Research Article
BibTex RIS Cite

Melissa officinalis: Antibacterial and Antioxidant Potential, Phenolic Profile and Enzyme Activities

Year 2023, Volume: 26 Issue: 5, 1075 - 1085, 31.10.2023
https://doi.org/10.18016/ksutarimdoga.vi.1170784

Abstract

Popularly referred to as lemon balm, Melissa officinalis L., has been used as a cure for gastrointestinal disorders, respiratory and cardiovascular diseases, mental and central nervous system problems, various cancers, headache, nervousness, and rheumatism. In this study, the phenolic profile, antioxidant potential, antibacterial activity, and enzyme activity of lemon balm grown in nature in Bolu, Turkey were determined. Furthermore, comparisons were made with plants grown in vitro. Individual phenolic analysis with HPLC-DAD showed that the most prevalent phenol was rosmarinic acid in both extracts and naturally-grown plants had higher amount than in vitro-grown ones. Similarly, naturally-grown plants had considerably greater levels of total phenol-flavonoid, scavenging activity for free radicals (DPPH), and phenol synthesis related enzyme (PAL). As for the enzymatic antioxidant activity (SOD and CAT), naturally-grown plants were found to have higher CAT activity and lower SOD activity. As a remarkable result, although plants grown in vitro showed moderate antibacterial activity, no effect was observed in naturally-grown plants. In general, these results showed that the M. officinalis grown in nature is exposed to more biotic and abiotic stress and increases their phenolic content remarkably and consequently antioxidant capacity.

Supporting Institution

Bolu Abant Izzet Baysal University

Project Number

BAP 2016.03.01.1027

References

  • Abdellatif, F., Begaa, S., Messaoudi, M., Benarfa, A, Ouakouak, H., Hassani, A, Sawicka, B. & Simal Gandara, J. (2023). HPLC–DAD analysis, antimicrobial and antioxidant properties of aromatic herb Melissa officinalis L., aerial parts extracts. Food Analytical Methods 16, 45–54.
  • Abdel-Naime, W.A., Fahim, J.R., Fouad, M.A. & Kamel, M.S. (2019). Antibacterial, antifungal, and GC–MS studies of Melissa officinalis. South African Journal of Botany 124, 228–234.
  • Adinee, J., Piri, K. & Karimi, O. (2008). Essential oil component in flower of lemon balm (Melissa officinalis L.), American Journal of Biochemistry and Biotechnology 4(3), 277–278.
  • Atanassova, M., Georgieva, S. & Ivancheva, K. (2011). Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. Journal of the University of Chemical Technology & Metallurgy 46(1), 81–88.
  • Barros, L., Dueñas, M., Dias, M.I., Sousa, M.J., Santos-Buelga, C. & Ferreira, I.C. (2013). Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chemistry 136(1), 1–8.
  • Caleja, C., Barros, L., Barreira, J.C., Ciric, A., Sokovic, M., Calhelha, R.C. & Ferreira, I.C. (2018). Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes. Food Chemistry 250, 67–74.
  • Čanadanović-Brunet, J., Ćetković, G., Djilas, S., Tumbas, V., Bogdanović, G., Mandić, A. & Čanadanović, V. (2008). Radical scavenging, antibacterial, and antiproliferative activities of Melissa officinalis L. extracts. Journal of Medicinal Food 11(1), 133–143.
  • Caniova, A. & Brandsteterova, E. (2001). HPLC analysis of phenolic acids in Melissa officinalis. Journal of Liquid Chromatography & Related Technologies 24, 2647–2659.
  • Carocho, M., Barreira, J.C., Bento, A., Fernández-Ruiz, V., Morales, P. & Ferreira, I.C. (2016). Chestnut and lemon balm based ingredients as natural preserving agents of the nutritional profile in matured “Serra da Estrela” cheese. Food Chemistry 204, 185–193.
  • Carocho, M., Barros, L., Calhelha, R. C., Ćirić, A., Soković, M., Santos-Buelga, C. & Ferreira, I.C. (2015). Melissa officinalis L. decoctions as functional beverages: a bioactive approach and chemical characterization. Food and Function 6(7), 2240–2248.
  • Carović-StanKo, K., PeteK, M., Grdiša, M., Pintar, J., Bedeković, D.A.L.I.B.O.R. & Satovic, Z. (2016). Medicinal plants of the family Lamiaceae as functional foods–a review. Czech Journal of Food Sciences 34(5), 377–390.
  • Çelebi, Ö., Fidan, H., Iliev, I., Petkova, N., Dincheva, I., Gandova, V., Stankov, S. & Stoyanova, A. (2023). Chemical composition, biological activities, and surface tension properties of Melissa officinalis L. essential oil. Turkish Journal of Agriculture and Forestry 47(1), 67–78.
  • Dastmalchi, K., Dorman, H. D., Oinonen, P. P., Darwis, Y., Laakso, I. & Hiltunen, R. (2008). Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT-Food Science and Technology 41(3), 391–400.
  • Davis, P.H. (1978). Flora of Turkey and the East Aegean Islands. Vol. 6. Edinburgh University Press, England.
  • Draginic, N., Andjic, M., Jeremic, J., Zivkovic, V., Kocovic, A., Tomovic, M., Bozin, B., Kladar, N., Bolevich, S., Jakovljevic, V. & Milosavljevic, I. (2022). Anti-inflammatory and antioxidant effects of Melissa officinalis extracts: A comparative study. Iranian Journal of Pharmaceutical Research 21(1), e126561.
  • Ehsani, A., Alizadeh, O., Hashemi, M., Afshari, A. & Aminzare, M. (2017). Phytochemical, antioxidant, and antibacterial properties of Melissa officinalis and Dracocephalum moldavica essential oils. In Veterinary Research Forum 8(3), p. 223. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
  • Fecka, I. & Turek, S. (2007). Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: Peppermint, Melissa, and Sage. Journal of Agricultural and Food Chemistry 55, 10908–10917.
  • Gbolade, A.A. & Lockwood, G.B. (1989). The constituents of Melissa officinalis cell cultures. Planta Medica 55(2), 228–228.
  • Ghanati, F., Abdolmaleki, P., Vaezzadeh, M., Rajabbeigi, E. & Yazdani, M. (2007). Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. The Environmentalist 27, 429–434.
  • Ghasemian, S., Masoudian, N., Saeid Nematpour, F. & Safipour Afshar, A. (2021). Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia 76(10), 2879–2888.
  • Ighodaro, O.M. & Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 54(4), 287–293.
  • Ivanov, M., Kostić, M., Stojković, D. & Soković, M. (2022). Rosmarinic acid–Modes of antimicrobial and antibiofilm activities of common plant polyphenol. South African Journal of Botany 146, 521–527.
  • Lee, J. (2010). Caffeic acid derivates in dried Lamiaceae and Echinacea purpurea products. Journal of Functional Foods 2, 158–162.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193, 265–275.
  • Mabrouki, H., Duarte, C.M.M. & Akretche, D.E. (2018). Estimation of total phenolic contents and in vitro antioxidant and antimicrobial activities of various solvent extracts of Melissa officinalis L. Arabian Journal for Science and Engineering 43(7), 3349–3357.
  • MacDonald, M.J. & D’Cunha, G.B. (2007). A modern view of phenylalanine ammonia lyase. Biochemistry and Cell Biology 85(3), 273–282.
  • Mencherini, T., Picerno, P., Scesa, C. & Aquino, R. (2007). Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. Journal of Natural Products 70(12), 1889–1894.
  • Moreno, S., Scheyer, T., Romano, C.S. & Vojnov, A.A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research 40(2), 223–231.
  • Pereira, R.P., Boligon, A.A., Appel, A.S., Fachinetto, R., Ceron, C.S., Tanus-Santos, J.E. & Rocha, J.B.T. (2014). Chemical composition, antioxidant and anticholinesterase activity of Melissa officinalis. Industrial Crops and Products 53, 34–45.
  • Petrisor, G., Motelica, L., Craciun, L. N., Oprea, O.C., Ficai, D. & Ficai, A. (2022). Melissa officinalis: Composition, pharmacological effects and derived release systems—A review. International Journal of Molecular Sciences 23(7), 3591.
  • Pistelli, L., Tonelli, M., Pellegrini, E., Cotrozzi, L., Pucciariello, C., Trivellini, A. & Nali, C. (2019). Accumulation of rosmarinic acid and behaviour of ROS processing systems in Melissa officinalis L. under heat stress. Industrial Crops and Products 138, 111469.
  • Pratyusha, S. (2022). Phenolic Compounds in the Plant Development and Defense: An Overview. In M. Hasanuzzaman & K. Nahar (Eds.), Plant Stress Physiology-Perspectives in Agriculture. IntechOpen.
  • Safari, F., Akramian, M. & Salehi-Arjmand, H. (2020). Physiochemical and molecular responses of salt-stressed lemon balm (Melissa officinalis L.) to exogenous protectants. Acta Physiologiae Plantarum 42(2), 1–10.
  • Selmar, D. & Kleinwächter, M. (2013). Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant and Cell Physiology 54(6), 817–826.
  • Shakeri, A., Sahebkar, A. & Javadi, B. (2016). Melissa officinalis L.–A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology 188, 204–228.
  • Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012, ID 217037.
  • Silva, B.N., Cadavez, V., Caleja, C., Pereira, E., Calhelha, R.C., Añibarro-Ortega, M., Finimundy, T., Kostic, M., Sokovic, M., Teixeira J.A., Barros, L. & Gonzales-Barron, U. (2023). Phytochemical composition and bioactive potential of Melissa officinalis L., Salvia officinalis L. and Mentha spicata L. extracts. Foods 12(5), 947.
  • Spiridon, I., Colceru, S., Anghel, N., Teaca, C.A., Bodirlau, R. & Armatu, A. (2011). Antioxidant capacity and total phenolic contents of oregano (Origanum vulgare), lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) from Romania. Natural Product Research 25(17), 1657–1661.
  • Stefanovic, O. & Comic, L. (2012). Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. Journal of Applied Pharmaceutical Science 2(1), 1–5.
  • Thakur, M., Bhattacharya, S., Khosla, P.K. & Puri, S. (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12, 1–12.
  • Turker, A.U., Yildirim, A.B. & Taş, I. (2018). In vitro adventitious plant regeneration of Echium orientale L., an endemic plant: The evaluation of biological activities and phenolic content. Indian Journal of Biochemistry and Biophysics 55, 264–272.
  • Turker, A.U., Yildirim, A.B., Tas, I., Ozkan, E. & Turker, H., (2021). Evaluation of some traditional medicinal plants: phytochemical profile, antibacterial and antioxidant potentials. Romanian Biotechnological Letters 26, 2499–2510.
  • Türker, A.U. & Yıldırım, A.B. (2018). Clonal propagation, antioxidant activity and phenolic profiles of Convolvulus galaticus Rostan ex Choisy. Romanian Biotechnological Letters 23, 13625–13636.
  • Ulgen, C., Yildirim, A.B., Sahin, G. & Turker, A.U. (2021). Do magnetic field applications affect in vitro regeneration, growth, phenolic profiles, antioxidant potential and defense enzyme activities (SOD, CAT and PAL) in lemon balm (Melissa officinalis L.)?. Industrial Crops and Products 169, 113624.
  • Ulgen, C., Yildirim, A. & Turker, A. (2020). Enhancement of plant regeneration in lemon balm (Melissa officinalis L.) with different magnetic field applications. International Journal of Secondary Metabolite 7(2), 99–108.
  • Ziaková, A. & Brandsteterová, E. (2003). Validation of HPLC determination of phenolic acids present in some Lamiaceae family plants. Journal of Liquid Chromatography & Related Technologies 26, 443–453.

Melissa officinalis: Antibakteriyel ve Antioksidan Potansiyeli, Fenolik Profili ve Enzim Aktiviteleri

Year 2023, Volume: 26 Issue: 5, 1075 - 1085, 31.10.2023
https://doi.org/10.18016/ksutarimdoga.vi.1170784

Abstract

Halk arasında oğul otu olarak bilinen Melissa officinalis L., mide bağırsak rahatsızlıkları, solunum ve kalp damar hastalıkları, zihinsel ve merkezi sinir sistemi problemleri, çeşitli kanserler, baş ağrısı, sinirlilik ve romatizma için şifa olarak kullanılmaktadır. Bu çalışmada, Bolu, Türkiye’de doğada yetişen oğul otu bitkisinin fenolik profili, antioksidan potansiyeli, antibakteriyel etkisi ve enzim aktivitesi belirlenmiştir. Ayrıca in vitro yetiştirilen bitkilerle de karşılaştırılma yapılmıştır. HPLC-DAD ile yapılan bireysel fenolik analiz her iki özütde en yaygın fenolün rosmarinik asit olduğunu ve doğal olarak yetişen bitkilerde in vitro yetiştirilenlerden daha yüksek miktarda rosmarinik asit bulunduğunu göstermiştir. Benzer şekilde, doğal olarak yetişen bitkilerin önemli ölçüde daha yüksek toplam fenol-flavonoid seviyelerine, serbest radikalleri temizleme aktivitesine (DPPH) ve fenol sentezi ile ilgili enzime (PAL) sahip olduğu görülmüştür. Enzimatik antioksidan aktivitesi olarak (SOD ve CAT), doğal olarak yetişen bitkilerin daha yüksek CAT aktivitesine ve daha düşük SOD aktivitesine sahip olduğu bulunmuştur. Dikkat çekici bir sonuç olarak in vitro yetiştirilen bitkiler orta derecede antibakteriyel aktivite göstermesine rağmen doğal olarak yetişen bitkilerde etki görülmemiştir. Genel olarak bu sonuçlar, doğada yetişen M. officinalis' in daha fazla biyotik ve abiyotik strese maruz kaldığını ve fenolik içeriğini ve dolayısıyla antioksidan kapasitesini önemli ölçüde arttırdığını göstermiştir.

Project Number

BAP 2016.03.01.1027

References

  • Abdellatif, F., Begaa, S., Messaoudi, M., Benarfa, A, Ouakouak, H., Hassani, A, Sawicka, B. & Simal Gandara, J. (2023). HPLC–DAD analysis, antimicrobial and antioxidant properties of aromatic herb Melissa officinalis L., aerial parts extracts. Food Analytical Methods 16, 45–54.
  • Abdel-Naime, W.A., Fahim, J.R., Fouad, M.A. & Kamel, M.S. (2019). Antibacterial, antifungal, and GC–MS studies of Melissa officinalis. South African Journal of Botany 124, 228–234.
  • Adinee, J., Piri, K. & Karimi, O. (2008). Essential oil component in flower of lemon balm (Melissa officinalis L.), American Journal of Biochemistry and Biotechnology 4(3), 277–278.
  • Atanassova, M., Georgieva, S. & Ivancheva, K. (2011). Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. Journal of the University of Chemical Technology & Metallurgy 46(1), 81–88.
  • Barros, L., Dueñas, M., Dias, M.I., Sousa, M.J., Santos-Buelga, C. & Ferreira, I.C. (2013). Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chemistry 136(1), 1–8.
  • Caleja, C., Barros, L., Barreira, J.C., Ciric, A., Sokovic, M., Calhelha, R.C. & Ferreira, I.C. (2018). Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes. Food Chemistry 250, 67–74.
  • Čanadanović-Brunet, J., Ćetković, G., Djilas, S., Tumbas, V., Bogdanović, G., Mandić, A. & Čanadanović, V. (2008). Radical scavenging, antibacterial, and antiproliferative activities of Melissa officinalis L. extracts. Journal of Medicinal Food 11(1), 133–143.
  • Caniova, A. & Brandsteterova, E. (2001). HPLC analysis of phenolic acids in Melissa officinalis. Journal of Liquid Chromatography & Related Technologies 24, 2647–2659.
  • Carocho, M., Barreira, J.C., Bento, A., Fernández-Ruiz, V., Morales, P. & Ferreira, I.C. (2016). Chestnut and lemon balm based ingredients as natural preserving agents of the nutritional profile in matured “Serra da Estrela” cheese. Food Chemistry 204, 185–193.
  • Carocho, M., Barros, L., Calhelha, R. C., Ćirić, A., Soković, M., Santos-Buelga, C. & Ferreira, I.C. (2015). Melissa officinalis L. decoctions as functional beverages: a bioactive approach and chemical characterization. Food and Function 6(7), 2240–2248.
  • Carović-StanKo, K., PeteK, M., Grdiša, M., Pintar, J., Bedeković, D.A.L.I.B.O.R. & Satovic, Z. (2016). Medicinal plants of the family Lamiaceae as functional foods–a review. Czech Journal of Food Sciences 34(5), 377–390.
  • Çelebi, Ö., Fidan, H., Iliev, I., Petkova, N., Dincheva, I., Gandova, V., Stankov, S. & Stoyanova, A. (2023). Chemical composition, biological activities, and surface tension properties of Melissa officinalis L. essential oil. Turkish Journal of Agriculture and Forestry 47(1), 67–78.
  • Dastmalchi, K., Dorman, H. D., Oinonen, P. P., Darwis, Y., Laakso, I. & Hiltunen, R. (2008). Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT-Food Science and Technology 41(3), 391–400.
  • Davis, P.H. (1978). Flora of Turkey and the East Aegean Islands. Vol. 6. Edinburgh University Press, England.
  • Draginic, N., Andjic, M., Jeremic, J., Zivkovic, V., Kocovic, A., Tomovic, M., Bozin, B., Kladar, N., Bolevich, S., Jakovljevic, V. & Milosavljevic, I. (2022). Anti-inflammatory and antioxidant effects of Melissa officinalis extracts: A comparative study. Iranian Journal of Pharmaceutical Research 21(1), e126561.
  • Ehsani, A., Alizadeh, O., Hashemi, M., Afshari, A. & Aminzare, M. (2017). Phytochemical, antioxidant, and antibacterial properties of Melissa officinalis and Dracocephalum moldavica essential oils. In Veterinary Research Forum 8(3), p. 223. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
  • Fecka, I. & Turek, S. (2007). Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: Peppermint, Melissa, and Sage. Journal of Agricultural and Food Chemistry 55, 10908–10917.
  • Gbolade, A.A. & Lockwood, G.B. (1989). The constituents of Melissa officinalis cell cultures. Planta Medica 55(2), 228–228.
  • Ghanati, F., Abdolmaleki, P., Vaezzadeh, M., Rajabbeigi, E. & Yazdani, M. (2007). Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. The Environmentalist 27, 429–434.
  • Ghasemian, S., Masoudian, N., Saeid Nematpour, F. & Safipour Afshar, A. (2021). Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia 76(10), 2879–2888.
  • Ighodaro, O.M. & Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 54(4), 287–293.
  • Ivanov, M., Kostić, M., Stojković, D. & Soković, M. (2022). Rosmarinic acid–Modes of antimicrobial and antibiofilm activities of common plant polyphenol. South African Journal of Botany 146, 521–527.
  • Lee, J. (2010). Caffeic acid derivates in dried Lamiaceae and Echinacea purpurea products. Journal of Functional Foods 2, 158–162.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193, 265–275.
  • Mabrouki, H., Duarte, C.M.M. & Akretche, D.E. (2018). Estimation of total phenolic contents and in vitro antioxidant and antimicrobial activities of various solvent extracts of Melissa officinalis L. Arabian Journal for Science and Engineering 43(7), 3349–3357.
  • MacDonald, M.J. & D’Cunha, G.B. (2007). A modern view of phenylalanine ammonia lyase. Biochemistry and Cell Biology 85(3), 273–282.
  • Mencherini, T., Picerno, P., Scesa, C. & Aquino, R. (2007). Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. Journal of Natural Products 70(12), 1889–1894.
  • Moreno, S., Scheyer, T., Romano, C.S. & Vojnov, A.A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research 40(2), 223–231.
  • Pereira, R.P., Boligon, A.A., Appel, A.S., Fachinetto, R., Ceron, C.S., Tanus-Santos, J.E. & Rocha, J.B.T. (2014). Chemical composition, antioxidant and anticholinesterase activity of Melissa officinalis. Industrial Crops and Products 53, 34–45.
  • Petrisor, G., Motelica, L., Craciun, L. N., Oprea, O.C., Ficai, D. & Ficai, A. (2022). Melissa officinalis: Composition, pharmacological effects and derived release systems—A review. International Journal of Molecular Sciences 23(7), 3591.
  • Pistelli, L., Tonelli, M., Pellegrini, E., Cotrozzi, L., Pucciariello, C., Trivellini, A. & Nali, C. (2019). Accumulation of rosmarinic acid and behaviour of ROS processing systems in Melissa officinalis L. under heat stress. Industrial Crops and Products 138, 111469.
  • Pratyusha, S. (2022). Phenolic Compounds in the Plant Development and Defense: An Overview. In M. Hasanuzzaman & K. Nahar (Eds.), Plant Stress Physiology-Perspectives in Agriculture. IntechOpen.
  • Safari, F., Akramian, M. & Salehi-Arjmand, H. (2020). Physiochemical and molecular responses of salt-stressed lemon balm (Melissa officinalis L.) to exogenous protectants. Acta Physiologiae Plantarum 42(2), 1–10.
  • Selmar, D. & Kleinwächter, M. (2013). Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant and Cell Physiology 54(6), 817–826.
  • Shakeri, A., Sahebkar, A. & Javadi, B. (2016). Melissa officinalis L.–A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology 188, 204–228.
  • Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012, ID 217037.
  • Silva, B.N., Cadavez, V., Caleja, C., Pereira, E., Calhelha, R.C., Añibarro-Ortega, M., Finimundy, T., Kostic, M., Sokovic, M., Teixeira J.A., Barros, L. & Gonzales-Barron, U. (2023). Phytochemical composition and bioactive potential of Melissa officinalis L., Salvia officinalis L. and Mentha spicata L. extracts. Foods 12(5), 947.
  • Spiridon, I., Colceru, S., Anghel, N., Teaca, C.A., Bodirlau, R. & Armatu, A. (2011). Antioxidant capacity and total phenolic contents of oregano (Origanum vulgare), lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) from Romania. Natural Product Research 25(17), 1657–1661.
  • Stefanovic, O. & Comic, L. (2012). Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. Journal of Applied Pharmaceutical Science 2(1), 1–5.
  • Thakur, M., Bhattacharya, S., Khosla, P.K. & Puri, S. (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12, 1–12.
  • Turker, A.U., Yildirim, A.B. & Taş, I. (2018). In vitro adventitious plant regeneration of Echium orientale L., an endemic plant: The evaluation of biological activities and phenolic content. Indian Journal of Biochemistry and Biophysics 55, 264–272.
  • Turker, A.U., Yildirim, A.B., Tas, I., Ozkan, E. & Turker, H., (2021). Evaluation of some traditional medicinal plants: phytochemical profile, antibacterial and antioxidant potentials. Romanian Biotechnological Letters 26, 2499–2510.
  • Türker, A.U. & Yıldırım, A.B. (2018). Clonal propagation, antioxidant activity and phenolic profiles of Convolvulus galaticus Rostan ex Choisy. Romanian Biotechnological Letters 23, 13625–13636.
  • Ulgen, C., Yildirim, A.B., Sahin, G. & Turker, A.U. (2021). Do magnetic field applications affect in vitro regeneration, growth, phenolic profiles, antioxidant potential and defense enzyme activities (SOD, CAT and PAL) in lemon balm (Melissa officinalis L.)?. Industrial Crops and Products 169, 113624.
  • Ulgen, C., Yildirim, A. & Turker, A. (2020). Enhancement of plant regeneration in lemon balm (Melissa officinalis L.) with different magnetic field applications. International Journal of Secondary Metabolite 7(2), 99–108.
  • Ziaková, A. & Brandsteterová, E. (2003). Validation of HPLC determination of phenolic acids present in some Lamiaceae family plants. Journal of Liquid Chromatography & Related Technologies 26, 443–453.
There are 46 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Canan Ulgen 0000-0002-8272-3370

Arzu Yıldırım 0000-0001-7712-2813

Arzu Turker 0000-0001-9617-6673

Project Number BAP 2016.03.01.1027
Early Pub Date May 27, 2023
Publication Date October 31, 2023
Submission Date September 9, 2022
Acceptance Date March 6, 2023
Published in Issue Year 2023Volume: 26 Issue: 5

Cite

APA Ulgen, C., Yıldırım, A., & Turker, A. (2023). Melissa officinalis: Antibacterial and Antioxidant Potential, Phenolic Profile and Enzyme Activities. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(5), 1075-1085. https://doi.org/10.18016/ksutarimdoga.vi.1170784


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149