Research Article
BibTex RIS Cite

Saccharomyces cerevisiae L. Hücre Kültürü Oksidatif Stres Modelinde Bazı Fosfazen Türevlerinin Biyokimyasal Aktiviteleri

Year 2023, Volume: 26 Issue: 1, 1 - 10, 28.02.2023
https://doi.org/10.18016/ksutarimdoga.vi.1051663

Abstract

Bu çalışmada, Saccharomyces cerevisiae L. kültür ortamında bazı fosfazenlerin biyokimyasal aktiviteleri belirlendi. Deneysel uygulamada farklı fosfazen molekülleri kullanıldı. Çalışma kapsamındaki deney grupları; kontrol grubu, H2O2 (Hidrojen peroksit) ve fosfazen molekülleri grupları şeklinde düzenlendi. Gruplar hazırlandıktan sonra, kontrol grubu dışında diğer kültürlere 30 µg fosfazen ve 100 µl H2O2 ilave edildi. 30 °C de 72 saat inkübasyona bırakıldı. İnkübasyon sonunda hücre peletleri ayrıldı. Elde edilen süpernatantdan Glutatyon S-Transferaz (GST) ile total protein düzeyleri belirlendi. Hekzan/izopropanol alkol karışımı ile elde edilen homojenattan da yağ asidi ve lipofilik moleküllerin analizi yapıldı. Deney sonuçlarına göre, fosfazen molekülü ve H2O2 ilave edilen maya hücrelerinde total protein değerleri ile GST değerlerinde paralel bir artış gözlenirken, bazı gruplarda protein miktarında artış saptandığı halde GST düzeyinde azalma olduğu belirlendi. S. cerevisiae’ nin membran yapısında önemli bir yer kaplayan ergosterolün, T3 ve T3B kodlu fosfazenler ile H2O2 gruplarında kontrol grubuna göre yüksek, T4 kodlu fosfazenler ile H2O2 gruplarında ise düşük olduğu belirlendi. Sonuç olarak; S. cerevisiae kültür ortamına fosfazen ve H2O2 moleküllerin eklenmesinin, ergosterol ve yağ asidi sentezi ile yağ asitlerinin hidrokarbon zincirine çift bağ girişi yapan enzimlerin son ürünlerinde artışlara ya da azalışlara neden olduğu ortaya konulmuştur.

Supporting Institution

Bitlis Eren Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri (BAP) birimi

Project Number

BEBAP 2019.008

Thanks

Bu çalışma. Bitlis Eren Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri (BAP) birimi tarafından BEBAP 2019.008 nolu proje numarası ile desteklenmiştir.

References

  • Allcock, HR.. Morrissey, W.K. & Winograd N. (1996). Controlled Formation of Carboxylic Acid Groups at Polyphosphazene Surfaces; Oxidative and Hydrolytic Routes.Chemistry of Materials. 8, 2730-2738.
  • Bergman, L.W. (2001). Growth and Maintenance of Yeast. 2001. Methods in Molecular Biology. Vol. 177. Two Hybrid Systems: Methods and Protocols Edited by: P. N. MacDonald © Humana Press Inc.. Totowa. NJ
  • Binici, A.. Okumuş, A.. Yakut, M., Elmas, G., Kılıç, Z., Koyunoğlu, D., Açık, L. & Şimşek, H. (2022). Phosphorus-nitrogen compounds. Part 56. Comparative syntheses and spectral properties of multiheterocyclic 2-cis-4-ansa and spiro-ferrocenyl (N/O)cyclotetraphosphazenes: Antituberculosis and antimicrobial activity and DNA interaction studies. Phosphorus, Sulfur, and Silicon and the Related Elements. 197(1), 18-29.
  • Carriedo, GA., Alonso, FJG., Elipe, PG., Brillans, E. & Julia, L. (1996). Incorparation of Stable Organic Radicals into Cyclotriphosphazene: Preparation and Charecterization of Mono – and Diradical Adducts. Journal of the Organic Letters. 3, 1625-1628.
  • Christie, WW. (1992). Gas Chromatography and Lipids. Glaskow. The Oil Press.
  • Civan, M. (2014). Bazı Trimerik Fosfazen Türevlerinin Sentezi. Kristalografik. Spektroskopik Yöntemler ile Incelenmesi ve Langmuir-Blodgett Tekniği Kullanılarak Ultra-İnce Filmlerinin Hazırlanması. Doctor of Philosophy. Department of Physics Engineering. 358.
  • Duan, L.L., Shi, Y., Jiang, R., Yang, Q., Wang, Y.Q., Liu, P.T., Duan, C.Q. & Yan, G.L. (2015). Effects of Adding Unsaturated Fatty Acids on Fatty Acid Composition of Saccharomyces cerevisiae and Major Volatile Compounds in Wine. Centre for Viticulture and Oenology. College of Food Science and Nutritional Engineering. China Agricultural University. Beijing 100083. 36(2), 285-295.
  • Dumanoğulları, F. (2006). Bs (Fenoks) Fosfazen Türevlerinin Sentez ve Yapıları. Yüksek Lisans Tezi. Ankara Üniversitesi. Fen Bilimleri Enstitüsü. Kimya Anabilim Dalı. Ankara.
  • Erdener Çıralı, D., Dayan, O., Özdemir, N. & Hacıoğlu, N. (2015). A New Phosphazene Derivative, spiro-N3P3[(O2C12H8)2(OC6H6N-3)2], and its Ru(II) complex: Syntheses, crystal structure, catalytic activity and antimicrobial activity studies. Polyhedron. 88, 170-175.
  • Greish, Y.E., Bender, J.D., Lakshmi. S., Brown, P.W., Allcock, H.R. & Laurencin, C.T. (2005). Low temperature formation of hydroxyapatite-poly(alkyloxybenzoate)phosphazene composites for biomedical applications. Biomaterials. 26:1–9.
  • Habig, W.H., Pabst, M.J. & Jakoby, W.B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249(22),7130-7139.
  • Hara, A. & Radin, N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry. 90(1), 420–426.
  • Işıklan, M., Asmafiliz, N., Özalp, E.E., İlter, E.E., Kılıç, Z., Çoşut, B., Yeşilot, S., Kılıç, A., Öztürk., A., Hokelek, T., Koc, L.Y., Acık, L. & Akyüz, E. (2010). Syntheses, Structure İnvestigations, Biological Activities and DNA İnteractions of New N/O Spirocyclic Derivatives. The NMR Behaviors of Chiral Phosphazenes with Stereogenic Centers Upon The Addition of Chiral Solvating Agents. Inorganic Chemistry. 49:7057–7071.
  • Kılıç, A., Beğeç, S., Çetinkaya, B., Kılıç, Z., Gündüz, N., Yıldız, M. & Hökelek, T. (1996). Unusual products in the reaction of hexachlorocyclotriphosphazatriene with sodium aryl oxides. Journal of Heteroatom Chemistry. 44(7), 249-256.
  • Koçak, S.B., Koçoğlu, S., Okumuş, A., Kılıç, Z., Öztürk, A., Hökelek, T., Öner, Y., & Açık, L. (2013). Syntheses, Spectroscopic Properties, Crystal Structures, Biological Activities and DNA Interactions of Heterocyclic Amine Substituted Spiro-Ansa-Spiro- and Spiro-Bino-Spiro-Phosphazenes. Inorganica Chimica Acta. 406, 160-170.
  • Laguna, M.T.R., Tarazona, M.P., Carriedo, G.A., Allonso, F.J.G., Fidalgo, J.I., & Saiz, E. (2002). Thermal degradation and solution properties of poly (2. 2’ – dioxybiphenylphosphazene). Journal of Macromolecules. 35, 7505-7515.
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein Measurement with The Folin-Phenol Reagent. The Journal of Biochemistry. 193, 265- 277.
  • Okutan, E., Aydın, G.O., Hacıvelioğlu, F., Kılıç, A., Beyaz, S.K., & Yeşilot, S. (2011). Synthesis and Characterization of Soluble Multi-Walled Carbon Nanotube/Poly(Organophosphazene) Composites. Polymer. 52,1241–1248.
  • Onder, A., & Ozay, H. (2021). Synthesis and Characterization of Biodegradable and Antioxidant Phpsphazene-Tannic Acid Nanospheres and Their Utilization as Drug carrier Material. Materials Science and Engineering:C. 120, 111723.
  • Ozay, H., & Ozay, O. (2014). Synthesis and Characterization of Drug Microspheres Containing Phosphazene for Biomedical Applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 450, 99-105.
  • Özşahin, A.D., & Bozhan, N. (2018). Bazı Schiff Bazlarının S. cerevisiae BY4741 Kültür Ortamlarında Biyokimyasal Parametreler Üzerine Etkileri. KSÜ Tarım ve Doğa Dergisi. 21(2), 131-140.
  • Özşahin, AD., Beşer, D., Öztürk, A.İ., Aslan, F., & Yılmaz, Ö. (2020). Siklofosfazen Türevlerinin Maya Kültür Ortamlarında Malondialdehit, Glutatyon ve Total Protein Miktarları Üzerine Etkileri. KSÜ Tarım ve Doğa Dergisi. 23(2), 281-288.
  • Özşahin, A.D., Erdoğdu, A., Kireçci, O.A., & Yılmaz, Ö. (2022). Aromatik Halkalı Bazı Fosfazenlerin S. cerevisiae L. Kültüründe Biyokimyasal Aktivitelerinin Belirlenmesi. KSÜ Tarım ve Doğa Dergisi. 25(2), 234-242.
  • Öztürk, A.İ., Yilmaz, O., Kirbag, S., & Arslan, M. (2000). Antimicrobial and Biological Effects of Ipemphos and Amphos on Bacterial and Yeast Strains. Cell Biochemistry and Function. 18(2), 117-126.
  • Sazhin, SV., Harrup, M.K., & Gering, K.L. (2011). Characterization of Low-Flammability Electrolytes for Lithium-Ion Batteries. Journal of Power Sources. 196: 3433–3438.
  • Siwy, M., Sek, D., Kaczmarczyk, B., Jaroszewicz, I., Nasulewicz, A., Pelczynska, M., Nevozhay, D., & Opolski, A. (2006). Synthesis and In Vitro Antileukemic Activity of Some New 1.3-(Oxytetraethylenoxy) Cyclotriphosphazene Derivatives. Journal of Medicinal Chemistry. 49, 806-810.
  • Spencer, J., Phister, T.G., Smart, K.A., & Greetham, D. (2014). Tolerance of Pentose Utilising Yeast to Hydrogen Peroxide-Induced Oxidative Stress. BMC Research Notes. 7, 151.
  • Sun, L., Liu, T., Li, H., Yang, L., Meng, L., Lu, Q., & Long, J. (2015). Fluorescent and Cross-Linked Organic−Inorganic Hybrid Nanoshells for Monitoring Drug Delivery. ACS Applied Materials & Interfaces. 7, 4990−4997.
  • Şenkuytu, E., Akbaş, N., Yıldırım, T., & Yenilmez Çiftçi, G. (2022). The bioactive new type paraben decorated dispiro-cyclotriphosphaze compounds: synthesis, characterization and cytotoxic activity studies. The Journal of Molecular Structure. 1255, 132438.
  • Tvrzicka, E., Vecka, M., Stankova, B., & Zak, A. (2002). Analysis of Fatty Acids Inplasma Lipoproteins by Gas Chromatography Flame Ionisation Detection Quantative Aspects. Analytica Chimica Acta. 465, 337-350
  • Uslu, A., & Yeşilot, S. (2015). Chiral configurations in cyclophosphazene chemistry. Coordination Chemistry Reviews. 291, 28-67.
  • Xia, Y., Shen, J., Alamri H. Zhan, J., Wang, Y., Zhang, G. (2017). Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for the Synthesis of Poly(Ethylene Oxide). Biomacromolecules. 18(10), 3233-3237.

Antioxidant Effects of Some Phosphazene Derivatives in Saccharomyces cerevisiae L. Cell Culture Oxidative Stress Model

Year 2023, Volume: 26 Issue: 1, 1 - 10, 28.02.2023
https://doi.org/10.18016/ksutarimdoga.vi.1051663

Abstract

In this study, biochemical activities of some phosphazenes were determined in Saccharomyces cerevisiae L. culture medium. Different phosphazene molecules were used in experimental practice. The experimental groups within the scope of the study were organized as control group, H2O2 (Hydrogen peroxide) and groups of phosphazen molecules. After the groups were prepared, 30 µg of phosphazen and 100 µl of H2O2 were added to other cultures, except for the control group of S. cerevisiae culture. It was incubated for 72 hours at 30 °C. At the end of incubation, cell pellets were separated. Glutathione S-Transferase (GST) and Total protein levels were determined from supernatant. The fatty acid and lipophilic molecules were analyzed from the homogenate obtained with the hexane / isopropanol alcohol mixture. According to our experimental results, while total protein values and GST values increased in parallel with the phosphazen molecule and H2O2 added yeast cells, GST levels were decreased in some groups, although an increase in the amount of protein was observed. Ergosterol, which has an important place in the membrane structure of S. cerevisiae, was found to be higher in T3 and T3B coded phosphazenes and H2O2 groups compared to the control group, and low in T4 coded phosphazenes and H2O2 groups. Our study results revealed that as a result of the addition of phosphazen and H2O2 molecules to the culture medium of S. cerevisiae, ergosterol and fatty acid synthesis, fatty acids cause increases or decreases in the end products of enzymes that double-enter the hydrocarbon chain.

Project Number

BEBAP 2019.008

References

  • Allcock, HR.. Morrissey, W.K. & Winograd N. (1996). Controlled Formation of Carboxylic Acid Groups at Polyphosphazene Surfaces; Oxidative and Hydrolytic Routes.Chemistry of Materials. 8, 2730-2738.
  • Bergman, L.W. (2001). Growth and Maintenance of Yeast. 2001. Methods in Molecular Biology. Vol. 177. Two Hybrid Systems: Methods and Protocols Edited by: P. N. MacDonald © Humana Press Inc.. Totowa. NJ
  • Binici, A.. Okumuş, A.. Yakut, M., Elmas, G., Kılıç, Z., Koyunoğlu, D., Açık, L. & Şimşek, H. (2022). Phosphorus-nitrogen compounds. Part 56. Comparative syntheses and spectral properties of multiheterocyclic 2-cis-4-ansa and spiro-ferrocenyl (N/O)cyclotetraphosphazenes: Antituberculosis and antimicrobial activity and DNA interaction studies. Phosphorus, Sulfur, and Silicon and the Related Elements. 197(1), 18-29.
  • Carriedo, GA., Alonso, FJG., Elipe, PG., Brillans, E. & Julia, L. (1996). Incorparation of Stable Organic Radicals into Cyclotriphosphazene: Preparation and Charecterization of Mono – and Diradical Adducts. Journal of the Organic Letters. 3, 1625-1628.
  • Christie, WW. (1992). Gas Chromatography and Lipids. Glaskow. The Oil Press.
  • Civan, M. (2014). Bazı Trimerik Fosfazen Türevlerinin Sentezi. Kristalografik. Spektroskopik Yöntemler ile Incelenmesi ve Langmuir-Blodgett Tekniği Kullanılarak Ultra-İnce Filmlerinin Hazırlanması. Doctor of Philosophy. Department of Physics Engineering. 358.
  • Duan, L.L., Shi, Y., Jiang, R., Yang, Q., Wang, Y.Q., Liu, P.T., Duan, C.Q. & Yan, G.L. (2015). Effects of Adding Unsaturated Fatty Acids on Fatty Acid Composition of Saccharomyces cerevisiae and Major Volatile Compounds in Wine. Centre for Viticulture and Oenology. College of Food Science and Nutritional Engineering. China Agricultural University. Beijing 100083. 36(2), 285-295.
  • Dumanoğulları, F. (2006). Bs (Fenoks) Fosfazen Türevlerinin Sentez ve Yapıları. Yüksek Lisans Tezi. Ankara Üniversitesi. Fen Bilimleri Enstitüsü. Kimya Anabilim Dalı. Ankara.
  • Erdener Çıralı, D., Dayan, O., Özdemir, N. & Hacıoğlu, N. (2015). A New Phosphazene Derivative, spiro-N3P3[(O2C12H8)2(OC6H6N-3)2], and its Ru(II) complex: Syntheses, crystal structure, catalytic activity and antimicrobial activity studies. Polyhedron. 88, 170-175.
  • Greish, Y.E., Bender, J.D., Lakshmi. S., Brown, P.W., Allcock, H.R. & Laurencin, C.T. (2005). Low temperature formation of hydroxyapatite-poly(alkyloxybenzoate)phosphazene composites for biomedical applications. Biomaterials. 26:1–9.
  • Habig, W.H., Pabst, M.J. & Jakoby, W.B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249(22),7130-7139.
  • Hara, A. & Radin, N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry. 90(1), 420–426.
  • Işıklan, M., Asmafiliz, N., Özalp, E.E., İlter, E.E., Kılıç, Z., Çoşut, B., Yeşilot, S., Kılıç, A., Öztürk., A., Hokelek, T., Koc, L.Y., Acık, L. & Akyüz, E. (2010). Syntheses, Structure İnvestigations, Biological Activities and DNA İnteractions of New N/O Spirocyclic Derivatives. The NMR Behaviors of Chiral Phosphazenes with Stereogenic Centers Upon The Addition of Chiral Solvating Agents. Inorganic Chemistry. 49:7057–7071.
  • Kılıç, A., Beğeç, S., Çetinkaya, B., Kılıç, Z., Gündüz, N., Yıldız, M. & Hökelek, T. (1996). Unusual products in the reaction of hexachlorocyclotriphosphazatriene with sodium aryl oxides. Journal of Heteroatom Chemistry. 44(7), 249-256.
  • Koçak, S.B., Koçoğlu, S., Okumuş, A., Kılıç, Z., Öztürk, A., Hökelek, T., Öner, Y., & Açık, L. (2013). Syntheses, Spectroscopic Properties, Crystal Structures, Biological Activities and DNA Interactions of Heterocyclic Amine Substituted Spiro-Ansa-Spiro- and Spiro-Bino-Spiro-Phosphazenes. Inorganica Chimica Acta. 406, 160-170.
  • Laguna, M.T.R., Tarazona, M.P., Carriedo, G.A., Allonso, F.J.G., Fidalgo, J.I., & Saiz, E. (2002). Thermal degradation and solution properties of poly (2. 2’ – dioxybiphenylphosphazene). Journal of Macromolecules. 35, 7505-7515.
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein Measurement with The Folin-Phenol Reagent. The Journal of Biochemistry. 193, 265- 277.
  • Okutan, E., Aydın, G.O., Hacıvelioğlu, F., Kılıç, A., Beyaz, S.K., & Yeşilot, S. (2011). Synthesis and Characterization of Soluble Multi-Walled Carbon Nanotube/Poly(Organophosphazene) Composites. Polymer. 52,1241–1248.
  • Onder, A., & Ozay, H. (2021). Synthesis and Characterization of Biodegradable and Antioxidant Phpsphazene-Tannic Acid Nanospheres and Their Utilization as Drug carrier Material. Materials Science and Engineering:C. 120, 111723.
  • Ozay, H., & Ozay, O. (2014). Synthesis and Characterization of Drug Microspheres Containing Phosphazene for Biomedical Applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 450, 99-105.
  • Özşahin, A.D., & Bozhan, N. (2018). Bazı Schiff Bazlarının S. cerevisiae BY4741 Kültür Ortamlarında Biyokimyasal Parametreler Üzerine Etkileri. KSÜ Tarım ve Doğa Dergisi. 21(2), 131-140.
  • Özşahin, AD., Beşer, D., Öztürk, A.İ., Aslan, F., & Yılmaz, Ö. (2020). Siklofosfazen Türevlerinin Maya Kültür Ortamlarında Malondialdehit, Glutatyon ve Total Protein Miktarları Üzerine Etkileri. KSÜ Tarım ve Doğa Dergisi. 23(2), 281-288.
  • Özşahin, A.D., Erdoğdu, A., Kireçci, O.A., & Yılmaz, Ö. (2022). Aromatik Halkalı Bazı Fosfazenlerin S. cerevisiae L. Kültüründe Biyokimyasal Aktivitelerinin Belirlenmesi. KSÜ Tarım ve Doğa Dergisi. 25(2), 234-242.
  • Öztürk, A.İ., Yilmaz, O., Kirbag, S., & Arslan, M. (2000). Antimicrobial and Biological Effects of Ipemphos and Amphos on Bacterial and Yeast Strains. Cell Biochemistry and Function. 18(2), 117-126.
  • Sazhin, SV., Harrup, M.K., & Gering, K.L. (2011). Characterization of Low-Flammability Electrolytes for Lithium-Ion Batteries. Journal of Power Sources. 196: 3433–3438.
  • Siwy, M., Sek, D., Kaczmarczyk, B., Jaroszewicz, I., Nasulewicz, A., Pelczynska, M., Nevozhay, D., & Opolski, A. (2006). Synthesis and In Vitro Antileukemic Activity of Some New 1.3-(Oxytetraethylenoxy) Cyclotriphosphazene Derivatives. Journal of Medicinal Chemistry. 49, 806-810.
  • Spencer, J., Phister, T.G., Smart, K.A., & Greetham, D. (2014). Tolerance of Pentose Utilising Yeast to Hydrogen Peroxide-Induced Oxidative Stress. BMC Research Notes. 7, 151.
  • Sun, L., Liu, T., Li, H., Yang, L., Meng, L., Lu, Q., & Long, J. (2015). Fluorescent and Cross-Linked Organic−Inorganic Hybrid Nanoshells for Monitoring Drug Delivery. ACS Applied Materials & Interfaces. 7, 4990−4997.
  • Şenkuytu, E., Akbaş, N., Yıldırım, T., & Yenilmez Çiftçi, G. (2022). The bioactive new type paraben decorated dispiro-cyclotriphosphaze compounds: synthesis, characterization and cytotoxic activity studies. The Journal of Molecular Structure. 1255, 132438.
  • Tvrzicka, E., Vecka, M., Stankova, B., & Zak, A. (2002). Analysis of Fatty Acids Inplasma Lipoproteins by Gas Chromatography Flame Ionisation Detection Quantative Aspects. Analytica Chimica Acta. 465, 337-350
  • Uslu, A., & Yeşilot, S. (2015). Chiral configurations in cyclophosphazene chemistry. Coordination Chemistry Reviews. 291, 28-67.
  • Xia, Y., Shen, J., Alamri H. Zhan, J., Wang, Y., Zhang, G. (2017). Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for the Synthesis of Poly(Ethylene Oxide). Biomacromolecules. 18(10), 3233-3237.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Ayşe Dilek Özşahin 0000-0002-1832-7082

Ayşe Erdoğdu 0000-0001-5894-1442

Oğuz Ayhan Kireçci 0000-0003-2205-4758

Fatih Aslan 0000-0002-5948-6979

Ali İhsan 0000-0002-3912-0670

Prof. Dr. Ökkeş Yılmaz 0000-0002-8276-4498

Project Number BEBAP 2019.008
Publication Date February 28, 2023
Submission Date December 31, 2021
Acceptance Date March 10, 2022
Published in Issue Year 2023Volume: 26 Issue: 1

Cite

APA Özşahin, A. D., Erdoğdu, A., Kireçci, O. A., Aslan, F., et al. (2023). Saccharomyces cerevisiae L. Hücre Kültürü Oksidatif Stres Modelinde Bazı Fosfazen Türevlerinin Biyokimyasal Aktiviteleri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(1), 1-10. https://doi.org/10.18016/ksutarimdoga.vi.1051663


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149