrococcus radiodurans to ultraviolet radiation. I. Ultraviolet-induced lesions in the cell’s DNA. Biochim. Biophys. Acta, 87: 664–668. 1. Stahl W, Sies H 2003. Antioxidant activity of carotenoids. Mol. Aspects Med, 24: 345–351.
  • Stahl W, Junghans A, Boer B, Driomina ES, Briviba K, Sies H 1998. Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett. 427: 305–308.
  • Stark BC, Pagilla KR, Dikshit KL 2001. Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl. Microbiol. Biotechnol, 99: 1627-1636.
  • Tatsuzawa H, Maruyama TN, Misawa K, Fujimori and Nakano M 2000. Quenching of singlet oxygen by carotenoids produced in Escherichia coli—attenuation of singlet oxygen-mediated bacterial killing by carotenoids. FEBS Lett, 484: 280–284.
  • Tian B, Wu Y, Sheng D, Zheng Z, Gao G, Hua Y 2004. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence, 19: 78–84.
  • Tian B, Xu Z, Sun Z, Lin J, Hua Y 2007. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta, 1770: 902–911.
  • Wakabayashi S, Matsubara H, Webster DA 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla Nature, 322: 481–483. Woese CR. 1987. Bacterial evolution. Microbiol. Rev, 51: 221–271.
  • Zhang P, Omaye ST 2000. Beta-carotene and protein oxidation: effects of ascorbic acid and alpha-tocopherol. Toxicology, 146: 37–47.
  • Zhang L, Yang Q, Luo X, Fang C, Zhang Q, Tang Y 2007. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA damaging agents due to change of free radicals scavenging ability. Arch. Microbiol, 188: 411–419.

In UV-C, Deinonoccus radiodurans and Vitreoscilla Hemoglobin (vgb) Gene Transferred Recombinants; Effect on SOD, KAT and Carotene Amount

Yıl 2022, Cilt: 25 Sayı: 3, 476 - 484, 30.06.2022
https://doi.org/10.18016/ksutarimdoga.vi.916575

Öz

UV radiation creates oxidative stress by causing the formation of reactive oxygen species in biological tissues. Reactive oxygen species induced by UV, their effects and cellular defense mechanisms against them and antioxidant systems responsible for cleaning reactive oxygen species are the subjects on which much research has been done today. In this study, Deinococcus radiodrans, a well-known extremophile with high levels of ionizing radiation and UV radiation, resistance to many agents and conditions such as drought and DNA damaging chemicals, and Vitreoscilla hemoglobin (vgb) gene cloned recombinant and vgb¯ recombinant strain as a control. used. The effect of UV-C on D. radiodurans' antioxidant defense systems (superoxide dismutase, catalase and carotene) was investigated, and in addition, the contribution of the vgb gene to the UV resistance of the bacteria by providing a more oxygenated environment was investigated. Accordingly, when we compared the UV-C applied samples of D. radiodurans (vgb¯) with the control groups, it was found that superoxide dismutase and catalase enzyme activity was lower than the recombinant carrying wild and vgb genes. Again, in wild-type bacteria with high carotene content, an increase in the amount of carotene was clearly observed due to UV-C application.

Proje Numarası

2012-192 nolu BAP projesi

Kaynakça

  • Akbas M, Tugrul D, Serhat O, Benjamin S 2011. Further İnvestigation of the Mechanism of Vitreoscilla Hemoglobine Protection from Oxidative stress in Escherichia coli. Section Cellular and Molecular Biology, 66(5): 735-740.
  • Anonim 2006. Elektromanyetik Dalgalar, http://astom.omu.edu.tr.
  • Battista JR, Raney FA 1997. Deinococcus- Thermus. Nobre, Schumann, Stackebrandt, 513.
  • Bhosole P, Gadre RV 2001. Optimization of Carotenoid Production from Hyper-Producing Rhodotorula glutinis Mutant 32 by a Factorial Approach, Letters in Applied Microbiology, 33: 12-16.
  • Carbonneau MA, Melin AM, Perromat A, Clerc M 1989. The action of free radicals on Deinococcus radiodurans carotenoids, Archives of Biochemistry and Biophysics, 275(1): 244-251.
  • Caspari T 2000. How to Activate p53, Current Biology, 10: 315-317.
  • Duncan B 1995. Multiple Range and multiple F Tests. Biometrics, 11: 1-14.
  • Dunford HB 1987. Free radicals in iron-containing systems. Free Radic. Biol. Med, 3: 405–421.
  • Henden E 2000. Enstrümantel Analiz II, Spektroskopik Analiz Yöntemleri, Ankara Imlay JA 2006. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol, 59: 1073–1082.
  • Jagannatham MV, Cattopadhyay MK, Subbalakshmı C, Vaıramanı M, Narayanan K, Rao CM, Shıvajı S 2000. Carotenoids of an Antarctic psychrotolerant bacterium. Sphingobacterium antarcticus and a mesophilic bacterium Sphingobacterium multivorum. Arch. Microbiol, 173: 418-424.
  • John MC, Gutteridge Barry H 2010. Antioxidants: Molecules, medicines, and myths, Biochemical and Biophysical Research Communications, 393,4(19): 561-564.
  • Khosla C, Bailey JE 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 331: 633–635.
  • Latonen L, Laiho M 2005. Cellular UV damage responses—Functions of tumor supressor p53, BBA, 1755: 71-89. Leena L , Marikki L 2005. Hücresel UV hasar tepkileri Tümör baskılayıcı p53'ün işlevleri, Biochim Biophys Acta, 1755 (2): 71-89.
  • Lipton MS, Paša-Tolić L, Anderson GA, Anderson DJ, Auberry DL 2002. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl. Acad. Sci, 99: 11049–11054.
  • Liu SC, Webster DA, Stark BC 1995. Cloning and expression of the Vitreoscilla Hemoglobine gene in Pseudomonas: Effect on cell growth. Applied Microbiology and Biotecnology, 44(3): 419-424.
  • Luck H 1963. Catalase. Methods of Enzymatic Analysis 885–888.
  • Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev, 65: 44–7.
  • Markillie LM, Varnum SMP, Hradecky and Wong KK 1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J. Bacteriol, 181: 666–669.
  • Mary S, Lipton L, Gordon A, Anderson DJ, Deanna L, Auberry J 2002. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl. Acad. Sci, 99: 11049–11054.
  • McCord JM, Fridovich I 1969. Superoxide Dismutase: An Enzymic Function for Erytreoeuprein (Hemoeuprein), J. Biol. Chem, 244(22): 6049–6055.
  • Mello F, Meneghini R 1984. In vivo formation of singlestrand breaks in DNA by hydrogen peroxide is mediated by the Haber- Weiss reaction. Biochim. Biophys. Acta, 781: 56–63. Minton KW, 1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol, 13: 9–15.
  • Moseley BE, Mattingly A, Copland HJ 1972. Sensitization to radiation by loss of recombination ability in a temperature-sensitive DNA mutant of Micrococcus radiodurans held at its restrictive temperature. J. Gen. Microbiol, 72: 329–338.
  • Moseley BE, Copland HJ 1975. Isolation and properties of a recombinationdeficient mutant of Micrococcus radiodurans. J. Bacteriol, 121: 422–428.
  • Moseley BE, Evans DM 1983. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. J. Gen. Microbiol, 129: 2437–2445.
  • Özalpan A 2001. İyonlaştırıcı radyasyonlar ve radyasyon enerjisinin absorpsiyonu Temel radyobiyoloji. Vol. 1, Haliç Üniversitesi Yayınları, İstanbul. (pp:31).
  • Setlow JK, Duggan DE 1964. The resistance of Micrococcus radiodurans to ultraviolet radiation. I. Ultraviolet-induced lesions in the cell’s DNA. Biochim. Biophys. Acta, 87: 664–668. 1. Stahl W, Sies H 2003. Antioxidant activity of carotenoids. Mol. Aspects Med, 24: 345–351.
  • Stahl W, Junghans A, Boer B, Driomina ES, Briviba K, Sies H 1998. Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett. 427: 305–308.
  • Stark BC, Pagilla KR, Dikshit KL 2001. Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl. Microbiol. Biotechnol, 99: 1627-1636.
  • Tatsuzawa H, Maruyama TN, Misawa K, Fujimori and Nakano M 2000. Quenching of singlet oxygen by carotenoids produced in Escherichia coli—attenuation of singlet oxygen-mediated bacterial killing by carotenoids. FEBS Lett, 484: 280–284.
  • Tian B, Wu Y, Sheng D, Zheng Z, Gao G, Hua Y 2004. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence, 19: 78–84.
  • Tian B, Xu Z, Sun Z, Lin J, Hua Y 2007. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta, 1770: 902–911.
  • Wakabayashi S, Matsubara H, Webster DA 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla Nature, 322: 481–483. Woese CR. 1987. Bacterial evolution. Microbiol. Rev, 51: 221–271.
  • Zhang P, Omaye ST 2000. Beta-carotene and protein oxidation: effects of ascorbic acid and alpha-tocopherol. Toxicology, 146: 37–47.
  • Zhang L, Yang Q, Luo X, Fang C, Zhang Q, Tang Y 2007. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA damaging agents due to change of free radicals scavenging ability. Arch. Microbiol, 188: 411–419.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Elif Özbey 0000-0001-7215-1922

Dilek Asma 0000-0002-3866-3016

Proje Numarası 2012-192 nolu BAP projesi
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 15 Nisan 2021
Kabul Tarihi 28 Temmuz 2021
Yayımlandığı Sayı Yıl 2022Cilt: 25 Sayı: 3

Kaynak Göster

APA Özbey, E., & Asma, D. (2022). UV-C’nin, Deinonoccus radiodurans ve Vitreoscilla Hemoglobin (vgb) Geni Aktarılmış Rekombinantlarında; SOD, KAT ve Karoten Miktarı Üzerine Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(3), 476-484. https://doi.org/10.18016/ksutarimdoga.vi.916575

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149