Research Article
BibTex RIS Cite

Kuzu Rasyonlarına Meşe Palamudu İlavesinin Sindirim Derecesine, Metabolik Enerjisine ve Metan Üretimine Etkisinin İn Vitro Gaz Üretim Tekniği ile Belirlenmesi

Year 2022, Volume: 25 Issue: Ek Sayı 2, 583 - 590, 30.12.2022
https://doi.org/10.18016/ksutarimdoga.vi.1116585

Abstract

Bu çalışmanın amacı, kuzu besi rasyonlarına meşe palamudu ilavesinin, in vitro gaz ve metan üretimi ile sindirim derecesi, mikrobiyal protein üretimi ve mikrobiyal protein sentezleme etkinliğine olan etkisini in vitro gaz üretim tekniğiyle belirlemektir. Bu proje kapsamında meşe palamudu %0, 10, 20 ve 30 oranında kuzu rasyonuna katılmıştır. Kuzu besi rasyonlarına meşe palamudu ilavesi in vitro gaz üretimi, metan üretimi ve sindirim derecesini azaltırken, taksimat faktörünü, mikrobiyal protein üretimi ve mikrobiyal protein sentez etkinliğini artırmıştır. Gaz üretimi ve metan üretim değerleri sırasıyla 89.93 ile 129.22 ml, 10.43 ile 19.65 ml arasında değişmiştir. Metan üretim yüzdesi ise %11.53 ile 15.22 arasında değişmiştir. Sindirim derecesi ise %61.63 ile 72.90 arasında değişmiştir. Taksimat faktörü ve mikrobiyal protein üretim değerleri sırasıyla; 3.38 ile 4.10 ve 128.57 ile 143.91 mg arasında değişmiştir. Mikrobiyal protein sentezleme etkinliği ise %34.80 ile 46.31 arasında değişmiştir. Meşe palamudu antimetanojenik özellik taşımasına rağmen, rasyonun sindirim derecesini düşürmektedir. Mevcut çalışmanın sonuçları baz alınarak meşe palamudunun kuzu rasyonlarında kullanımı için uygun dozun belirlenmesi oldukça zor görülmektedir. Bunun için meşe palamudunun kuzu performanslarına etkilerini belirlemek için in vivo denemelerine ihtiyaç vardır.

Supporting Institution

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ BAP

Project Number

2021/6-9 YLS

References

  • AOAC 1990. Official method of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC. USA.
  • Blummel M, Lebzien P 2001. Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock Production Science, 68: 107–117
  • Blümmel M, Makkar HPS, Chisanga G, Mtimuni J, Becker K 1997. The prediction of dry matter intake of temperate and tropical roughages from in vitro digestibility/gas-production data, and the dry matter intake and in vitro digestibility of African roughages in relation to ruminant liveweight gain. Animal Feed Science and Technology, 69(1-3): 131-141.
  • Boga M, Kurt O, Ozkan CO, Atalay Aİ, Kamalak A 2020. Evaluation of some commercial dairy rations in terms of chemical composition, methane production, net energy and organic matter digestibility. Progress in Nutrition, 22(1): 199-203.
  • Duncan DB, 1955. Multiple range and multiple F tests. Biometrics, 11(1): 1-42.
  • Goel G, Makkar HPS, Becker K 2008. Effect of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage and concentrate based feeds to methane. Animal Feed Science and Technology, 147(1-3): 72-89.
  • Jayanegara A, Goel G, Makkar HPS, Becker K 2015. Diverge between prufied hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in in vitro. Animal Feed Science and Technology,209: 60-68.
  • Jonhson KA, Jonhson DE 1995. Methane emission from cattle. J Anim Sci 73: 2483-2492.
  • Kamalak A, Canbolat Ö, Gürbüz Y, Özay O, Erer M, Özkan ÇÖ 2005. Kondense taninin rumimant hayvanlar üzerindeki etkileri hakkında bir inceleme. KSÜ Fen ve Mühendislik Dergisi 8(1): 132-137.
  • Karaca H 1999. TEMA vakfının 10 milyar meşe palamudu kampanyası. URL (erişim tarihi 05.11.2017) http:/toprakisveren.org. tr/1999–42-hayrettinkaraca.pdf.
  • Lopez S , Makkar HPS, Soliva CR, 2010. Screening plants and plant products for methane inhibitors. In “In vitro screening of plant resources for extra nutritional attributes in ruminants: Nuclear and related methodologies”, Ed; Vercoe PE, Makkar HPS, Schlink A, London, New York, USA.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W 1979. The estimation of the digestibility and metabolizable energy content of ruminant feding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1): 217-222.
  • Patra AK, Saxena J 2009: Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie Van Leeuwenhoek,(96): 363-375.
  • SPSS, 2011. IBM SPSS statistics for Windows,version20.0. New York: IBM Corp 440.Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S 2005. Methane production from in vitro rumen incubation with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed annin fractions on methanogenesis. Animal Feed Science Technology, 123-124, 403-419
  • Temizkan I, Kamalak A, Canbolat O 2011. Effect of oregano oil on in vitro gas production, digestibility and metabolisable energy of some feedstuffs. Journal of Applied Animal Research, 39(2): 132-135.
  • Van Nevel CJ, Demeyer DI 1996. Control of rumen methanogenesis. Environ Monit Assess 42: 73-97.
  • Wina E, Muetzel S, Hoffman E, Makkar HPS, Becker K 2005 Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology,121:159-174.
  • Zhou L, Wang D, Hu H, Zhou H 2020. Effects of Piper sarmentosum extract supplementation on growth performances and rumen fermentation and microflora characteristics in goats. Journal of Animal Physiology and Animal Nutrition, 104(2): 431-438.

Determination of Effect of Supplementation of Acorn to Lamb Ration on Digestibility, Metabolisable Energy and Methane Production Using İn Vitro Gas Production

Year 2022, Volume: 25 Issue: Ek Sayı 2, 583 - 590, 30.12.2022
https://doi.org/10.18016/ksutarimdoga.vi.1116585

Abstract

The aim of the current experiment was to determine the effect of inclusion of oak acorn on the gas production, methane production, digestibility, partitioning factor, microbial protein production, and efficiency of microbial protein protein production of lamb diets. In this project, oak acorn was included into lamb diets at the ratio of 0, 10, 20 and 30%. The inclusion of oak acorn decreased the gas production, methane production, and digestibility whereas inclusion of oak acorn increased partitioning factor, microbial protein and efficiency of microbial protein production. Gas and methane production ranged from 89.93 to 129.22 mL and 10.43 to 19.65 mL. Percentage of methane production ranged from %11.53 to 15.22. Digestibility ranged from 61.63 to 72.90%. Partitioning factor and microbial protein production ranged from 3.38 to 4.10 and 128.57 to 143.91 m respectively. Efficiency of microbial protein production ranged from 34.80 to 46.31%. Although oak acorn had an anti-methanogenic potential, oak acorn decreased the digestibility. It seems to be very difficult to determine the proper inclusion dose of oak acorn. Therefore in vivo digestibility studies are required to determine the proper inclusion dose of oak acorn to lamb diets.

Project Number

2021/6-9 YLS

References

  • AOAC 1990. Official method of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC. USA.
  • Blummel M, Lebzien P 2001. Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock Production Science, 68: 107–117
  • Blümmel M, Makkar HPS, Chisanga G, Mtimuni J, Becker K 1997. The prediction of dry matter intake of temperate and tropical roughages from in vitro digestibility/gas-production data, and the dry matter intake and in vitro digestibility of African roughages in relation to ruminant liveweight gain. Animal Feed Science and Technology, 69(1-3): 131-141.
  • Boga M, Kurt O, Ozkan CO, Atalay Aİ, Kamalak A 2020. Evaluation of some commercial dairy rations in terms of chemical composition, methane production, net energy and organic matter digestibility. Progress in Nutrition, 22(1): 199-203.
  • Duncan DB, 1955. Multiple range and multiple F tests. Biometrics, 11(1): 1-42.
  • Goel G, Makkar HPS, Becker K 2008. Effect of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage and concentrate based feeds to methane. Animal Feed Science and Technology, 147(1-3): 72-89.
  • Jayanegara A, Goel G, Makkar HPS, Becker K 2015. Diverge between prufied hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in in vitro. Animal Feed Science and Technology,209: 60-68.
  • Jonhson KA, Jonhson DE 1995. Methane emission from cattle. J Anim Sci 73: 2483-2492.
  • Kamalak A, Canbolat Ö, Gürbüz Y, Özay O, Erer M, Özkan ÇÖ 2005. Kondense taninin rumimant hayvanlar üzerindeki etkileri hakkında bir inceleme. KSÜ Fen ve Mühendislik Dergisi 8(1): 132-137.
  • Karaca H 1999. TEMA vakfının 10 milyar meşe palamudu kampanyası. URL (erişim tarihi 05.11.2017) http:/toprakisveren.org. tr/1999–42-hayrettinkaraca.pdf.
  • Lopez S , Makkar HPS, Soliva CR, 2010. Screening plants and plant products for methane inhibitors. In “In vitro screening of plant resources for extra nutritional attributes in ruminants: Nuclear and related methodologies”, Ed; Vercoe PE, Makkar HPS, Schlink A, London, New York, USA.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W 1979. The estimation of the digestibility and metabolizable energy content of ruminant feding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1): 217-222.
  • Patra AK, Saxena J 2009: Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie Van Leeuwenhoek,(96): 363-375.
  • SPSS, 2011. IBM SPSS statistics for Windows,version20.0. New York: IBM Corp 440.Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S 2005. Methane production from in vitro rumen incubation with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed annin fractions on methanogenesis. Animal Feed Science Technology, 123-124, 403-419
  • Temizkan I, Kamalak A, Canbolat O 2011. Effect of oregano oil on in vitro gas production, digestibility and metabolisable energy of some feedstuffs. Journal of Applied Animal Research, 39(2): 132-135.
  • Van Nevel CJ, Demeyer DI 1996. Control of rumen methanogenesis. Environ Monit Assess 42: 73-97.
  • Wina E, Muetzel S, Hoffman E, Makkar HPS, Becker K 2005 Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology,121:159-174.
  • Zhou L, Wang D, Hu H, Zhou H 2020. Effects of Piper sarmentosum extract supplementation on growth performances and rumen fermentation and microflora characteristics in goats. Journal of Animal Physiology and Animal Nutrition, 104(2): 431-438.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Yakup Bilal 0000-0001-9785-5395

Adem Kamalak 0000-0003-0967-4821

Project Number 2021/6-9 YLS
Publication Date December 30, 2022
Submission Date May 17, 2022
Acceptance Date June 30, 2022
Published in Issue Year 2022Volume: 25 Issue: Ek Sayı 2

Cite

APA Bilal, Y., & Kamalak, A. (2022). Kuzu Rasyonlarına Meşe Palamudu İlavesinin Sindirim Derecesine, Metabolik Enerjisine ve Metan Üretimine Etkisinin İn Vitro Gaz Üretim Tekniği ile Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 25(Ek Sayı 2), 583-590. https://doi.org/10.18016/ksutarimdoga.vi.1116585


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149