Research Article
BibTex RIS Cite

Patlıcanda Kurşuni Küf Hastalığı (Botrytis cinerea) Üzerine Bazı Bakteriyel İzolatların in vitro ve in vivo Koşullarda Biyolojik Mücadele Etkinliklerinin Araştırılması

Year 2022, Volume: 25 Issue: 5, 1098 - 1108, 31.10.2022
https://doi.org/10.18016/ksutarimdoga.vi.953977

Abstract

Kurşuni küf etmeni Botrytis cinerea (teleomorph: Botryotinia fuckliana (de Barry) Whetzel) ekonomik öneme sahip birçok sebzede önemli verim kayıplarına neden olmaktadır. Verim kaybını azaltmak için mücadelede kimyasallar kullanılmaktadır. Kimyasalların bitki hastalıkları mücadelesinde yoğun şekilde kullanılması sonucu, insan sağlığı ve çevre olumsuz etkilenmektedir. Bundan dolayı son zamanlarda çevre dostu mücadele uygulamalarına ilgi giderek artmıştır. Bu uygulamalardan birisi de faydalı bakterilerin hastalıkların biyolojik mücadelesinde kullanılmasıdır. Bu çalışmada; 12 biyoajan bakteri izolatının (1 Bacillus cereus, 2 Bacillus megaterium, 2 Bacillus pumilus, 2 Bacillus subtilis, 1 Bacillus thuringiensis subsp. kurstaki, 1 Paenibacillus polymyxa, 2 Pantoea agglomerans ve 1 Pseudomonas fluorescens) patlıcanda kurşuni küf hastalığına neden olan B. cinerea üzerine etkisi in vitro ve in vivo şartlarda belirlenmeye çalışılmıştır. In vitro şartlarda en etkili izolatlardan olan Pseudomonas chlroraphis subsp. aureofaciens ve Bacillus amyloliquefaciens’in B. cinerea’ya karşı in vivo şartlarda da etkili olduğu tespit edilmiştir. Sonuç olarak; en etkili bulunan 2 bakteri izolatının patlıcan yetiştiriciliğinde B. cinerea’nın biyolojik mücadelesinde biyokontrol ajanı olarak kullanılabileceği belirlenmiştir.

References

  • Aktan ZC, Soylu S 2020. Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. KSÜ Tarım ve Doğa Dergisi, 23 (2): 641-654.
  • Aşkın A, Katırcıoğlu YZ 2008. Determination of pathogenicity of the precipitating damping off disease in tomato seedlings in the provinces of Ayaş, Beypazarı and Nallıhan in Ankara. Plant Protection Bulletin, 48(2): 49-59 (in Turkish).
  • Brandhoff B, Simon A, Dornieden A, Schumacher J 2017. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators bcltf3 and bcreg1. Current Genetics, 63: 931-949.
  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A 2011. Bacterial communities of diverse Drosophila species: Ecological Context of a Host-microbe Model System. Plos Genetics 7:e1002272.
  • Çakmakçı R, Erman M, Kotan R, Çığ F, Karagöz K, Sezen M 2010. Growth promotion and yield enhancement of sugar beet and wheat by application of plant growth promotion rhizobacteria. International Conference on Organic Agriculture in Scope of Environmental Problems, 03-07 February 2010, Famagusta, Cyprus Island, 198-202.
  • Çamlıca E, Tozlu E 2019. Biological Control of Alternaria solani in tomato. Fresenius Environmental Bulletin, 28(10): 7092-7100.
  • Çığ F, Sönmez F, Karagöz K, Erman M, Çakmakçı R, Kotan R, Amak Z 2014. Investigation of the impacts of nitrogen fixing and phosphate dissolving bacteria isolated in Lake Van Basin on the development of Kirik Wheat within the context of sustainable agriculture. International Congress on Green Infrastructure and Sustainable Societies/Cities, 8-10 May 2014, Izmir, Turkey, p: 205.
  • Çiftçi G, Altınok HH 2019. Effects of plant growth promoting rhizobacteria treatments of eggplant seeds against grey mold (Botrytis cinerea Pers.: Fr.) disease. KSU J Agric Nat, 22(3): 421-429.
  • Dean R, van Kan JAL, Pretorius ZA, Kosack KEH, Pietro AD, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13: 414-430.
  • Dönmez MF, Esitken A, Yıldız H, Ercişli S 2011. Biocontrol of B. cinerea on strawberry fruit by plant growth promoting bacteria. The Journal of Animal & Plant Sciences, 21(4): 758-763.
  • Droby S, Wisniewski M, Macarisin D, Wilson C 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biology and Technology, 52: 137-145.
  • Elad Y, Kohl J, Fokkema NJ 1994. Control of infection and sporulation of B. cinerea on bean and tomato by saprophytic bacteria and fungi. European Journal of Pathology, 100(5): 315¬336.
  • Erman M, Kotan R, Çakmakçı R, Çığ F, Karagöz K, Sezen M 2010. Effectof nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake basin on the growth and quality properties in wheat and sugar beet. Turkey IV. Organic Farming Symposium, 28 June-1 July 2010, p: 325-329, Erzurum, Turkey.
  • Fillinger S, Elad Y 2016. Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer. https://doi.org/10.1007/978-3-319-23371-0.
  • Göğüsgeren N, Çolak Ö 2012. Determination strains of Bacillus spp. which produces an effective antibiotic against Trichoderma spp. and investigation of the opportunity to be in situ of these strains at micelle culture of Ganoderma lucidum. Çukurova University Journal of the Faculty of Engineering, 27(3): 165-164.
  • Gökçe AY, Kotan R 2016. Investigation of biological control possibilities of wheat root rot disease caused by Bipolaris sorokiniana (Sacc.) using PGPR and bio-control bacteria in controlled condition. Plant Protection Bulletin, 56(1): 49-75.
  • Göktürk T, Tozlu E, Kotan R 2018. Prospects of entomopathogenic bacteria and fungi for biological control of Ricania simulans (Walker 1851) (Hemiptera: Ricaniidae). Pakistan J. Zool., 50(1): 75-82.
  • Haidar R, Fermaud M, Calvo-Garrido C, Roudet J, Deschamps A 2016. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathologia Mediterranea, 55(3): 301-322.
  • Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P,Torrice C, Wu M, Shimamura T, Perera SA 2006. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta, 224(3): 598-611.
  • Jiang Z, Liu X 2015. Early visualization detection of gray mold (Botrytis) on eggplant leaves based on multi-spectral image. Applied Mechanics and Materials, 741: 323-327.
  • Kanetis L,Christodoulou S, Iacovides T 2017. Fungicide resistance profile and genetic structure of Botrytis cinerea from greenhouse crops in Cyprus. European Journal of Plant Pathology, 147: 527-540.
  • Karagöz K, Kotan R, Dadasoglu F, Dadaşoğlu E 2016. Identification and characterisation of potential biofertilizer bacterial strains. 1st International Conference on Advances in Natural and Applied Sciences (ICANAS), 21-23 April, Antalya, Turkey.
  • Klement Z 1968. Pathogenicity factors in reard to relationships of phytopathogenic bacteria. Phytopathology, 58: 1218-1222.
  • Laslo E, Mara G 2019. Is PGPR an Alternative for NPK Fertilizers in Sustainable Agriculture? Chapter 51-63pp. Microbial Interventions in Agriculture and Environment (Editors: Dhananjaya Pratap Singh Vijai Kumar Gupta and Ratna Prabha), Springer, 596p.
  • Lee JP, Lee SW, Kim CS, Son JH, Song JH, Lee KY, Kim HJ, Jung SJ, Moon BJ 2006. Evaluation of formulations of Bacilllus licheniformis for the biological control of tomato gray mold caused by B. cinerea. Biological Control, 37(3): 329-337.
  • Mohammadi P, Tozlu E, Kotan R, Kotan Senol M 2017. Potential of some bacteria for biological control of post harvest citrus green mould caused by Penicillium digitatum. Plant Protect Sci., 53(3): 134-143.
  • Paisley R 1995. MIS Whole Cell Fatty Acid Analysis by Gas Chromatography. MIDI, Inc., Newark DE 5. Sheng JX, Duck HP, Kim JY, Byung Sup K 2016. Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil. Trop. Plant Pathol., 41: 169-176.
  • Soylu EM, Kurt Ş, Soylu S 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology 143:183-189.
  • Soylu EM, Soylu S, Kara M, Kurt Ş 2020. Determinations of in vitro Antagonistic Effects of Microbiomes Isolated from Vermicompost Against Major Plant Fungal Disease Agents of Vegetables. KSU J. Agric Nat 23(1): 7-18.
  • Tekiner N, Tozlu E, Kotan R, Dadaşoğlu F 2018. Biological Control of Botrytis cinerea and Alternaria alternata with Bioagent Bacteria and Fungi Under In vitro Conditions. Fresenius Environmental Bulletin, 29(1): 640-649.
  • Tekiner N, Kotan R, Tozlu E, Dadaşoğlu F 2019. Determination of Some Biological Control Agents Against Alternaria Fruit Rot in Quince. Alinteri J. of Agr. Sci., 34(1): 25-31.
  • Tiwari K, Thakur HK 2014. Diversity and molecular characterization of dominant Bacillus amyloliquefaciens (JNU-001) endophytic bacterial strains isolated from native Neem varieties of Sanganer region of Rajasthan. Journal of Biodiversity, Bioprospecting and Development, 1(1): 1-15.
  • Toral L, Rodríguez M, Béjar V, Sampedro I 2020. Crop Protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms, 8(7): 992.
  • Tozlu E 2016. Biological Control of Carrot Sour Rot (Geotrichum candidum Link) by Some Bacterial Biocontrol Agents. Atatürk University Journl of Agricultural Faculty, 47(1): 1-9.
  • Tozlu E, Tekiner N, Kotan R, Örtücü S 2018. Investigation on The Biological Control of Alternaria alternata. Indian Journal of Agricultural Sciences, 88(8): 1241-1247.
  • Tozlu E, Mohammadi P, Kotan Şenol M, Nadaroglu H, Kotan R 2016. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mould disease in red cabbage,by some bacteria. Plant Protection Science, 52(3): 188-198.
  • Uygun N, Ulusoy MR, Satar S 2010. Biological control. Turkish Journal of Biological Control 1(1): 1-14.
  • Walker R, Innes CMJ, Allan EJ 2001. The potential biocontrol agent Pseudomonas antimicrobica inhibits germination of conidia and outgrowth of Botrytis cinerea. Letters in Applied Microbiology, 32: 346-348.
  • Wang H, Yan Y, Wang J, Zhang H, Qi W 2012. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS ONE 7(1): e29452. doi:10.1371/journal.pone.0029452
  • Weiberg A, Wang W, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H 2013. Fungal small rnas suppress plant immunity by hijacking host RNA interference pathways. Science (New York, N.Y.), 342: 11-123.
  • White TJ, Brauns T, Lee S, Taylor J 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. INNIS, D.H. GELFAND, J.J. SNINSKY, T.J. WHITE, eds. PCR Protocols. A guide to Methods and Applications. Academic Press, San Diego, 315-322.
  • Williamson B, Tudzynski B, Tudzynski P, van Kan JA 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8: 561-580.
  • Viriyasuthee V, Saepaisan S, Saksirirat W, Gleason ML, Chen RS, Jogloy S 2019. Effective plant ages for screening for field resistance to alternaria leaf spot (caused by Alternaria spp.) under natural infection in jerusalem artichoke (Helianthus tuberosus L.). Agronomy, 9:754. doi:10.3390/agronomy9110754.
  • Yıldız F 1990. Investigations on biological control of Botrytis cinerea Pers. on the greenhouse grown vegetable crops. Ege University, Graduate School of Natural and Applied Sciences, pHd Thesis, Izmir. 84 p. (in Turkish).
  • Yıldız F, Yıldız M, Delen N, Coşkuntuna A, Kınay P, Türküsay H 2007. The effects of biological and chemical treatment on gray mold disease in tomatoes grown under greenhouse conditions. Turkish Journal of Agriculture and Forestry, 31(5): 319-325.
  • Zhang Y, Bell A, Perlman PS, Leibowitz MJ 2000. Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae. RNA. 6(7): 937-51.

Investigation of the Biocontrol Effectiveness of Some Bacterial Strains on Eggplant Gray Mold Disease (Botrytis cinerea) in in vitro and in vivo conditions

Year 2022, Volume: 25 Issue: 5, 1098 - 1108, 31.10.2022
https://doi.org/10.18016/ksutarimdoga.vi.953977

Abstract

Gray mold agent Botrytis cinerea (teleomorph: Botryotinia fuckliana (de Barry) Whetzel) causes significant yield losses in many economically important vegetables. Chemicals are used in the control to reduce yield loss. As a result of the intensive use of chemicals in the control of plant diseases, human health and the environment are adversely affected. Therefore, interest in environmentally friendly control practices has increased recently. One such application is the use of benefical bacteria in the biological control of diseases. In this study; biocontrol potentials of 12 bioagent bacteria strains (1 Bacillus cereus, 2 Bacillus megaterium, 2 Bacillus pumilus, 2 Bacillus subtilis, 1 Bacillus thuringiensis subsp. kurstaki, 1 Paenibacillus polymyxa, 2 Pantoea agglomerans and 1 Pseudomonas fluorescens) have been determined against gray mold disease agent B. cinerea on eggplant in vitro and in vivo. Pseudomonas chlororaphis supsp. aurofaciens and Bacillus amyloliquefaciens, which were the most efficient strains found in vitro conditions, were also effective against B. cinerea in vivo. In conclusion, it was determined that two most effective bacterial strains could be used as a biocontrol agent in the biological control of B. cinerea in eggplant growing.

References

  • Aktan ZC, Soylu S 2020. Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. KSÜ Tarım ve Doğa Dergisi, 23 (2): 641-654.
  • Aşkın A, Katırcıoğlu YZ 2008. Determination of pathogenicity of the precipitating damping off disease in tomato seedlings in the provinces of Ayaş, Beypazarı and Nallıhan in Ankara. Plant Protection Bulletin, 48(2): 49-59 (in Turkish).
  • Brandhoff B, Simon A, Dornieden A, Schumacher J 2017. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators bcltf3 and bcreg1. Current Genetics, 63: 931-949.
  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A 2011. Bacterial communities of diverse Drosophila species: Ecological Context of a Host-microbe Model System. Plos Genetics 7:e1002272.
  • Çakmakçı R, Erman M, Kotan R, Çığ F, Karagöz K, Sezen M 2010. Growth promotion and yield enhancement of sugar beet and wheat by application of plant growth promotion rhizobacteria. International Conference on Organic Agriculture in Scope of Environmental Problems, 03-07 February 2010, Famagusta, Cyprus Island, 198-202.
  • Çamlıca E, Tozlu E 2019. Biological Control of Alternaria solani in tomato. Fresenius Environmental Bulletin, 28(10): 7092-7100.
  • Çığ F, Sönmez F, Karagöz K, Erman M, Çakmakçı R, Kotan R, Amak Z 2014. Investigation of the impacts of nitrogen fixing and phosphate dissolving bacteria isolated in Lake Van Basin on the development of Kirik Wheat within the context of sustainable agriculture. International Congress on Green Infrastructure and Sustainable Societies/Cities, 8-10 May 2014, Izmir, Turkey, p: 205.
  • Çiftçi G, Altınok HH 2019. Effects of plant growth promoting rhizobacteria treatments of eggplant seeds against grey mold (Botrytis cinerea Pers.: Fr.) disease. KSU J Agric Nat, 22(3): 421-429.
  • Dean R, van Kan JAL, Pretorius ZA, Kosack KEH, Pietro AD, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13: 414-430.
  • Dönmez MF, Esitken A, Yıldız H, Ercişli S 2011. Biocontrol of B. cinerea on strawberry fruit by plant growth promoting bacteria. The Journal of Animal & Plant Sciences, 21(4): 758-763.
  • Droby S, Wisniewski M, Macarisin D, Wilson C 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biology and Technology, 52: 137-145.
  • Elad Y, Kohl J, Fokkema NJ 1994. Control of infection and sporulation of B. cinerea on bean and tomato by saprophytic bacteria and fungi. European Journal of Pathology, 100(5): 315¬336.
  • Erman M, Kotan R, Çakmakçı R, Çığ F, Karagöz K, Sezen M 2010. Effectof nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake basin on the growth and quality properties in wheat and sugar beet. Turkey IV. Organic Farming Symposium, 28 June-1 July 2010, p: 325-329, Erzurum, Turkey.
  • Fillinger S, Elad Y 2016. Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer. https://doi.org/10.1007/978-3-319-23371-0.
  • Göğüsgeren N, Çolak Ö 2012. Determination strains of Bacillus spp. which produces an effective antibiotic against Trichoderma spp. and investigation of the opportunity to be in situ of these strains at micelle culture of Ganoderma lucidum. Çukurova University Journal of the Faculty of Engineering, 27(3): 165-164.
  • Gökçe AY, Kotan R 2016. Investigation of biological control possibilities of wheat root rot disease caused by Bipolaris sorokiniana (Sacc.) using PGPR and bio-control bacteria in controlled condition. Plant Protection Bulletin, 56(1): 49-75.
  • Göktürk T, Tozlu E, Kotan R 2018. Prospects of entomopathogenic bacteria and fungi for biological control of Ricania simulans (Walker 1851) (Hemiptera: Ricaniidae). Pakistan J. Zool., 50(1): 75-82.
  • Haidar R, Fermaud M, Calvo-Garrido C, Roudet J, Deschamps A 2016. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathologia Mediterranea, 55(3): 301-322.
  • Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P,Torrice C, Wu M, Shimamura T, Perera SA 2006. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta, 224(3): 598-611.
  • Jiang Z, Liu X 2015. Early visualization detection of gray mold (Botrytis) on eggplant leaves based on multi-spectral image. Applied Mechanics and Materials, 741: 323-327.
  • Kanetis L,Christodoulou S, Iacovides T 2017. Fungicide resistance profile and genetic structure of Botrytis cinerea from greenhouse crops in Cyprus. European Journal of Plant Pathology, 147: 527-540.
  • Karagöz K, Kotan R, Dadasoglu F, Dadaşoğlu E 2016. Identification and characterisation of potential biofertilizer bacterial strains. 1st International Conference on Advances in Natural and Applied Sciences (ICANAS), 21-23 April, Antalya, Turkey.
  • Klement Z 1968. Pathogenicity factors in reard to relationships of phytopathogenic bacteria. Phytopathology, 58: 1218-1222.
  • Laslo E, Mara G 2019. Is PGPR an Alternative for NPK Fertilizers in Sustainable Agriculture? Chapter 51-63pp. Microbial Interventions in Agriculture and Environment (Editors: Dhananjaya Pratap Singh Vijai Kumar Gupta and Ratna Prabha), Springer, 596p.
  • Lee JP, Lee SW, Kim CS, Son JH, Song JH, Lee KY, Kim HJ, Jung SJ, Moon BJ 2006. Evaluation of formulations of Bacilllus licheniformis for the biological control of tomato gray mold caused by B. cinerea. Biological Control, 37(3): 329-337.
  • Mohammadi P, Tozlu E, Kotan R, Kotan Senol M 2017. Potential of some bacteria for biological control of post harvest citrus green mould caused by Penicillium digitatum. Plant Protect Sci., 53(3): 134-143.
  • Paisley R 1995. MIS Whole Cell Fatty Acid Analysis by Gas Chromatography. MIDI, Inc., Newark DE 5. Sheng JX, Duck HP, Kim JY, Byung Sup K 2016. Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil. Trop. Plant Pathol., 41: 169-176.
  • Soylu EM, Kurt Ş, Soylu S 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology 143:183-189.
  • Soylu EM, Soylu S, Kara M, Kurt Ş 2020. Determinations of in vitro Antagonistic Effects of Microbiomes Isolated from Vermicompost Against Major Plant Fungal Disease Agents of Vegetables. KSU J. Agric Nat 23(1): 7-18.
  • Tekiner N, Tozlu E, Kotan R, Dadaşoğlu F 2018. Biological Control of Botrytis cinerea and Alternaria alternata with Bioagent Bacteria and Fungi Under In vitro Conditions. Fresenius Environmental Bulletin, 29(1): 640-649.
  • Tekiner N, Kotan R, Tozlu E, Dadaşoğlu F 2019. Determination of Some Biological Control Agents Against Alternaria Fruit Rot in Quince. Alinteri J. of Agr. Sci., 34(1): 25-31.
  • Tiwari K, Thakur HK 2014. Diversity and molecular characterization of dominant Bacillus amyloliquefaciens (JNU-001) endophytic bacterial strains isolated from native Neem varieties of Sanganer region of Rajasthan. Journal of Biodiversity, Bioprospecting and Development, 1(1): 1-15.
  • Toral L, Rodríguez M, Béjar V, Sampedro I 2020. Crop Protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms, 8(7): 992.
  • Tozlu E 2016. Biological Control of Carrot Sour Rot (Geotrichum candidum Link) by Some Bacterial Biocontrol Agents. Atatürk University Journl of Agricultural Faculty, 47(1): 1-9.
  • Tozlu E, Tekiner N, Kotan R, Örtücü S 2018. Investigation on The Biological Control of Alternaria alternata. Indian Journal of Agricultural Sciences, 88(8): 1241-1247.
  • Tozlu E, Mohammadi P, Kotan Şenol M, Nadaroglu H, Kotan R 2016. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mould disease in red cabbage,by some bacteria. Plant Protection Science, 52(3): 188-198.
  • Uygun N, Ulusoy MR, Satar S 2010. Biological control. Turkish Journal of Biological Control 1(1): 1-14.
  • Walker R, Innes CMJ, Allan EJ 2001. The potential biocontrol agent Pseudomonas antimicrobica inhibits germination of conidia and outgrowth of Botrytis cinerea. Letters in Applied Microbiology, 32: 346-348.
  • Wang H, Yan Y, Wang J, Zhang H, Qi W 2012. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS ONE 7(1): e29452. doi:10.1371/journal.pone.0029452
  • Weiberg A, Wang W, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H 2013. Fungal small rnas suppress plant immunity by hijacking host RNA interference pathways. Science (New York, N.Y.), 342: 11-123.
  • White TJ, Brauns T, Lee S, Taylor J 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. INNIS, D.H. GELFAND, J.J. SNINSKY, T.J. WHITE, eds. PCR Protocols. A guide to Methods and Applications. Academic Press, San Diego, 315-322.
  • Williamson B, Tudzynski B, Tudzynski P, van Kan JA 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8: 561-580.
  • Viriyasuthee V, Saepaisan S, Saksirirat W, Gleason ML, Chen RS, Jogloy S 2019. Effective plant ages for screening for field resistance to alternaria leaf spot (caused by Alternaria spp.) under natural infection in jerusalem artichoke (Helianthus tuberosus L.). Agronomy, 9:754. doi:10.3390/agronomy9110754.
  • Yıldız F 1990. Investigations on biological control of Botrytis cinerea Pers. on the greenhouse grown vegetable crops. Ege University, Graduate School of Natural and Applied Sciences, pHd Thesis, Izmir. 84 p. (in Turkish).
  • Yıldız F, Yıldız M, Delen N, Coşkuntuna A, Kınay P, Türküsay H 2007. The effects of biological and chemical treatment on gray mold disease in tomatoes grown under greenhouse conditions. Turkish Journal of Agriculture and Forestry, 31(5): 319-325.
  • Zhang Y, Bell A, Perlman PS, Leibowitz MJ 2000. Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae. RNA. 6(7): 937-51.
There are 46 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Alican Akça 0000-0003-0553-3482

Elif Tozlu 0000-0002-0016-9696

Publication Date October 31, 2022
Submission Date June 18, 2021
Acceptance Date October 14, 2021
Published in Issue Year 2022Volume: 25 Issue: 5

Cite

APA Akça, A., & Tozlu, E. (2022). Investigation of the Biocontrol Effectiveness of Some Bacterial Strains on Eggplant Gray Mold Disease (Botrytis cinerea) in in vitro and in vivo conditions. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(5), 1098-1108. https://doi.org/10.18016/ksutarimdoga.vi.953977


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149