Keratinase is an important enzyme used for degradation of the keratinous wastes, especially slaughterhouse and poultry-derived wastes, that cause environmental pollution. In the current study, optimum conditions for keratinase production by Micrococcus luteus Y23-18 strain were investigated using Taguchi DOE L9 orthogonal array. For this purpose, the selected environmental factors were initial pH, incubation temperature and time. The optimal conditions were obtained as pH 9.5, temperature 30˚C and 3 days. The obtained results showed that keratinase activity was enhanced approximately 2.3-folds (34.95 U mL-1) when compared with the unoptimized conditions (15.33 U mL-1). As a result, M. luteus Y23-18 is an effective keratinase producer microorganism and Taguchi design of experiment is a useful tool for optimization.
Abdel-Fattah, A. M., El-Gamal, M. S., Ismail, S. A., Emran, M. A., & Hashem, A. M. (2018). Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. Journal of Genetic Engineering and Biotechnology, 16(2), 311–318. https://doi.org/ 10.1016/j.jgeb.2018.05.005
Bockle, B., Galunsky, B., & Muller, R. (1995). Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Applied and Environmental Microbiology, 61(10), 3705–3710. https://doi.org/10.1128/aem.61.10.3705-3710.1995
Cai, G., Moffitt, K., Navone, L., Zhang, Z., Robins, K., & Speight, R. (2022). Valorisation of keratin waste: Controlled pretreatment enhances enzymatic production of antioxidant peptides. Journal of Environmental Management, 301(July 2021), 113945. https://doi.org/10.1016/j.jenvman.2021. 113945
Canlı Taşar, Ö. (2020). Inulinase production capability of a promising medicinal plant: Inula viscosa. Commagene Journal of Biology, 4, 67–73. https://doi.org/10.31594/commagene.747618
Canli, O., Tasar, G.E., & Taskin, M. (2013). Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicology and Industrial Health, 29(8), 704–710. https://doi.org/10.1177/0748233712442737
Canli Tasar, O. (2022). Glucose oxidase production using a medicinal plant: Inula viscosa and optimization with Taguchi DOE. Journal of Food Processing and Preservation, 46(3), e16375.
https://doi.org/10.1111/jfpp.16375
Chen, Z., Jiang, X. (2014). Microbiological Safety of Chicken Litter or Chicken Litter-based Organic Fertilizers: A Review.”. Agriculture, 4(1), 1–29. https://doi.org/10.3390/agriculture4010001 .
Daroit, D. J., & Brandelli, A. (2014). A current assessment on the production of bacterial keratinases. Critical Reviews in Biotechnology, 34(4), 372–384. https://doi.org/10.3109/07388551. 2013.794768
Devi, S., Chauhan, A., Bishist, R., Sankhyan, N., Rana, K., & Sharma, N. (2022). Production, partial purification and efficacy of keratinase from Bacillus halotolerans L2EN1 isolated from the poultry farm of Himachal Pradesh as a potential laundry additive. Biocatalysis and Biotransformation, 1–21.
https://doi.org/10.1080/10242422.2022.2029851
Etemadian, Y., Ghaemi, V., Shaviklo, A.R., Pourashouri, P., Sadeghi Mahoonak, A.R., & Rafipour, F. (2021). Development of animal/ plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: State of the art. Journal of Cleaner Production, 278.
https://doi.org/10.1016/j.jclepro.2020.123219
Farid, M.A., Ghoneimy, E.A., El-Khawaga, M.A., Negm-Eldein, A., & Awad, G.E.A. (2013). Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. Annals of Microbiology, 63(2), 523–531. https://doi.org/10.1007/s13213-012-0497-5
Gonzalo, M., Espersen, R., Al-Soud, W.A., Cristiano Falco, F., Hägglund, P., Sørensen, S.J., Svensson, B., & Jacquiod, S. (2020). Azo dying of α-keratin material improves microbial keratinase screening and standardization. Microbial Biotechnology, 13(4), 984–996. https://doi.org/10.1111/1751-7915.13541
Gupta, R., Sharma, R., & Beg, Q. K. (2013). Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33(2), 216–228. https://doi.org/ 10.3109/07388551.2012.685051
Jean, M.D., & Tzeng, Y.F. (2003). Use of Taguchi methods and multiple regression analysis for optimal process development of high energy electron beam case hardening of cast iron. Surface Engineering, 19(2), 150–156. https://doi.org/ 10.1179/026708403225002496
Kivak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement: Journal of the International Measurement Confederation, 50(1), 19–28. https://doi.org/10.1016/j.measurement.2013.12.017
Laba, W., Choinska, A., Rodziewicz, A., & Piegza, M. (2015). Keratinolytic abilities of Micrococcus luteus from poultry waste. Brazilian Journal of Microbiology, 46(3), 691–700. https://doi.org/ 10.1590/S1517-838246320140098
Letourneau, F., Soussotte, V., Bressollier, P. & Branland, P.V. (1998). Keratinolytic activity of Streptomyces sp. SK1-02: a new isolated strain. Letters in Applied Microbiology, 26, 77–80.
Martinez, J.P.D.O., Cai, G., Nachtschatt, M., Navone, L., Zhang, Z., Robins, K., & Speight, R. (2020). Challenges and opportunities in identifying and characterising keratinases for value-added peptide production. Catalysts, 10(2). https://doi.org/ 10.3390/catal10020184
Murray-Tortarolo, G. N., & Jaramillo, V. J. (2020). Precipitation extremes in recent decades impact cattle populations at the global and national scales. Science of the Total Environment, 736, 139557. https://doi.org/10.1016/j.scitotenv.2020.139557
Nowak, A.T. Bakuła, K. Matusiak, R. Gałęcki, S. Borowski, & B.G. (2017). Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells. International Journal of Environmental Research and Public Health, 14(8), 933–940. https://doi.org/ 10.3390/ijerph14080933.
Prabakaran, R., & Valavan, S.E. (2021). Wealth from poultry waste: an overview. World’s Poultry Science Journal, 77(2), 389–401. https://doi.org/10.1080/ 00439339.2021.1901557
Rao, R. S., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnology Journal, 3(4), 510–523. https://doi.org/10.1002/biot.200700201
Scott, J. A., & Untereiner, W.A. (2004). Determination of keratin degradation by fungi using keratin azure. Medical Mycology, 42(3), 239–246. https://doi.org/ 10.1080/13693780310001644680
Sharma, I., & Kango, N. (2021). Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. International Journal of Biological Macromolecules, 166, 1046–1056. https://doi.org/ 10.1016/j.ijbiomac.2020.10.260
Sharma, P., Verma, A., Sidhu, R.K., & Pandey, O.P. (2005). Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. Journal of Materials Processing Technology, 168(1), 147–151. https://doi.org/ 10.1016/j.jmatprotec.2004.12.003
Simpson, T. W. (1991). Agronomic Use of Poultry Industry Waste. Poultry Science, 70(5), 1126–1131. https://doi.org/10.3382/ps.0701126
Suntornsuk, W., & Suntornsuk, L. (2003). Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresource Technology, 86(3), 239–243. https://doi.org/10.1016/S0960-8524(02)00177-3
Tan, O., Zaimoglu, A.S., Hinislioglu, S., & Altun, S. (2005). Taguchi approach for optimization of the bleeding on cement-based grouts. Tunnelling and Underground Space Technology, 20(2), 167–173. https://doi.org/10.1016/j.tust.2004.08.004
TUIK Turkey Statistical Institute. (2022). 45692. https://data.tuik.gov.tr/Bulten/Index?p=Kumes-Hayvanciligi-Uretimi-Mart-2022-45692&dil=1
Vidmar, B., & Vodovnik, M. (2018). Microbial keratinases: Enzymes with promising biotechnological applications. Food Technology and Biotechnology, 56(3), 312–328. https://doi.org/ 10.17113/ftb.56.03.18.5658
Zhang, J., Su, C., Kong, X.L., Gong, J.S., Liu, Y.L., Li, H., Qin, J., Xu, Z.H., & Shi, J.S. (2022). Directed evolution driving the generation of an efficient keratinase variant to facilitate the feather degradation. Bioresources and Bioprocessing, 9(1), 38. https://doi.org/10.1186/s40643-022-00524-4
Micrococcus luteus Tarafından Sentezlenen Keratinaz Enziminin Taguchi DOE Yöntemi Kullanılarak Optimizasyonu
Year 2023,
Volume: 26 Issue: 5, 1027 - 1033, 31.10.2023
Keratinaz, keratinöz atıkların, özellikle çevresel kirliliğe yol açan mezbaha ve kümes hayvancılığı kökenli atıkların parçalanmasında kullanılan önemli bir enzimdir. Mevcut çalışmada, Micrococcus luteus Y23-18 suşu tarafından keratinaz enziminin üretiminin Taguchi DOE L9 ortogonal dizisi kullanılarak optimizasyonu araştırılmıştır. Bu amaçla seçilen çevresel faktörler, başlangıç pH değeri, inkübasyon sıcaklığı ve zamandır. Optimal şartlar 9.5 pH değeri, 30˚C sıcaklık ve 3 gün olarak belirlenmiştir. Elde edilen sonuçlar keratinaz aktivitesinin, optimize edilmeyen durumla (15.33 U mL-1) karşılaştırıldığında yaklaşık olarak 2.3 kat (34.95 U mL-1) arttığını göstermiştir. Sonuç olarak, M. luteus Y23-18 etkili bir keratinaz üretici mikroorganizmadır ve Taguchi deney dizaynı optimizasyon için kullanışlı bir araçtır.
Abdel-Fattah, A. M., El-Gamal, M. S., Ismail, S. A., Emran, M. A., & Hashem, A. M. (2018). Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. Journal of Genetic Engineering and Biotechnology, 16(2), 311–318. https://doi.org/ 10.1016/j.jgeb.2018.05.005
Bockle, B., Galunsky, B., & Muller, R. (1995). Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Applied and Environmental Microbiology, 61(10), 3705–3710. https://doi.org/10.1128/aem.61.10.3705-3710.1995
Cai, G., Moffitt, K., Navone, L., Zhang, Z., Robins, K., & Speight, R. (2022). Valorisation of keratin waste: Controlled pretreatment enhances enzymatic production of antioxidant peptides. Journal of Environmental Management, 301(July 2021), 113945. https://doi.org/10.1016/j.jenvman.2021. 113945
Canlı Taşar, Ö. (2020). Inulinase production capability of a promising medicinal plant: Inula viscosa. Commagene Journal of Biology, 4, 67–73. https://doi.org/10.31594/commagene.747618
Canli, O., Tasar, G.E., & Taskin, M. (2013). Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicology and Industrial Health, 29(8), 704–710. https://doi.org/10.1177/0748233712442737
Canli Tasar, O. (2022). Glucose oxidase production using a medicinal plant: Inula viscosa and optimization with Taguchi DOE. Journal of Food Processing and Preservation, 46(3), e16375.
https://doi.org/10.1111/jfpp.16375
Chen, Z., Jiang, X. (2014). Microbiological Safety of Chicken Litter or Chicken Litter-based Organic Fertilizers: A Review.”. Agriculture, 4(1), 1–29. https://doi.org/10.3390/agriculture4010001 .
Daroit, D. J., & Brandelli, A. (2014). A current assessment on the production of bacterial keratinases. Critical Reviews in Biotechnology, 34(4), 372–384. https://doi.org/10.3109/07388551. 2013.794768
Devi, S., Chauhan, A., Bishist, R., Sankhyan, N., Rana, K., & Sharma, N. (2022). Production, partial purification and efficacy of keratinase from Bacillus halotolerans L2EN1 isolated from the poultry farm of Himachal Pradesh as a potential laundry additive. Biocatalysis and Biotransformation, 1–21.
https://doi.org/10.1080/10242422.2022.2029851
Etemadian, Y., Ghaemi, V., Shaviklo, A.R., Pourashouri, P., Sadeghi Mahoonak, A.R., & Rafipour, F. (2021). Development of animal/ plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: State of the art. Journal of Cleaner Production, 278.
https://doi.org/10.1016/j.jclepro.2020.123219
Farid, M.A., Ghoneimy, E.A., El-Khawaga, M.A., Negm-Eldein, A., & Awad, G.E.A. (2013). Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. Annals of Microbiology, 63(2), 523–531. https://doi.org/10.1007/s13213-012-0497-5
Gonzalo, M., Espersen, R., Al-Soud, W.A., Cristiano Falco, F., Hägglund, P., Sørensen, S.J., Svensson, B., & Jacquiod, S. (2020). Azo dying of α-keratin material improves microbial keratinase screening and standardization. Microbial Biotechnology, 13(4), 984–996. https://doi.org/10.1111/1751-7915.13541
Gupta, R., Sharma, R., & Beg, Q. K. (2013). Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33(2), 216–228. https://doi.org/ 10.3109/07388551.2012.685051
Jean, M.D., & Tzeng, Y.F. (2003). Use of Taguchi methods and multiple regression analysis for optimal process development of high energy electron beam case hardening of cast iron. Surface Engineering, 19(2), 150–156. https://doi.org/ 10.1179/026708403225002496
Kivak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement: Journal of the International Measurement Confederation, 50(1), 19–28. https://doi.org/10.1016/j.measurement.2013.12.017
Laba, W., Choinska, A., Rodziewicz, A., & Piegza, M. (2015). Keratinolytic abilities of Micrococcus luteus from poultry waste. Brazilian Journal of Microbiology, 46(3), 691–700. https://doi.org/ 10.1590/S1517-838246320140098
Letourneau, F., Soussotte, V., Bressollier, P. & Branland, P.V. (1998). Keratinolytic activity of Streptomyces sp. SK1-02: a new isolated strain. Letters in Applied Microbiology, 26, 77–80.
Martinez, J.P.D.O., Cai, G., Nachtschatt, M., Navone, L., Zhang, Z., Robins, K., & Speight, R. (2020). Challenges and opportunities in identifying and characterising keratinases for value-added peptide production. Catalysts, 10(2). https://doi.org/ 10.3390/catal10020184
Murray-Tortarolo, G. N., & Jaramillo, V. J. (2020). Precipitation extremes in recent decades impact cattle populations at the global and national scales. Science of the Total Environment, 736, 139557. https://doi.org/10.1016/j.scitotenv.2020.139557
Nowak, A.T. Bakuła, K. Matusiak, R. Gałęcki, S. Borowski, & B.G. (2017). Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells. International Journal of Environmental Research and Public Health, 14(8), 933–940. https://doi.org/ 10.3390/ijerph14080933.
Prabakaran, R., & Valavan, S.E. (2021). Wealth from poultry waste: an overview. World’s Poultry Science Journal, 77(2), 389–401. https://doi.org/10.1080/ 00439339.2021.1901557
Rao, R. S., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnology Journal, 3(4), 510–523. https://doi.org/10.1002/biot.200700201
Scott, J. A., & Untereiner, W.A. (2004). Determination of keratin degradation by fungi using keratin azure. Medical Mycology, 42(3), 239–246. https://doi.org/ 10.1080/13693780310001644680
Sharma, I., & Kango, N. (2021). Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. International Journal of Biological Macromolecules, 166, 1046–1056. https://doi.org/ 10.1016/j.ijbiomac.2020.10.260
Sharma, P., Verma, A., Sidhu, R.K., & Pandey, O.P. (2005). Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. Journal of Materials Processing Technology, 168(1), 147–151. https://doi.org/ 10.1016/j.jmatprotec.2004.12.003
Simpson, T. W. (1991). Agronomic Use of Poultry Industry Waste. Poultry Science, 70(5), 1126–1131. https://doi.org/10.3382/ps.0701126
Suntornsuk, W., & Suntornsuk, L. (2003). Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresource Technology, 86(3), 239–243. https://doi.org/10.1016/S0960-8524(02)00177-3
Tan, O., Zaimoglu, A.S., Hinislioglu, S., & Altun, S. (2005). Taguchi approach for optimization of the bleeding on cement-based grouts. Tunnelling and Underground Space Technology, 20(2), 167–173. https://doi.org/10.1016/j.tust.2004.08.004
TUIK Turkey Statistical Institute. (2022). 45692. https://data.tuik.gov.tr/Bulten/Index?p=Kumes-Hayvanciligi-Uretimi-Mart-2022-45692&dil=1
Vidmar, B., & Vodovnik, M. (2018). Microbial keratinases: Enzymes with promising biotechnological applications. Food Technology and Biotechnology, 56(3), 312–328. https://doi.org/ 10.17113/ftb.56.03.18.5658
Zhang, J., Su, C., Kong, X.L., Gong, J.S., Liu, Y.L., Li, H., Qin, J., Xu, Z.H., & Shi, J.S. (2022). Directed evolution driving the generation of an efficient keratinase variant to facilitate the feather degradation. Bioresources and Bioprocessing, 9(1), 38. https://doi.org/10.1186/s40643-022-00524-4
Canlı Taşar, Ö., & Taşar, G. E. (2023). Optimization of Keratinase Enzyme synthesized by Micrococcus luteus using Taguchi DOE Method. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(5), 1027-1033. https://doi.org/10.18016/ksutarimdoga.vi.1128064