Research Article
BibTex RIS Cite

Determination of the Effects of Different Irrigation Strategies on Leaf Osmotic Potential and K and Ca Ion Concentrations in Red Pepper with Furrow and Drip Irrigation Methods

Year 2024, Volume: 27 Issue: 1, 130 - 140, 28.02.2024
https://doi.org/10.18016/ksutarimdoga.vi.1278764

Abstract

A study was managed to identify the water stress effect on marketable yield, osmatic potential, and potassium (K) and calcium (Ca) ions for drip and furrow irrigated processing red pepper in the 2010 and 2011 growing seasons in Tarsus, Turkey. The treatments for drip irrigation; comprise full irrigation (DFI1.0), deficit irrigation DDI0.75, DPRD0.5, DFPRD0.5, and DDI0.5; for furrow irrigation; full irrigation (FFI1.0), fix alternative furrow (FAF0.5) and PRD furrow (FPRD0.5). FAF0.5 and FPRD0.5 received 50 % of the water applied to FFI1.0. In FAF0.5 the same furrows were irrigated while in FPRD0.5 irrigated alternately. Irrigation methods and irrigation levels had a remarkable effect on the total yield of red pepper in both experimental years. Drip irrigation treatments manufactured higher red pepper yields than the furrow irrigation treatments. The maximum yield in the drip irrigation system was acquired from the DFI1.0 treatment followed by DDI0.75, DDI0.5, and DFPRD0.5 treatments. Though DPRD0.5, DFPRD0.5, and DDI0.5 applied the same amount of water, DPRD0.5 resulted in a higher yield. In furrow treatments, FFI1.0 resulted in the highest yield followed by FPRD0.5 and FAF0.5. Water use efficiency (WUE) diminished with increasing the water amount for drip and furrow irrigation methods. While lower osmotic potential values were measured in full irrigation treatments in furrow and drip irrigation plots, higher osmotic potential values were determined in treatments where water stress was determined in both years. In both drip and furrow irrigation, the lowest Ca (%) values were obtained in full irrigation, while the highest Ca values were obtained in limited irrigation with water stress in the 2010 and 2011 years. K ion values were generally similar in the first and fourth pepper harvests in drip and furrow irrigation.

References

  • Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration–Guidelines for Computing Crop Water Requirements. FAO irrigation and drainage. Paper, No. 56, Rome.
  • Alvarez, S., Gomez-Bellot, M.J., Castillo, M., & Banon, S. (2012). Osmotic and saline effect on growth, water relations, and ion uptake and translocation in Phlomis purpurea plants. Environmental and Experimental Botany 78, 138–145.
  • Amjad, M., Akhtar, J., Anwar-ul-Haq, M., Ahmad, R., & Zaid, M. (2014). Characterization of comparative response of fifteen tomato (Lycopersicon esculentum Mill.) genotypes to NaCl stress. Journal of Agricultural Science and Technology 16(4), 851-862.
  • Costa, J.M., Ortuno, M.F., & Chaves, M.M. (2007). Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology 49, 1421–1434.
  • Dasgan, H.Y., Kusvuran, S., & Kırda, C. (2009). Effects of short duration partial rootzone drying on soilless grown tomato crop. J. of Food, Agriculture and Environment, 7(1), 83-91.
  • Dodd, I.C. (2009). Rhizosphere manipulations to maximize ‘crop per drop’ during deficit irrigation. Journal of Experimental Botany 60, 2454-2459.
  • García-Tejera, O., López-Bernal, Á., Orgaz, F., Testi, L., & Villalobos, F.J. (2021). The pitfalls of water potential for irrigation scheduling. Agricultural Water Management 243(1), 106522.
  • Lian, H.L., Yu, X., Ye, Q., Ding, X.S., Kitagawa, Y., Kwak, S.S., & Tang, Z.C. (2004). The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology 45(4), 481-489.
  • Liu, F., Shahnazari, A., Andersen, M.N., Jacobsen, S.E., & Jensen, C.R. (2006). Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signaling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany 57, 3727-3735.
  • Marín‐de la Rosa, N., Lin, C.W., Kang, Y.J., Dhondt, S., Gonzalez, N., Inzé, D., & Falter‐Braun, P. (2019). Drought resistance is mediated by divergent strategies in closely related Brassicaceae. New Phytologist 223(2), 783-797.
  • Marschner, H. (2012). Marschner’s Mineral Nutrition of Higher Plants. Cambridge, MA: Academic press. Mete, C. (1988). Tarsus koşullarında universal denklemin K, R, C ve P faktörleri (Ara Rapor). Köy Hiz. Araş. Enst. Müd. Yay. Gen. Yay. No:145, Rap. Ser. No:84, Tarsus.
  • Mingo, D.M., Theobald, J.C., Bacon, M.A., Davies, W.J., & Dodd, I.C. (2004). Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology 31(10), 971-978.
  • Mingo, D.M., Theobald, J.C., Bacon, M.A., Davies, W.J., & Dodd, I.C. (2004). Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology 31, 971–978.
  • Mousavi, S.F., Soltani-Gerdefaramarzi, S., & Mostafazadeh-Fard, B. (2010). Effects of partial rootzone drying on yield, yield components, and irrigation water use efficiency of canola (Brassica napus L.). Paddy and Water Environment 8, 157-163.
  • Mullet, J.E., & Whitsitt, M.S. (1996). Plant cellular responses to water deficit. Plant Growth Regulation 20, 119-124.
  • Oosterhuis, D., Loka, D., Kawakami, E., & Pettigrew, W. (2014). The physiology of potassium in crop production. Advances in Agronomy 126, 203–234.
  • Penella, C., & Calatayud, A. (2018). Pepper crop under climate change: Grafting as an environmental friendly strategy. Climate Resilient Agriculture: Strategies and Perspectives. IntechOpen, London, 129-155.
  • Saleh, B. (2012). Salt stress alters physiological indicators in cotton (Gossypium hirsutum L.). Soil & Environment 31(2).
  • Salk, A., Deveci, M, Arın, L., & Polat, S. (2008). Biber yetiştiriciliği. Özel Sebzecilik, (Onur Matbaa, İstanbul, ISBN 978-9944-07886-0-3) 315-329s.
  • Schachtman, D.P., & Goodger, J.Q. (2008). Chemical root to shoot signaling under drought. Trends in Plant Science 13(6), 281-287.
  • Serret, M.D., Yousfi, S., Vicente, R., Piñero, M.C., Otálora-Alcón, G., Del Amor, F.M., & Araus, J.L. (2018). Interactive effects of CO2 concentration and water regime on stable isotope signatures, nitrogen assimilation and growth in sweet pepper. Frontiers in Plant Science 8, 2180.
  • Sezen, S.M., Yazar, A., & Eker, S. (2006). Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agricultural Water Management 81(1), 115–131.
  • Sezen, S.M., Yazar A., Kara, O., Tekin, S., Yıldız, M., Yucel, S., Konuşkan, D., Alac, V., Kurt, C., Subaşı, S., & Colak, Y.B. (2017). Determination of Optimum Irrigation Programand Effect of Deficit Irrigation Strategies on Yield and Quality of Peanut Irrigated With Drip System Under the Eastern Mediterranean Climatic Conditions. The Republic of Turkey Ministry of Food Agriculture, General Directorate of Agricultural Research and Policies. Project No. TAGEM/TSKAD/14/A13/P02/06, final report156 p.
  • Sezen, S.M., Yazar, A., Dasgan, Y., Yucel, S., Akyildiz, A., Tekin, S., & Akhoundnejad, Y. (2014). Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agricultural Water Management 143, 59-70.
  • Sezen, S.M., Yazar, A., & Tekin, S. (2019). Physiological response of red pepper to different irrigation regimes under drip irrigation in the Mediterranean region of Turkey. Scientia Horticulturae 245, 280-288.
  • Shabala, S., & Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum 133, 651–669.
  • Su, F., Li, Y., Liu, S., Liu, Z., Nie, S., Xu, Q., & Xu, H.L. (2020). Application of xerophytophysiology and signal transduction in plant production: partial root-zone drying in potato crops. Potato Research 63, 41-56.
  • Turner, P., & Buirchell, F. (2007). Physiological responses of lupin genotypes to terminal drought in a Mediterranean type environment. Annual of Applied Biology 150(3), 269-279.
  • Walker, R.R., Read, P.E., & Blackmore, D.H. (2000). Rootstock and salinity effects on rates of berry maturation, ion accumulation and color development in Shiraz grapes. Australian Journal of Grape and Wine Research 6, 227–239.
  • White, P.J., & Karley, A.J. (2010). Potassium Cell Biology of Metals and Nutrients. Berlin: Springer, 199–224.

Karık ve Damla Sulama Yöntemleriyle Kırmızı Biberde Farklı Sulama Stratejilerinin Yaprak Osmotik Potansiyeli ile K ve Ca İyon Konsantrasyonları Üzerine Etkilerinin Belirlenmesi

Year 2024, Volume: 27 Issue: 1, 130 - 140, 28.02.2024
https://doi.org/10.18016/ksutarimdoga.vi.1278764

Abstract

Tarsus, Türkiye'de 2010 ve 2011 yetiştirme sezonlarında damla ve karık sulama ile kırmızı biberin pazarlanabilir verim, osmatik potansiyel ve potasyum (K) ve kalsiyum (Ca) iyonları üzerindeki su stresi etkisini belirlemek için bir çalışma gerçekleştirildi. Damla sulama konuları; tam sulama (DFI1.0), kısınıtlı sulama DDI0.75, DPRD0.5, DFPRD0.5 ve DDI0.5'ten oluşurken; karık sulama konuları; tam sulama (FFI1.0), sabit alternatif karık (FAF0.5) ve PRD karık (FPRD0.5)'tan oluşmaktadır. FAF0.5 ve FPRD0.5, FFI1.0 'a uygulanan suyun %50'sini almıştır. FAF0.5' konusunda aynı karıklar, FPRD0.5'te dönüşümlü olarak karıklar sulanmıştır. Sulama yöntemleri ve sulama seviyeleri, her iki deneme yılında da toplam kırmızı biber verimi üzerinde dikkate değer bir etkiye sahip olmuştur. Damla sulama konuları karık sulama konularına göre daha yüksek kırmızı biber verimi sağlamıştır. Damla sulama sisteminde en yüksek verim DFI1.0 konusundan alınırken, ardından DDI0.75, DDI0.5 ve DFPRD0.5 konuları izlemiştir. DPRD0.5, DFPRD0.5 ve DDI0.5 konularına aynı miktarda sulama suyu miktarı uygulansa da, DPRD0.5 konusunda daha yüksek verimle sonuçlanmıştır. Karık uygulamalarında FFI1.0 en yüksek verimle sonuçlanırken, bu konuyu FPRD0.5 ve FAF0.5 konualrı izlemiştir. Damla ve karık sulama yöntemlerinde su miktarı arttıkça su kullanım etkinliği (WUE) azalmıştır. Karık ve damla sulama parsellerinde yer alan tam sulama konusunda daha düşük ozmotik potansiyel değerleri ölçülürken, her iki yılda da su stresinin belirlendiği uygulamalarda daha yüksek ozmotik potansiyel değerleri belirlenmiştir. 2010 ve 2011 yıllarında hem damla hem de karık sulamada en düşük Ca (%) değerleri tam sulamada elde edilirken, en yüksek Ca değerleri su stresi yaşanan kısıntılı sulama konularında elde edilmiştir. Damla ve karık sulamada birinci ve dördüncü biber hasadında K iyon değerleri genel olarak benzer olmuştur.

References

  • Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration–Guidelines for Computing Crop Water Requirements. FAO irrigation and drainage. Paper, No. 56, Rome.
  • Alvarez, S., Gomez-Bellot, M.J., Castillo, M., & Banon, S. (2012). Osmotic and saline effect on growth, water relations, and ion uptake and translocation in Phlomis purpurea plants. Environmental and Experimental Botany 78, 138–145.
  • Amjad, M., Akhtar, J., Anwar-ul-Haq, M., Ahmad, R., & Zaid, M. (2014). Characterization of comparative response of fifteen tomato (Lycopersicon esculentum Mill.) genotypes to NaCl stress. Journal of Agricultural Science and Technology 16(4), 851-862.
  • Costa, J.M., Ortuno, M.F., & Chaves, M.M. (2007). Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology 49, 1421–1434.
  • Dasgan, H.Y., Kusvuran, S., & Kırda, C. (2009). Effects of short duration partial rootzone drying on soilless grown tomato crop. J. of Food, Agriculture and Environment, 7(1), 83-91.
  • Dodd, I.C. (2009). Rhizosphere manipulations to maximize ‘crop per drop’ during deficit irrigation. Journal of Experimental Botany 60, 2454-2459.
  • García-Tejera, O., López-Bernal, Á., Orgaz, F., Testi, L., & Villalobos, F.J. (2021). The pitfalls of water potential for irrigation scheduling. Agricultural Water Management 243(1), 106522.
  • Lian, H.L., Yu, X., Ye, Q., Ding, X.S., Kitagawa, Y., Kwak, S.S., & Tang, Z.C. (2004). The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology 45(4), 481-489.
  • Liu, F., Shahnazari, A., Andersen, M.N., Jacobsen, S.E., & Jensen, C.R. (2006). Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signaling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany 57, 3727-3735.
  • Marín‐de la Rosa, N., Lin, C.W., Kang, Y.J., Dhondt, S., Gonzalez, N., Inzé, D., & Falter‐Braun, P. (2019). Drought resistance is mediated by divergent strategies in closely related Brassicaceae. New Phytologist 223(2), 783-797.
  • Marschner, H. (2012). Marschner’s Mineral Nutrition of Higher Plants. Cambridge, MA: Academic press. Mete, C. (1988). Tarsus koşullarında universal denklemin K, R, C ve P faktörleri (Ara Rapor). Köy Hiz. Araş. Enst. Müd. Yay. Gen. Yay. No:145, Rap. Ser. No:84, Tarsus.
  • Mingo, D.M., Theobald, J.C., Bacon, M.A., Davies, W.J., & Dodd, I.C. (2004). Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology 31(10), 971-978.
  • Mingo, D.M., Theobald, J.C., Bacon, M.A., Davies, W.J., & Dodd, I.C. (2004). Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology 31, 971–978.
  • Mousavi, S.F., Soltani-Gerdefaramarzi, S., & Mostafazadeh-Fard, B. (2010). Effects of partial rootzone drying on yield, yield components, and irrigation water use efficiency of canola (Brassica napus L.). Paddy and Water Environment 8, 157-163.
  • Mullet, J.E., & Whitsitt, M.S. (1996). Plant cellular responses to water deficit. Plant Growth Regulation 20, 119-124.
  • Oosterhuis, D., Loka, D., Kawakami, E., & Pettigrew, W. (2014). The physiology of potassium in crop production. Advances in Agronomy 126, 203–234.
  • Penella, C., & Calatayud, A. (2018). Pepper crop under climate change: Grafting as an environmental friendly strategy. Climate Resilient Agriculture: Strategies and Perspectives. IntechOpen, London, 129-155.
  • Saleh, B. (2012). Salt stress alters physiological indicators in cotton (Gossypium hirsutum L.). Soil & Environment 31(2).
  • Salk, A., Deveci, M, Arın, L., & Polat, S. (2008). Biber yetiştiriciliği. Özel Sebzecilik, (Onur Matbaa, İstanbul, ISBN 978-9944-07886-0-3) 315-329s.
  • Schachtman, D.P., & Goodger, J.Q. (2008). Chemical root to shoot signaling under drought. Trends in Plant Science 13(6), 281-287.
  • Serret, M.D., Yousfi, S., Vicente, R., Piñero, M.C., Otálora-Alcón, G., Del Amor, F.M., & Araus, J.L. (2018). Interactive effects of CO2 concentration and water regime on stable isotope signatures, nitrogen assimilation and growth in sweet pepper. Frontiers in Plant Science 8, 2180.
  • Sezen, S.M., Yazar, A., & Eker, S. (2006). Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agricultural Water Management 81(1), 115–131.
  • Sezen, S.M., Yazar A., Kara, O., Tekin, S., Yıldız, M., Yucel, S., Konuşkan, D., Alac, V., Kurt, C., Subaşı, S., & Colak, Y.B. (2017). Determination of Optimum Irrigation Programand Effect of Deficit Irrigation Strategies on Yield and Quality of Peanut Irrigated With Drip System Under the Eastern Mediterranean Climatic Conditions. The Republic of Turkey Ministry of Food Agriculture, General Directorate of Agricultural Research and Policies. Project No. TAGEM/TSKAD/14/A13/P02/06, final report156 p.
  • Sezen, S.M., Yazar, A., Dasgan, Y., Yucel, S., Akyildiz, A., Tekin, S., & Akhoundnejad, Y. (2014). Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agricultural Water Management 143, 59-70.
  • Sezen, S.M., Yazar, A., & Tekin, S. (2019). Physiological response of red pepper to different irrigation regimes under drip irrigation in the Mediterranean region of Turkey. Scientia Horticulturae 245, 280-288.
  • Shabala, S., & Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum 133, 651–669.
  • Su, F., Li, Y., Liu, S., Liu, Z., Nie, S., Xu, Q., & Xu, H.L. (2020). Application of xerophytophysiology and signal transduction in plant production: partial root-zone drying in potato crops. Potato Research 63, 41-56.
  • Turner, P., & Buirchell, F. (2007). Physiological responses of lupin genotypes to terminal drought in a Mediterranean type environment. Annual of Applied Biology 150(3), 269-279.
  • Walker, R.R., Read, P.E., & Blackmore, D.H. (2000). Rootstock and salinity effects on rates of berry maturation, ion accumulation and color development in Shiraz grapes. Australian Journal of Grape and Wine Research 6, 227–239.
  • White, P.J., & Karley, A.J. (2010). Potassium Cell Biology of Metals and Nutrients. Berlin: Springer, 199–224.
There are 30 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Yelderem Akhoundnejad 0000-0002-1435-864X

Semih Metin Sezen 0000-0002-5008-9977

Hayriye Yıldız Daşgan 0000-0002-0403-1627

Early Pub Date October 13, 2023
Publication Date February 28, 2024
Submission Date April 7, 2023
Acceptance Date June 4, 2023
Published in Issue Year 2024Volume: 27 Issue: 1

Cite

APA Akhoundnejad, Y., Sezen, S. M., & Daşgan, H. Y. (2024). Determination of the Effects of Different Irrigation Strategies on Leaf Osmotic Potential and K and Ca Ion Concentrations in Red Pepper with Furrow and Drip Irrigation Methods. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(1), 130-140. https://doi.org/10.18016/ksutarimdoga.vi.1278764


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149