Research Article
BibTex RIS Cite

In vitro Determination of Salt Stress Responses of OH×F 333 and OH×F 97 Pear Clonal Rootstocks

Year 2024, Volume: 27 Issue: 4, 817 - 827, 15.08.2024
https://doi.org/10.18016/ksutarimdoga.vi.1354060

Abstract

In this study, the responses of OH×F 333 and OH×F 97 pear clonal rootstocks to salt stress were investigated. For this purpose, in vitro, plants of OH×F 333 and OH×F 97 pear clonal rootstocks were cultured in ½ MS medium containing different concentrations of salt (0, 50, 100, 150, and 200 mM NaCl). To adapt the plants to salt stress, the doses of NaCl added to the medium were gradually increased at weekly intervals. In the experiment, in parallel with the increasing salt stress, the regeneration rate and shoot number values decreased, while the degree of damage increased significantly. It was determined that most of the shoots died in the application of 200 mM NaCl. When the effects of different salt concentrations on biochemical parameters were examined, it was determined that total phenolics, total flavonoids, proline, and soluble protein contents decreased, while lipid peroxidation increased in parallel with salt concentrations. However, it was determined that there was an increase in the total phenolic and flavonoid contents in 150 mM NaCl application.

Ethical Statement

Araştırma etik kurul

Project Number

2021-YL1-0123

References

  • Aydınlı, M. (2021). Armut Yetiştiriciliğinde Kullanılan Farklı Anaçların Tuzluluğa Toleranslarının Morfolojik, Fizyolojik ve Biyokimyasal Parametreler ile İncelenmesi (Tez no 700258). [Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü Bahçe Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Bekheet, S. A., Taha, H. S., & Solliman, M. E. (2006). Salt tolerance in tissue culture of onion (Allium cepa L.). Arab Journal Biotechnology, 9(3), 467-476.
  • Ben Ahmed, C., Rouina, B. B., & Boukhris, M. (2008). Changes in water relations, photosynthetic activity, and proline accumulation in one-year-old olive trees (Olea europaea L. cv. Chemlali) in response to NaCl salinity. Acta Physiologiae Plantarum, 30(4), 553-560. DOI: 10.1007/s11738-008-0154-6
  • Bourgou, S., Ksouri, R., Bellila, A., Skandrani, I., Falleh, H., & Marzouk, B. (2008). Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comptes, Rendus Biologies, 331(1), 48-55. https://doi.org/10.1016/ j.crvi.2007.11.001
  • Çalhan, G. (2020). Mersin (Myrtus communis L.) Genotiplerinin Tuz Stresine Tolerans Seviyelerinin In Vitro Koşullarda Belirlenmesi (Tez no 633153). [Yüksek Lisans Tezi, Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü Bahçe Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Dajic, Z. (2006). Salt stress. In K.V Madhava Rao, A.S. Raghavendra, K. Janardhan Reddy (Eds.), Physiology and Molecular Biology of Stress Tolerance in Plants, Springer Link Publishing.
  • Ertürk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Özdemir, F., & Türkan, İ. (2007). Responses of the cherry rootstock to salinity in vitro. Biologia Plantarum, 51(3), 597-600. https://doi.org/10.1007/ s10535-007-0132-7
  • Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S., & Changhai, W. (2015). Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products, 64, 175-181. https://doi.org/10.1016/j.indcrop.2014.10.058
  • Gong, Z. (2021). Plant abiotic stress: New insights into the factors that activate and modulate plant responses. Journal Integrative Plant Biology., 63, 429. https://doi.org/10.1111/jipb.13079
  • Hacıkamiloğlu, M. S. (2023). Karadeniz Bölgesindeki Bazı Aspir (Carthamus spp.) Türlerinin Taksonomik, Fenolojik, Ekolojik ve Tarımsal Özelliklerinin Belirlenmesi (Tez no 798386). [Doktora Tezi, Ondokuz Mayıs Üniversitesi Lisansüstü Eğitim Enstitüsü Tarla Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481-504. https://doi.org/10.1016/S0031-9422(00) 00235-1
  • Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422-427. https://doi.org/ 10.1016/0003-2697 (72) 90094-2
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643- 9684. https://doi.org/10.3390/ijms14059643
  • Hayaloğlu, P. (2018). İklim değişikliğinin tarım sektörü ve ekonomik büyüme üzerindeki etkileri. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 9(25), 51-62.
  • Javadisaber, J., Dumanoğlu, H., Şahin, Ö., Sarıkamış, G., Ergül, A., Çakır Aydemir, B. (2024). Salt stress tolerance of Pyrus spp. and Cydonia oblonga genotypes assessed by morphological, biochemical, and dehydrin gene expression analysis. Journal of Plant Growth Regulation, 43, 165–177. https://doi.org/10.1007/s00344-023-11071-3
  • Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity, and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology, 56(3), 209-215. https://doi.org/ 10.1016/j.postharvbio.2010.01.011
  • Khalid, K., Jaime, A., & Teixeira da, S. (2010). Yield, essential oil, and pigment content of Calendula officinalis L. flower heads cultivated under salt stress conditions. Scientia Horticulturae, 126(2), 297-305. https://doi.org/10.1016/j.scienta.2010.07. 023
  • Kim, J., Liu, Y., Zhang, X., Zhao, X., & Childs, K. L. (2016). Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiology and Biochemistry, 105, 203-212. https://doi.org/10.1016/j.plaphy.2016.04.020
  • Koç, A., & Yakupoğlu, T. (2022). The effect of farm manure on yield and some soil properties in a pear garden in Yozgat. KSU J. Agric Nat 25 (Suppl 1), 180-191. https://doi.org/10.18016/ksutarimdoga.vi. 959149
  • Krasensky, J. & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608. https:// doi.org/10.1093/jxb/err460
  • Kuşvuran, S., Yasar, F., Abak, K., & Ellialtıoğlu, S. (2008). Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler. Yüzüncü Yıl Üniversitesi Ziraat Fakültesi, Tarım Bilimleri Dergisi, 18 (1), 13-20.
  • Li, Z. Zhou, M. Hu, Q. Reighard, S. Yuan, S., Yuan, N., San, B., Li, D. Jia, H., & Luo, H. (2012). Manipulating expression of tonoplast transporters. In S. Shabala & T. A. Cuin (Eds.), Plant Salt Tolerance: Methods and Protocols, Methods in Molecular Biology, vol. 913. Humana Press, Totowa, New Jersey, USA
  • Mansour, M. M. F., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, 52-68. https://doi.org/10.1016/ j.phytochem.2017.04.016
  • Mathews, P. G. (2004). Design of experiments with MINITAB. American Society for Quality, Quality Press, Milwaukee, Wisconsin, USA
  • Matsumoto, K., Chun, J. P., Tamura, F., Kamamoto, Y., & Tanabe, K. (2006a). Salt tolerance in Pyrus species is linked to levels of Na and Cl translocation from roots to leaves. Journal of the Japanese Society for Horticultural Science, 75 (5): 385–391.
  • Matsumoto, K., Tamura, F., Chun, J. P., & Tanabe, K. (2006b). Native Mediterranean Pyrus rootstock, P. amygdaliformis, and P. elaeagrifolia present higher tolerance to salinity stress compared with Asian natives. Journal of the Japanese Society for Horticultural Science, 75 (6), 450–457.
  • Öztürk, K. (2002). Küresel iklim değişikliği ve Türkiye’ye olası etkileri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 22(1), 47-65
  • Parlak, M. & Özaslan Parlak, A. (2006), Sulama suyu tuzluluk düzeylerinin silajlık sorgumun (Sorghum bicolor L. Moench) verimine ve toprak tuzluluğuna etkisi. Tarım Bilimleri Dergisi, 12(1), 8-13. https://doi.org/10.1501/Tarimbil_0000000428
  • Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43. https://doi.org/ 10.1016/j.envexpbot.2012.01.007
  • Petropoulos, S. A., Levizou, E., Ntatsi, G., Fernandes, Â., Petrotos, K., Akoumianakis, K., Barros, L., & Ferreira, I. C. F. R. (2017). Salinity effect on nutritional value, chemical composition, and bioactive compounds content of Cichorium spinosum L. Food Chemistry, 214, 129-136. https://doi.org/10.1016/j.foodchem.2016.07.080
  • Rahman, A. E. M. F., Ansary, A. L., Rizkalla, A. A., & Badr-Elden, A. M. B. (2007). Micropropagation and biochemical genetic markers detection for drought and salt tolerance of pear rootstock. Australian Journal of Basic and Applied Sciences, 1(4), 625-636.
  • Shaheen, S., Naseer, S., Ashraf, M., & Akram, N. A. (2012). Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. Journal of Plant Interactions, 8(1), 85-96. https://doi.org/10.1080/ 17429145.2012.718376
  • Shiyab, S.M., Shibli, R.A., & Mohammad, M.M. (2003). Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro. Journal of Plant Nutrition, 26(5), 985–996. https://doi.org/10.1081/PLN-120020070
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. DOI: 10.5344/ajev.1965.16.3.144
  • Sivritepe, N., Ertürk, U., Yerlikaya, C., Türkan, İ., Bor, M., & Özdemir, F. (2008). Response of the cherry rootstocks to water stress ınduced in vitro. Biologia Plantarum, 52 (3), 573-576. https://doi.org/ 10.1007/s10535-008-0114-4
  • Sotiropoulos, T.E., Fotopoulos, S., Dimassi, K.N., & Tsirakoglou, V. (2006). Response of the pear rootstock to boron and salinity in vitro. Biologia Plantarum, 50, 779-781. https://doi.org/10.1007/ s10535-006-0130-1
  • Sotiropoulos, T.E., Therios, I.N., Tsirakoglou, V., & Dimassi, K.N. (2007). Response of the quince genotypes BA 29 and EMA used as pear rootstocks to boron and salinity. International Journal of Fruit Science, 6; 93-101. https://doi.org/10.1300/ J492v06n04_09
  • Şan, B., Karakurt, Y. & Dönmez, F. (2015). Effects of thidiazuron and activated charcoal on in vitro shoot proliferation and rooting of myrtle (Myrtus communis L.). Tarım Bilimleri Dergisi–Journal of Agricultural Sciences, 21, 177-183. https://doi.org/ 10.1501/Tarimbil_0000001319
  • Tanou, G., Molassiotis, A., & Diamantidis, G. (2009). Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environmental and Experimental Botany, 65, 270–281. https://doi.org/10.1016/j.envexpbot. 2008.09.005
  • Tuncel, T.E. & Şan, B. (2023). Micropropagation of pear clone rootstocks OHxF 97 and OHxF 333. Anadolu Journal of Agricultural Sciences, 38 (2), 315-330. https://doi.org/10.7161/omuanajas. 125 2461
  • Uyar, H. (2016). Hamburg misketi (V. vinifera L.) ve Isabella (V. labrusca) Üzüm Çeşitlerinin Tuz Stresine Toleranslarının Belirlenmesi (Tez no 446993). [Yüksek Lisans Tezi, Ordu Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol., 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
  • Wahid, A. & Ghazanfar, A. (2006). Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology, 163(7), 723-730. https://doi.org/10.1016/j.jplph. 2005.07.007
  • Wu, Q. S. & Zou, Y. N. (2009). Adaptive Responses of Birch-Leaved Pear (Pyrus betulaefolia) Seedlings to Salinity Stress. Notulae Botanicae Horti Agrobotanici ClujNapoca, 37(1), 133-138. https://doi.org/10.15835/nbha3713109
  • Ye, Z., Rodriguez, R., Tran, A., Hoanh, H., Los Santos, D. D., Brown, S., & Vellanoweth. (2000). The developmental transition to flowering represses ascorbate peroxidation activity and reduces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science, 158, 115-127. https://doi.org/10.1016/S0168-9452(00)00316-2
  • Yıldırım, A.N., Şan, B., Yıldırım, F., Çelik, C., Bayar, B., & Karakurt, Y. (2021). Physiological and biochemical responses of almond rootstocks to drought stress, Turkish Journal of Agriculture and Forestry, 45(4), 12. https://doi.org/10.3906/tar-2010-47
  • Zambi, H. (2019). Farklı NaCl Konsantrasyonlarının Bazı Bezelye (Pisum sativum) Çeşit ve Genotiplerinin Bitki Gelişimine Etkisi (Tez no 596269). [Yüksek Lisans Tezi, Ordu Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 4609. https://doi.org/10.3390/ijms22094609
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. https://doi.org/10.1016/S1360-1385(00)01838-0

OH×F 333 ve OH×F 97 Armut Klon Anaçlarının Tuz Stresine Tepkilerinin in vitro Koşullarda Belirlenmesi

Year 2024, Volume: 27 Issue: 4, 817 - 827, 15.08.2024
https://doi.org/10.18016/ksutarimdoga.vi.1354060

Abstract

Bu çalışmada OH×F 333 ve OH×F 97 armut klon anaçlarının tuz stresine gösterdiği tepkiler araştırılmıştır. Bu amaçla OH×F 333 ve OH×F 97 armut klon anaçlarının in vitro bitkileri kademeli olarak artırılan farklı konsantrasyonlarda tuz (0, 50, 100, 150 ve 200 mM NaCl) içeren ½ MS ortamında kültüre alınmıştır. Denemede in vitro koşullarda tuz konsantrasyonları arttıkça, rejenerasyon oranı ve sürgün sayısı değerleri azalmış, zararlanma derecesi ise önemli derecede artmıştır. 200 mM NaCl uygulamasında çoğu sürgünün canlılıklarını yitirdikleri tespit edilmiştir. Farklı tuz konsantrasyonlarının biyokimyasal parametreler üzerindeki etkisi incelendiğinde toplam fenolik madde, toplam flavonoid madde, prolin ve çözünebilir protein içeriklerinin azaldığı, lipid peroksidasyon içeriğinin ise tuz konsantrasyonlarına paralel şekilde arttığı belirlenmiştir. Ancak toplam fenolik ve flavonoid madde içeriklerinde 150 mM NaCl uygulamasında tekrar bir yükselişin olduğu tespit edilmiştir.

Ethical Statement

Araştırma etik kurul onayı gerektirmemektedir.

Supporting Institution

Isparta Uygulamalı Bilimler Üniversitesi, Bilimsel Araştırma Projeleri Yönetim Birimi

Project Number

2021-YL1-0123

References

  • Aydınlı, M. (2021). Armut Yetiştiriciliğinde Kullanılan Farklı Anaçların Tuzluluğa Toleranslarının Morfolojik, Fizyolojik ve Biyokimyasal Parametreler ile İncelenmesi (Tez no 700258). [Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü Bahçe Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Bekheet, S. A., Taha, H. S., & Solliman, M. E. (2006). Salt tolerance in tissue culture of onion (Allium cepa L.). Arab Journal Biotechnology, 9(3), 467-476.
  • Ben Ahmed, C., Rouina, B. B., & Boukhris, M. (2008). Changes in water relations, photosynthetic activity, and proline accumulation in one-year-old olive trees (Olea europaea L. cv. Chemlali) in response to NaCl salinity. Acta Physiologiae Plantarum, 30(4), 553-560. DOI: 10.1007/s11738-008-0154-6
  • Bourgou, S., Ksouri, R., Bellila, A., Skandrani, I., Falleh, H., & Marzouk, B. (2008). Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comptes, Rendus Biologies, 331(1), 48-55. https://doi.org/10.1016/ j.crvi.2007.11.001
  • Çalhan, G. (2020). Mersin (Myrtus communis L.) Genotiplerinin Tuz Stresine Tolerans Seviyelerinin In Vitro Koşullarda Belirlenmesi (Tez no 633153). [Yüksek Lisans Tezi, Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü Bahçe Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Dajic, Z. (2006). Salt stress. In K.V Madhava Rao, A.S. Raghavendra, K. Janardhan Reddy (Eds.), Physiology and Molecular Biology of Stress Tolerance in Plants, Springer Link Publishing.
  • Ertürk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Özdemir, F., & Türkan, İ. (2007). Responses of the cherry rootstock to salinity in vitro. Biologia Plantarum, 51(3), 597-600. https://doi.org/10.1007/ s10535-007-0132-7
  • Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S., & Changhai, W. (2015). Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products, 64, 175-181. https://doi.org/10.1016/j.indcrop.2014.10.058
  • Gong, Z. (2021). Plant abiotic stress: New insights into the factors that activate and modulate plant responses. Journal Integrative Plant Biology., 63, 429. https://doi.org/10.1111/jipb.13079
  • Hacıkamiloğlu, M. S. (2023). Karadeniz Bölgesindeki Bazı Aspir (Carthamus spp.) Türlerinin Taksonomik, Fenolojik, Ekolojik ve Tarımsal Özelliklerinin Belirlenmesi (Tez no 798386). [Doktora Tezi, Ondokuz Mayıs Üniversitesi Lisansüstü Eğitim Enstitüsü Tarla Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481-504. https://doi.org/10.1016/S0031-9422(00) 00235-1
  • Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422-427. https://doi.org/ 10.1016/0003-2697 (72) 90094-2
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643- 9684. https://doi.org/10.3390/ijms14059643
  • Hayaloğlu, P. (2018). İklim değişikliğinin tarım sektörü ve ekonomik büyüme üzerindeki etkileri. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 9(25), 51-62.
  • Javadisaber, J., Dumanoğlu, H., Şahin, Ö., Sarıkamış, G., Ergül, A., Çakır Aydemir, B. (2024). Salt stress tolerance of Pyrus spp. and Cydonia oblonga genotypes assessed by morphological, biochemical, and dehydrin gene expression analysis. Journal of Plant Growth Regulation, 43, 165–177. https://doi.org/10.1007/s00344-023-11071-3
  • Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity, and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology, 56(3), 209-215. https://doi.org/ 10.1016/j.postharvbio.2010.01.011
  • Khalid, K., Jaime, A., & Teixeira da, S. (2010). Yield, essential oil, and pigment content of Calendula officinalis L. flower heads cultivated under salt stress conditions. Scientia Horticulturae, 126(2), 297-305. https://doi.org/10.1016/j.scienta.2010.07. 023
  • Kim, J., Liu, Y., Zhang, X., Zhao, X., & Childs, K. L. (2016). Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiology and Biochemistry, 105, 203-212. https://doi.org/10.1016/j.plaphy.2016.04.020
  • Koç, A., & Yakupoğlu, T. (2022). The effect of farm manure on yield and some soil properties in a pear garden in Yozgat. KSU J. Agric Nat 25 (Suppl 1), 180-191. https://doi.org/10.18016/ksutarimdoga.vi. 959149
  • Krasensky, J. & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608. https:// doi.org/10.1093/jxb/err460
  • Kuşvuran, S., Yasar, F., Abak, K., & Ellialtıoğlu, S. (2008). Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler. Yüzüncü Yıl Üniversitesi Ziraat Fakültesi, Tarım Bilimleri Dergisi, 18 (1), 13-20.
  • Li, Z. Zhou, M. Hu, Q. Reighard, S. Yuan, S., Yuan, N., San, B., Li, D. Jia, H., & Luo, H. (2012). Manipulating expression of tonoplast transporters. In S. Shabala & T. A. Cuin (Eds.), Plant Salt Tolerance: Methods and Protocols, Methods in Molecular Biology, vol. 913. Humana Press, Totowa, New Jersey, USA
  • Mansour, M. M. F., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, 52-68. https://doi.org/10.1016/ j.phytochem.2017.04.016
  • Mathews, P. G. (2004). Design of experiments with MINITAB. American Society for Quality, Quality Press, Milwaukee, Wisconsin, USA
  • Matsumoto, K., Chun, J. P., Tamura, F., Kamamoto, Y., & Tanabe, K. (2006a). Salt tolerance in Pyrus species is linked to levels of Na and Cl translocation from roots to leaves. Journal of the Japanese Society for Horticultural Science, 75 (5): 385–391.
  • Matsumoto, K., Tamura, F., Chun, J. P., & Tanabe, K. (2006b). Native Mediterranean Pyrus rootstock, P. amygdaliformis, and P. elaeagrifolia present higher tolerance to salinity stress compared with Asian natives. Journal of the Japanese Society for Horticultural Science, 75 (6), 450–457.
  • Öztürk, K. (2002). Küresel iklim değişikliği ve Türkiye’ye olası etkileri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 22(1), 47-65
  • Parlak, M. & Özaslan Parlak, A. (2006), Sulama suyu tuzluluk düzeylerinin silajlık sorgumun (Sorghum bicolor L. Moench) verimine ve toprak tuzluluğuna etkisi. Tarım Bilimleri Dergisi, 12(1), 8-13. https://doi.org/10.1501/Tarimbil_0000000428
  • Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43. https://doi.org/ 10.1016/j.envexpbot.2012.01.007
  • Petropoulos, S. A., Levizou, E., Ntatsi, G., Fernandes, Â., Petrotos, K., Akoumianakis, K., Barros, L., & Ferreira, I. C. F. R. (2017). Salinity effect on nutritional value, chemical composition, and bioactive compounds content of Cichorium spinosum L. Food Chemistry, 214, 129-136. https://doi.org/10.1016/j.foodchem.2016.07.080
  • Rahman, A. E. M. F., Ansary, A. L., Rizkalla, A. A., & Badr-Elden, A. M. B. (2007). Micropropagation and biochemical genetic markers detection for drought and salt tolerance of pear rootstock. Australian Journal of Basic and Applied Sciences, 1(4), 625-636.
  • Shaheen, S., Naseer, S., Ashraf, M., & Akram, N. A. (2012). Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. Journal of Plant Interactions, 8(1), 85-96. https://doi.org/10.1080/ 17429145.2012.718376
  • Shiyab, S.M., Shibli, R.A., & Mohammad, M.M. (2003). Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro. Journal of Plant Nutrition, 26(5), 985–996. https://doi.org/10.1081/PLN-120020070
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. DOI: 10.5344/ajev.1965.16.3.144
  • Sivritepe, N., Ertürk, U., Yerlikaya, C., Türkan, İ., Bor, M., & Özdemir, F. (2008). Response of the cherry rootstocks to water stress ınduced in vitro. Biologia Plantarum, 52 (3), 573-576. https://doi.org/ 10.1007/s10535-008-0114-4
  • Sotiropoulos, T.E., Fotopoulos, S., Dimassi, K.N., & Tsirakoglou, V. (2006). Response of the pear rootstock to boron and salinity in vitro. Biologia Plantarum, 50, 779-781. https://doi.org/10.1007/ s10535-006-0130-1
  • Sotiropoulos, T.E., Therios, I.N., Tsirakoglou, V., & Dimassi, K.N. (2007). Response of the quince genotypes BA 29 and EMA used as pear rootstocks to boron and salinity. International Journal of Fruit Science, 6; 93-101. https://doi.org/10.1300/ J492v06n04_09
  • Şan, B., Karakurt, Y. & Dönmez, F. (2015). Effects of thidiazuron and activated charcoal on in vitro shoot proliferation and rooting of myrtle (Myrtus communis L.). Tarım Bilimleri Dergisi–Journal of Agricultural Sciences, 21, 177-183. https://doi.org/ 10.1501/Tarimbil_0000001319
  • Tanou, G., Molassiotis, A., & Diamantidis, G. (2009). Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environmental and Experimental Botany, 65, 270–281. https://doi.org/10.1016/j.envexpbot. 2008.09.005
  • Tuncel, T.E. & Şan, B. (2023). Micropropagation of pear clone rootstocks OHxF 97 and OHxF 333. Anadolu Journal of Agricultural Sciences, 38 (2), 315-330. https://doi.org/10.7161/omuanajas. 125 2461
  • Uyar, H. (2016). Hamburg misketi (V. vinifera L.) ve Isabella (V. labrusca) Üzüm Çeşitlerinin Tuz Stresine Toleranslarının Belirlenmesi (Tez no 446993). [Yüksek Lisans Tezi, Ordu Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol., 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
  • Wahid, A. & Ghazanfar, A. (2006). Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology, 163(7), 723-730. https://doi.org/10.1016/j.jplph. 2005.07.007
  • Wu, Q. S. & Zou, Y. N. (2009). Adaptive Responses of Birch-Leaved Pear (Pyrus betulaefolia) Seedlings to Salinity Stress. Notulae Botanicae Horti Agrobotanici ClujNapoca, 37(1), 133-138. https://doi.org/10.15835/nbha3713109
  • Ye, Z., Rodriguez, R., Tran, A., Hoanh, H., Los Santos, D. D., Brown, S., & Vellanoweth. (2000). The developmental transition to flowering represses ascorbate peroxidation activity and reduces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science, 158, 115-127. https://doi.org/10.1016/S0168-9452(00)00316-2
  • Yıldırım, A.N., Şan, B., Yıldırım, F., Çelik, C., Bayar, B., & Karakurt, Y. (2021). Physiological and biochemical responses of almond rootstocks to drought stress, Turkish Journal of Agriculture and Forestry, 45(4), 12. https://doi.org/10.3906/tar-2010-47
  • Zambi, H. (2019). Farklı NaCl Konsantrasyonlarının Bazı Bezelye (Pisum sativum) Çeşit ve Genotiplerinin Bitki Gelişimine Etkisi (Tez no 596269). [Yüksek Lisans Tezi, Ordu Üniversitesi Fen Bilimleri Enstitüsü Tarla Bitkileri Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 4609. https://doi.org/10.3390/ijms22094609
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. https://doi.org/10.1016/S1360-1385(00)01838-0
There are 50 citations in total.

Details

Primary Language English
Subjects Pomology and Treatment
Journal Section RESEARCH ARTICLE
Authors

Elif Uyduran 0009-0003-3781-2205

Bekir Şan 0000-0001-6483-8433

Project Number 2021-YL1-0123
Early Pub Date April 23, 2024
Publication Date August 15, 2024
Submission Date September 1, 2023
Acceptance Date December 3, 2023
Published in Issue Year 2024Volume: 27 Issue: 4

Cite

APA Uyduran, E., & Şan, B. (2024). In vitro Determination of Salt Stress Responses of OH×F 333 and OH×F 97 Pear Clonal Rootstocks. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(4), 817-827. https://doi.org/10.18016/ksutarimdoga.vi.1354060


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149