Research Article
BibTex RIS Cite

Standardization of Infusion of Lycium barbarum Grown by Organic Farming Methods and Enzyme Inhibitory and Antioxidant Activities

Year 2024, Volume: 27 Issue: 1, 26 - 37, 28.02.2024
https://doi.org/10.18016/ksutarimdoga.vi.1200718

Abstract

The cultivation of medicinal and aromatic plants with conventional and organic farming techniques in order to protect biodiversity due to depleted natural resources is becoming increasingly common. The expense of organic farming techniques necessitates more careful selection of the plants to be grown. Evaluation of the bioactivity and phytochemical contents of these plants is important for the pharmaceutical and food industry. In this study, the antioxidant, antidiabetic, anticholesterolemic and antiobesity activities of the extracts obtained from the fruit, root and leaves of Lycium barbarum grown with organic farming techniques using infusion and decoction techniques were evaluated in vitro. The phytochemical contents of the extracts were investigated by spectroscopic and chromatographic techniques. In the study in which five different antioxidant activity methods were used, L. barbarum root decoction showed a strong antioxidant effect in almost all methods. While none of the extracts exerted an inhibitory effect on the α-glucosidase enzyme, the leaf infusion of the plant at 2 mg mL-1 concentration caused strong inhibitions especially on pancreatic lipase (62.16±3.33%) and pancreatic cholesterol esterase (93.98±0.54%) enzymes compared to the reference compounds. L. barbarum leaf infusion was standardized by RP-HPLC technique on the basis of chlorogenic acid (1.339±0.056 g 100g-1 dry extract) and quercetin-3-O-glucoside (1.801±0.042 g 100g-1 dry extract) as markers. The findings displayed that leaf infusions of L. barbarum grown with organic farming techniques could be the source of natural product development studies for hypercholesterolemia and obesity control, and the extract could be standardized using chlorogenic acid and quercetin-3-O-glucoside as markers.

References

  • Ahmad, I., Syakfanaya, A. M., Azminah, A., Saputri, F. C., & Mun'im, A. (2021). Optimization of betaine-sorbitol natural deep eutectic solvent-based ultrasound-assisted extraction and pancreatic lipase inhibitory activity of chlorogenic acid and caffeine content from robusta green coffee beans. Heliyon, 7(8), e07702. https://doi.org/ 10.1016/j.heliyon.2021.e07702.
  • Al-Goblan, A. S., Al-Alfi, M. A., & Khan, M. Z. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, metabolic syndrome and obesity : targets and therapy, 7, 587–591. https://doi.org/10.2147/DMSO.S67400.
  • Chen, G. L., Xu, Y. B., Wu, J. L., Li, N., & Guo, M. Q. (2020). Hypoglycemic and hypolipidemic effects of Moringa oleifera leaves and their functional chemical constituents. Food chemistry, 333, 127478. https://doi.org/10.1016/j.foodchem.2020. 127478.
  • Dinis, T. C., Maderia, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of biochemistry and biophysics, 315(1), 161–169. https://doi.org/10.1006/ abbi.1994.1485.
  • Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2015). Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. Journal of functional foods, 18, 1070-1085. https://doi.org/10.1016/ j.jff.2014.05.020.
  • Gök, H. N., Orhan, N., Özüpek, B., Pekacar, S., Selvi, Ş. N., & Orhan, D. D. (2021). Standardization of Juniperus macrocarpa Sibt. & Sm. and Juniperus excelsa M. Bieb. Extracts with Carbohydrate Digestive Enzyme Inhibitory and Antioxidant Activities. Iranian journal of pharmaceutical research : IJPR, 20(3), 441–455. https://doi.org/ 10.22037/ijpr.2021.114838.15055.
  • Hamamcıoğlu, A. C. (2017). Diyabette oksidatif stres ve antioksidanların rolü. Türkiye Diyabet ve Obezite Dergisi, 1(1), 7-13.
  • Ilić, T., Dodevska, M., Marčetić, M., Božić, D., Kodranov, I., & Vidović, B. (2020). Chemical Characterization, Antioxidant and Antimicrobial Properties of Goji Berries Cultivated in Serbia. Foods (Basel, Switzerland), 9(11), 1614. https://doi.org/10.3390/foods9111614.
  • Islam, T., Yu, X., Badwal, T. S., & Xu, B. (2017). Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chemistry Central journal, 11(1), 59. https://doi.org/10.1186/s13065-017-0287-z.
  • Jung, H. A., Jin, S. E., Choi, R. J., Manh, H. T., Kim, Y. S., Min, B. S., Son, Y. K., Ahn, B. R., Kim, B. W., Sohn, H. S., & Choi, J. S. (2011). Anti-tumorigenic activity of sophoflavescenol against Lewis lung carcinoma in vitro and in vivo. Archives of pharmacal research, 34(12), 2087–2099. https://doi.org/10.1007/s12272-011-1212-y.
  • Kosalec, I., Bakmaz, M., Pepeljnjak, S., & Vladimir-Knezević, S. (2004). Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta pharmaceutica (Zagreb, Croatia), 54(1), 65–72.
  • Kulczyński, B., & Gramza-Michałowska, A. (2016). Goji berry (Lycium barbarum): composition and health effects–a review. Polish Journal of Food and Nutrition Sciences, 66(2), 67-75. https://doi.org/ 10.1515/pjfns-2015-0040.
  • Lee, Y. M., Kim, Y. S., Lee, Y., Kim, J., Sun, H., Kim, J. H., & Kim, J. S. (2012). Inhibitory activities of pancreatic lipase and phosphodiesterase from Korean medicinal plant extracts. Phytotherapy research : PTR, 26(5), 778–782. https://doi.org/ 10.1002/ptr.3644.
  • Lei, Z., Chen, X., Cao, F., Guo, Q., & Wang, J. (2021). Phytochemicals and bioactivities of Goji (Lycium barbarum L. and Lycium chinense Mill.) leaves and their potential applications in the food industry: a review. International Journal of Food Science & Technology, 57(3), 1451–1461. https://doi.org/ 10.1111/ijfs.15507.
  • Orhan, N., Deliorman Orhan, D., Gökbulut, A., Aslan, M., & Ergun, F. (2017). Comparative Analysis of Chemical Profile, Antioxidant, In-vitro and In-vivo Antidiabetic Activities of Juniperus foetidissima Willd. and Juniperus sabina L. Iranian journal of pharmaceutical research: IJPR, 16(Suppl), 64–74.
  • Özdogan, E., Özdogan, O., Altunoglu, E. G., & Köksal, A. R. (2015). Tip 2 Diyabet Hastalarinda Kan Lipid Düzeylerinin Hba1c ve Obezite ile Iliskisi. Şişli Etfal Hastanesi Tip Bülteni, 49(4), 248-254. https://doi.org/10.5350/SEMB.20150903125636.
  • Magalhães, V., Silva, A. R., Silva, B., Zhang, X., & Dias, A. C. (2022). Comparative studies on the anti-neuroinflammatory and antioxidant activities of black and red goji berries. Journal of Functional Foods, 92, 105038. https://doi.org/10.1016/j.jff. 2022.105038.
  • Miao, M., & Xiang, L. (2020). Pharmacological action and potential targets of chlorogenic acid. Advances in pharmacology (San Diego, Calif.), 87, 71–88. https://doi.org/10.1016/bs.apha.2019.12.002.
  • Mocan, A., Vlase, L., Vodnar, D. C., Bischin, C., Hanganu, D., Gheldiu, A. M., Oprean, R., Silaghi-Dumitrescu, R., & Crișan, G. (2014). Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules (Basel, Switzerland), 19(7), 10056–10073. https://doi.org/10.3390/molecules 190710056.
  • Mocan, A., Moldovan, C., Zengin, G., Bender, O., Locatelli, M., Simirgiotis, M., Atalay, A., Vodnar, D. C., Rohn, S., & Crișan, G. (2018). UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 115, 414–424. https://doi.org/ 10.1016/j.fct.2018.01.054.
  • Ngamukote, S., Mäkynen, K., Thilawech, T., & Adisakwattana, S. (2011). Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules (Basel, Switzerland), 16(6), 5054–5061. https://doi.org/10.3390/molecules16065054.
  • Nikolova, M., Alexandrov, A., & Iliev, I. (2018). Alpha-glucosidase inhibitory effect and antioxidant properties of different extracts from Lycium barbarum L. Journal of BioScience and Biotechnology, 7(2-3), 91-95.
  • Pollini, L., Riccio, A., Juan, C., Tringaniello, C., Ianni, F., Blasi, F., Mañes, J., Macchiarulo, A., & Cossignani, L. (2020). Phenolic acids from Lycium barbarum leaves: In vitro and in silico studies of the inhibitory activity against porcine pancreatic α-amylase. Processes, 8(11), 1388. https://doi.org/ 10.3390/pr8111388.
  • Skenderidis, P., Kerasioti, E., Karkanta, E., Stagos, D., Kouretas, D., Petrotos, K., Hadjichristodoulou, C., & Tsakalof, A. (2018). Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation. Toxicology reports, 5, 251–257. https://doi.org/10.1016/ j.toxrep.2018.02.001.
  • Tian, X., Liang, T., Liu, Y., Ding, G., Zhang, F., & Ma, Z. (2019). Extraction, Structural Characterization, and Biological Functions of Lycium barbarum Polysaccharides: A Review. Biomolecules, 9(9), 389. https://doi.org/ 10.3390/biom9090389.
  • Wojdyło, A., Nowicka, P., & Bąbelewski, P. (2018). Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. Journal of functional foods, 48, 632-642. https://doi.org/10.1016/j.jff.2018.07. 061.
  • Yalın, H., Demir, H. G., & Olgun, N. (2011). Diyabetle mücadelede diyabet risklerinin belirlenmesi ve tanılama. The Journal of Turkish Family Physician, 2(2), 41-49.
  • Zhou, B., Xia, H., Yang, L., Wang, S., & Sun, G. (2022). The Effect of Lycium barbarum Polysaccharide on the Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. Journal of the American Nutrition Association, 41(6), 618–626. https://doi.org/10.1080/07315724.2021.1925996.
  • Zongo, C., Savadogo, A., Ouattara, L., Bassole, I. H. N., Ouattara, C. A. T., Ouattara, A. S., Barro, N., Koudou, J., & Traore, A.S. (2010). Polyphenols content, antioxidant and antimicrobial activities of Ampelocissus grantii (Baker) Planch. (Vitaceae): a medicinal plant from Burkina Faso, International Journal of Pharmacology, 6(6), 880-887.

Organik Tarım Yöntemleri ile Yetiştirilmiş Lycium barbarum İnfüzyonunun Standardizasyonu ve Antioksidan ve Enzim İnhibitör Etkileri

Year 2024, Volume: 27 Issue: 1, 26 - 37, 28.02.2024
https://doi.org/10.18016/ksutarimdoga.vi.1200718

Abstract

Tükenen doğal kaynaklar sebebiyle biyoçeşitliliği korumak maksatlı tıbbi ve aromatik bitkilerin konvansiyonel ve organik tarım teknikleri ile yetiştirilmesi giderek yaygınlaşmaktadır. Organik tarım tekniklerinin pahalı olması yetiştirilmesi düşünülen bitkilerin daha dikkatli seçilmesini gerektir. Bu bitkilerin biyoaktivitelerinin ve fitokimyasal içeriklerinin de değerlendirilmesi ilaç ve gıda sanayi için önem arz etmektedir. Bu çalışmada, organik tarım teknikleri ile yetiştirilen Lycium barbarum’un meyve, kök ve yapraklarından infüzyon ve dekoksiyon teknikleri kullanılarak elde edilen ekstrelerin antioksidan, antidiyabetik, antikolesterolemik ve antiobezite aktiviteleri in vitro olarak değerlendirilmiştir. Ekstrelerin fitokimyasal içerikleri spektroskopik ve kromatografik tekniklerle incelenmiştir. Yaprak infüzyonunun en yüksek toplam fenol (72.53±9.13 mg GAE g-1 ekstre) ve toplam flavonoid (14.92±0.53 mg QE g-1 ekstre) içeriğine sahip olduğu bulunmuştur. Beş farklı antioksidan aktivite yönteminin (ABTS ve DPPH radikal süpürücü aktivite, metal bağlama kapasitesi, toplam antioksidan kapasite ve demir indirgeme gücü) kullanıldığı çalışmada, tüm bulgular değerlendirildiğinde L. barbarum kök dekoksiyonu, toplam antioksidan kapasite yöntemi dışındaki tüm yöntemlerde güçlü bir antioksidan etki göstermiştir. Ekstrelerin hiçbiri α-glukozidaz enzimi üzerinde inhibitör etki göstermezken, 2 mg mL-1 konsantrasyonda bitkinin yaprak infüzyonu referans bileşiklerle (orlistat ve simvastatin) karşılaştırıldığında özellikle pankreatik lipazı ve pankreatik kolesterol esteraz enzimleri üzerinde güçlü inhibisyonlara neden olmuştur. Bu sonuçlar ışığında L. barbarum yaprağı infüzyonu, markör olarak klorojenik asit (1.339±0.056 g 100g-1 kuru ekstre) ve kersetin-3-O-glukozit (1.801±0.042 g 100g-1 kuru ekstre) üzerinden RP-HPLC tekniği ile standardize edilmiştir. Bulgular, organik tarım teknikleriyle yetiştirilen L. barbarum’un yaprak infüzyonlarının, hiperkolesterolemi ve obezite kontrolü için doğal ürün geliştirme çalışmalarının kaynağı olabileceğini ve ekstrenin markör olarak klorojenik asit ve kersetin-3-O-glukozit kullanılarak standardize edilebileceğini göstermiştir.

References

  • Ahmad, I., Syakfanaya, A. M., Azminah, A., Saputri, F. C., & Mun'im, A. (2021). Optimization of betaine-sorbitol natural deep eutectic solvent-based ultrasound-assisted extraction and pancreatic lipase inhibitory activity of chlorogenic acid and caffeine content from robusta green coffee beans. Heliyon, 7(8), e07702. https://doi.org/ 10.1016/j.heliyon.2021.e07702.
  • Al-Goblan, A. S., Al-Alfi, M. A., & Khan, M. Z. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, metabolic syndrome and obesity : targets and therapy, 7, 587–591. https://doi.org/10.2147/DMSO.S67400.
  • Chen, G. L., Xu, Y. B., Wu, J. L., Li, N., & Guo, M. Q. (2020). Hypoglycemic and hypolipidemic effects of Moringa oleifera leaves and their functional chemical constituents. Food chemistry, 333, 127478. https://doi.org/10.1016/j.foodchem.2020. 127478.
  • Dinis, T. C., Maderia, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of biochemistry and biophysics, 315(1), 161–169. https://doi.org/10.1006/ abbi.1994.1485.
  • Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2015). Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. Journal of functional foods, 18, 1070-1085. https://doi.org/10.1016/ j.jff.2014.05.020.
  • Gök, H. N., Orhan, N., Özüpek, B., Pekacar, S., Selvi, Ş. N., & Orhan, D. D. (2021). Standardization of Juniperus macrocarpa Sibt. & Sm. and Juniperus excelsa M. Bieb. Extracts with Carbohydrate Digestive Enzyme Inhibitory and Antioxidant Activities. Iranian journal of pharmaceutical research : IJPR, 20(3), 441–455. https://doi.org/ 10.22037/ijpr.2021.114838.15055.
  • Hamamcıoğlu, A. C. (2017). Diyabette oksidatif stres ve antioksidanların rolü. Türkiye Diyabet ve Obezite Dergisi, 1(1), 7-13.
  • Ilić, T., Dodevska, M., Marčetić, M., Božić, D., Kodranov, I., & Vidović, B. (2020). Chemical Characterization, Antioxidant and Antimicrobial Properties of Goji Berries Cultivated in Serbia. Foods (Basel, Switzerland), 9(11), 1614. https://doi.org/10.3390/foods9111614.
  • Islam, T., Yu, X., Badwal, T. S., & Xu, B. (2017). Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chemistry Central journal, 11(1), 59. https://doi.org/10.1186/s13065-017-0287-z.
  • Jung, H. A., Jin, S. E., Choi, R. J., Manh, H. T., Kim, Y. S., Min, B. S., Son, Y. K., Ahn, B. R., Kim, B. W., Sohn, H. S., & Choi, J. S. (2011). Anti-tumorigenic activity of sophoflavescenol against Lewis lung carcinoma in vitro and in vivo. Archives of pharmacal research, 34(12), 2087–2099. https://doi.org/10.1007/s12272-011-1212-y.
  • Kosalec, I., Bakmaz, M., Pepeljnjak, S., & Vladimir-Knezević, S. (2004). Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta pharmaceutica (Zagreb, Croatia), 54(1), 65–72.
  • Kulczyński, B., & Gramza-Michałowska, A. (2016). Goji berry (Lycium barbarum): composition and health effects–a review. Polish Journal of Food and Nutrition Sciences, 66(2), 67-75. https://doi.org/ 10.1515/pjfns-2015-0040.
  • Lee, Y. M., Kim, Y. S., Lee, Y., Kim, J., Sun, H., Kim, J. H., & Kim, J. S. (2012). Inhibitory activities of pancreatic lipase and phosphodiesterase from Korean medicinal plant extracts. Phytotherapy research : PTR, 26(5), 778–782. https://doi.org/ 10.1002/ptr.3644.
  • Lei, Z., Chen, X., Cao, F., Guo, Q., & Wang, J. (2021). Phytochemicals and bioactivities of Goji (Lycium barbarum L. and Lycium chinense Mill.) leaves and their potential applications in the food industry: a review. International Journal of Food Science & Technology, 57(3), 1451–1461. https://doi.org/ 10.1111/ijfs.15507.
  • Orhan, N., Deliorman Orhan, D., Gökbulut, A., Aslan, M., & Ergun, F. (2017). Comparative Analysis of Chemical Profile, Antioxidant, In-vitro and In-vivo Antidiabetic Activities of Juniperus foetidissima Willd. and Juniperus sabina L. Iranian journal of pharmaceutical research: IJPR, 16(Suppl), 64–74.
  • Özdogan, E., Özdogan, O., Altunoglu, E. G., & Köksal, A. R. (2015). Tip 2 Diyabet Hastalarinda Kan Lipid Düzeylerinin Hba1c ve Obezite ile Iliskisi. Şişli Etfal Hastanesi Tip Bülteni, 49(4), 248-254. https://doi.org/10.5350/SEMB.20150903125636.
  • Magalhães, V., Silva, A. R., Silva, B., Zhang, X., & Dias, A. C. (2022). Comparative studies on the anti-neuroinflammatory and antioxidant activities of black and red goji berries. Journal of Functional Foods, 92, 105038. https://doi.org/10.1016/j.jff. 2022.105038.
  • Miao, M., & Xiang, L. (2020). Pharmacological action and potential targets of chlorogenic acid. Advances in pharmacology (San Diego, Calif.), 87, 71–88. https://doi.org/10.1016/bs.apha.2019.12.002.
  • Mocan, A., Vlase, L., Vodnar, D. C., Bischin, C., Hanganu, D., Gheldiu, A. M., Oprean, R., Silaghi-Dumitrescu, R., & Crișan, G. (2014). Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules (Basel, Switzerland), 19(7), 10056–10073. https://doi.org/10.3390/molecules 190710056.
  • Mocan, A., Moldovan, C., Zengin, G., Bender, O., Locatelli, M., Simirgiotis, M., Atalay, A., Vodnar, D. C., Rohn, S., & Crișan, G. (2018). UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 115, 414–424. https://doi.org/ 10.1016/j.fct.2018.01.054.
  • Ngamukote, S., Mäkynen, K., Thilawech, T., & Adisakwattana, S. (2011). Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules (Basel, Switzerland), 16(6), 5054–5061. https://doi.org/10.3390/molecules16065054.
  • Nikolova, M., Alexandrov, A., & Iliev, I. (2018). Alpha-glucosidase inhibitory effect and antioxidant properties of different extracts from Lycium barbarum L. Journal of BioScience and Biotechnology, 7(2-3), 91-95.
  • Pollini, L., Riccio, A., Juan, C., Tringaniello, C., Ianni, F., Blasi, F., Mañes, J., Macchiarulo, A., & Cossignani, L. (2020). Phenolic acids from Lycium barbarum leaves: In vitro and in silico studies of the inhibitory activity against porcine pancreatic α-amylase. Processes, 8(11), 1388. https://doi.org/ 10.3390/pr8111388.
  • Skenderidis, P., Kerasioti, E., Karkanta, E., Stagos, D., Kouretas, D., Petrotos, K., Hadjichristodoulou, C., & Tsakalof, A. (2018). Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation. Toxicology reports, 5, 251–257. https://doi.org/10.1016/ j.toxrep.2018.02.001.
  • Tian, X., Liang, T., Liu, Y., Ding, G., Zhang, F., & Ma, Z. (2019). Extraction, Structural Characterization, and Biological Functions of Lycium barbarum Polysaccharides: A Review. Biomolecules, 9(9), 389. https://doi.org/ 10.3390/biom9090389.
  • Wojdyło, A., Nowicka, P., & Bąbelewski, P. (2018). Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. Journal of functional foods, 48, 632-642. https://doi.org/10.1016/j.jff.2018.07. 061.
  • Yalın, H., Demir, H. G., & Olgun, N. (2011). Diyabetle mücadelede diyabet risklerinin belirlenmesi ve tanılama. The Journal of Turkish Family Physician, 2(2), 41-49.
  • Zhou, B., Xia, H., Yang, L., Wang, S., & Sun, G. (2022). The Effect of Lycium barbarum Polysaccharide on the Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. Journal of the American Nutrition Association, 41(6), 618–626. https://doi.org/10.1080/07315724.2021.1925996.
  • Zongo, C., Savadogo, A., Ouattara, L., Bassole, I. H. N., Ouattara, C. A. T., Ouattara, A. S., Barro, N., Koudou, J., & Traore, A.S. (2010). Polyphenols content, antioxidant and antimicrobial activities of Ampelocissus grantii (Baker) Planch. (Vitaceae): a medicinal plant from Burkina Faso, International Journal of Pharmacology, 6(6), 880-887.
There are 29 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Burçin Özüpek 0000-0003-2159-9860

Sultan Pekacar 0000-0002-7782-9832

Didem Deliorman Orhan 0000-0003-3916-4048

Early Pub Date October 13, 2023
Publication Date February 28, 2024
Submission Date November 7, 2022
Acceptance Date June 8, 2023
Published in Issue Year 2024Volume: 27 Issue: 1

Cite

APA Özüpek, B., Pekacar, S., & Deliorman Orhan, D. (2024). Standardization of Infusion of Lycium barbarum Grown by Organic Farming Methods and Enzyme Inhibitory and Antioxidant Activities. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(1), 26-37. https://doi.org/10.18016/ksutarimdoga.vi.1200718


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149