Research Article
BibTex RIS Cite

Effects of Different Water Stress Levels, Heterogeneity, and Location on Berry Phytochemical Properties in an Organic and Conventional Vineyard (Vitis vinifera cv. Cabernet-Sauvignon)

Year 2024, Volume: 27 Issue: 5, 1042 - 1054, 17.09.2024
https://doi.org/10.18016/ksutarimdoga.vi.1333996

Abstract

Investigate the effects of water stress on grape berry heterogeneity and composition in Cabernet-Sauvignon (Vitis vinifera L.) grapes under different farming practices (organic and conventional) based on soil structure and provide valuable information for the wine industry regarding quality. The research was conducted in two vineyards, one certified organic and the other following conventional practices. The experiment, designed with Split-Plot Experimental Design based on stress levels, was divided into two main plots, Organic and Conventional, and each of these plots was further divided into two subplots. The predawn leaf water potential results categorized the vines into two groups: those with values lower than -8 MPa and those above -8 MPa, which were labeled as Dryland-shallow soil and Baseland-deep soil, respectively, based on the location and soil type. During the harvest, grape clusters were collected and classified into three groups based on berry diameter (10mm-12mm, 12mm-14mm, 14mm-16mm). The results indicated that the 10mm-12mm berry size group generally exhibited the desired characteristics across all evaluated criteria. The total anthocyanin and total tannin content were higher in the 10mm-12mm berries from vines experiencing moderate stress (Stress 1), regardless of location. Additionally, the Dryland-shallow soil condition showed higher tannin content. On the other hand, grapes from high-stress vines displayed lower antioxidant values. The total polyphenol index content was higher in the organic vineyard. Based on the findings, it was suggested that to obtain high phytochemical compounds from Cabernet-Sauvignon grapes in the Tekirdağ region, cultivation should be carried out under Dryland-shallow soil conditions, where the predawn leaf water potential can drop as low as -0.8 MPa during the period between veraison and harvest. Moreover, berries between 10 mm and 12 mm might suit for this purpose.

Thanks

The authors express their gratitude to ŞatoNuzun Vineyard and Winery Llc. and Umurbey Vineyards Llc. for allowing us to conduct our research in their vineyards.

References

  • Bahar, E., Korkutal, I. & Kabatas, I.E. (2017). Periodic changes of leaf water potentials (Ψleaf) and cluster thinning applications depending on regulated irrigation ratios affect yield, shoot, and growing characteristics in cv. Sangiovese. Mediterranean Agricultural Sciences, 30 (2), 85-90. https:// dergipark.org.tr/en/pub/ Mediterranean /issue/ 30609/333539
  • Bellvert, J., Mata, M., Vallverdu, Paris, C. & Marsal, J. (2021). Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precision Agriculture, 22, 319-341. https://doi.org/10.1007/s11119-020-09718-2
  • Benmeziane, F. (2017). Hydrogen peroxide scavenging activity of grape (Vitis vinifera) methanolic extract. Food Research, 1 (2), 39-42. http://doi.org/ 10.26656/fr.2017.2.005
  • Blouin, J. & Guimberteau, G. (2000). Maturation et Maturite des Raisins. Editions Feret, Bordeaux, France. ISBN-10:2-902416-49-0. 168p.
  • Buchner, I., Medeiros, N., Lacerda, D., Normann, C., Gemelli, T., Rigon, P., Wannmacher, C., Henriques, J., Dani, C. & Funchal, C. (2014). Hepatoprotective and antioxidant potential of organic and conventional grape juices in rats fed a high-fat diet. Antioxidants, 3, 323-338. https://doi.org/ 10.3390/antiox3020323
  • Bunea, C.I., Pop, N., Babeş, A.C., Matea, C., Dulf, V.F. & Bunea, A. (2012). Carotenoids, total polyphenols, and antioxidant activity of grapes (Vitis vinifera L.) cultivated in organic and conventional systems. Chemistry Central Journal, 6, 66. https://doi.org/10.1186/1752-153X-6-66
  • Calderone, F., Vitale, A., Panebianco, S., Lombardo, M.F. & Cirvilleri, G. (2022). COS-OGA applications in organic vineyards manage major airborne diseases and maintain the postharvest quality of wine grapes. Plants, 11 (13), 1763. https://doi.org/ 10.3390/plants11131763
  • Candar, S., Açıkbaş, B., Korkutal, İ. & Bahar, E. (2021). Trakya Bölgesi şaraplık üzüm çeşitlerinde kısıntılı sulama uygulamalarının yaprak ve stoma morfolojik özelliklerine etkileri. KSU Tarım ve Doğa Dergisi, 24 (4), 766-776. https://doi.org/ 10.18016/ksutarimdoga.vi.738285
  • Carbonneau, A. (1998). Aspects Qualitatifs. 258-276. In: Tiercelin, J.R. (Eds.), Traite d’irrigation. Technique & Doc., Lavosier, Paris, France. p.1011. ISBN-10: 2743002441.
  • Carbonneau, A. & Bahar, E. (2009). Vine and berry response to contrasted water fluxes in ecotron around veraison. manipulation of berry shrivelling and consequences on berry growth, sugar loading, and maturation. 16th International GiESCO Symposium At the University of California, Davis. 12-15 July 2009. pp 145-155
  • Caruso, G., Palai, G., Gucci, R. & D’Onofrio, C. (2023). The effect of regulated deficit irrigation on growth, yield, and berry quality of grapevines (cv. Sangiovese) grafted on rootstocks with different resistance to water deficit. Irrigation Science, 41, 453–467. https://doi.org/10.1007/s00271-022-00773 -3
  • Cemeroğlu, B. (2007). Gıda Analizleri. Gıda Teknolojisi Derneği Yayınları. Ankara. No: 34.
  • Chen, W.K., He, F., Wang, Y.X., Liu, X., Duan, C.Q. & Wang, J. (2018). Influences of berry size on fruit composition and wine quality of Vitis vinifera L. cv. Cabernet Sauvignon grapes. South African Journal for Enology and Viticulture, 39. https://doi.org/ 10.21548/39-1-2439
  • Cheng, G., Yan-Nan, H., Yue, T., Wang, J. & Zhang, Z. (2014). Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules, 19 (9), 13683-13703. https://doi.org/10.3390/molecules190913683
  • Deloire, A. & Rogiers, S. (2014). Monitoring vine water status Part 2: A detailed example using the pressure chamber. Grapevine Management Guide 2014-15. NSW DPI Management Guide. pp. 16-19. The USA.
  • Echeverria, G., Ferrer, M. & Miras-Avalos, J. (2017). Effects of soil type on vineyard performance and berry composition in the Río de la Plata Coast (Uruguay). Oeno ONE, 51. https://doi.org/10.20870/oeno-one.2017.51.2.1829
  • Gil, M., Pascual, O., Gómez-Alonso, S., García-Romero, E., Hermosín-Gutiérrez, I., Zamora, F. & Canals, J.M. (2015). Influence of berry size on red wine colour and composition: Berry size and red wine colour and composition. Australian Journal of Grape and Wine Research, 21, 200-212. https://doi.org/10.1111/ ajgw.12123.
  • Kontoudakis, N,. Esteruelas, M., Fort, F., Canals, J.M., De Freitas, V. & Zamora, F. (2011). Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chemistry, 124 (3), 767-774. https://doi.org/10.1016/j.foodchem.2010.06.093
  • Korkutal, I., Bahar, E. & Uzun, M. (2023). Effect of berry heterogeneity and water deficit in organic and conventional vineyards on grape berry characteristics. Türk Tarım ve Doğa Bilimleri Dergisi, 10 (3), 510-519. https://doi.org/10.30910/ turkjans.1264738
  • Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y. & van Leeuwen, C. (2006). Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. Journal of Agriculture Food Chemistry, 54 (14), 5077-86. https://doi.org/10.1021/jf0605446
  • Kupina, S., Fields, C., Roman, M.C. & Brunelle, S.L. (2017). Determination of total phenolic content using the Folin-C Assay: Single-laboratory validation, First action 2017.13. Journal of AOAC International, 101 (5), 1466-1472. https://doi.org/ 10.5740/jaoacint.18-0031
  • Lafontaine, M., Stoll, M. & Schultz, H.R. (2013). Berry size and maturity affecting phenolic extraction in Pinot Noir wines. Conference: Proceedings 18th International Symposium GiESCO, Ciencia Tecnica Vitivinicola, 28, 396-400.
  • Liu, X., Li, J., Tian, Y., Liao, M. & Zhang, Z. (2016). Influence of berry heterogeneity on phenolics and antioxidant activity of grapes and wines: a primary study of the new winegrape cultivar Meili (Vitis vinifera L.). PLoS ONE, 11, e0151276. https://doi.org/10.1371/journal. pone.0151276
  • Matthews, M.A. & Nuzzo, V. (2007). Berry size and yield paradigms on grapes and wine quality. Acta Horticulturae, 754, 423-436. https://doi.org/ 10.17660/ActaHortic.2007.754.56
  • Martin, K.R. & Rasmussen, K.K. (2011). Comparison of sensory qualities of geographically paired organic and conventional red wines from the southwestern US with differing total polyphenol concentrations: A randomized pilot study. Food Nutrition Science, 2, 1150-1159. https://doi.org/10.4236/fns.2011. 210154
  • Melo, M.S., Schultz, H.R., Volschenk, C. & Hunter, J.J. (2015). Berry size variation of Vitis vinifera L. cv. Syrah: Morphological dimensions, berry composition, and wine quality. South African Journal for Enology and Viticulture, 36, 1-10. https://doi.org/10.21548/36-1-931
  • Mirás-Avalos, J. & Intrigliolo, D. (2017). Grape composition under abiotic constraints: water stress and salinity. Frontiers in Plant Science, 8, 851. https://doi.org/10.3389/fpls.2017.00851
  • Mulero, J., Pardo, F. & Zafrilla, P. (2010). Antioxidant activity and phenolic composition of organic and conventional grapes and wines. Journal of Food Composition and Analysis, 23 (6), 569-574. https://doi.org/10.1016/j.jfca.2010.05.001
  • Munitz, S., Netzer, Y. & Schwartz, A. (2016). Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Australian Journal of Grape and Wine Research, 23, 87-94. https://doi.org/10.1111/ajgw.12241
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A. & Deloire, A. (2002). Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53 (4), 261-267. https://www. ajevonline.org/content/53/4/261.1
  • Öner, H. (2014). Cabernet Sauvignon Üzüm Çeşidinde Farklı Kültürel Işlemlerin Verim ve Kalite Özellikleri Üzerine Etkileri (Tez no 355449). [Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Provost, C. & Pedneault, K. (2016). The organic vineyard as a balanced ecosystem: Improved organic grape management and impacts on wine quality. Scientia Horticulturae, 208, 43-56. https://doi.org/10.1016/j.scienta.2016.04.024
  • Rolle, L., Torchio, F., Giacosa, S. & Segade, S. (2015). Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chemistry, 173, 105-113. https://doi.org/10.1016/ j.foodchem.2014.10.033
  • Romero, P., Fernández-Fernández, J.I. & Martínez-Cutillas, A. (2010). Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. American Journal of Enology and Viticulture, 61, 300-312. https://doi.org/10.5344/ajev.2010.61.3.300
  • Sánchez-Rangel, J.C., Benavides, J., Heredia, J.B., Cisneros-Zevallos L.C. & Jacobo-Velázquez, D.A. (2013). The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 5, 5990-5999. http://doi.org/10.1039/C3AY41125G
  • Tardáguila, J., Baluja, J., Arpon, L., Balda, P. & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12 (5), 762-773. https://doi.org/10.1007/s11119-011-9219-4
  • Valdés, M.E., Talaverano, M.I., Moreno, D., Uriarte, D., Mancha, L. & Vilanova, M. (2022). Improving the phenolic content of Tempranillo grapes by sustainable strategies in the vineyard. Plants, 11 (11), 1393. https://doi.org/10.3390/plants11111393
  • van Leeuwen, C., Trégoat, O., Choné, X., Bois, B., Pernet, D. & Gaudillère, J.P. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Journal International des Sciences de la Vigne et du Vin, 43 (3), 121-134. https://doi.org/10.20870/ oeno-one.2009.43.3.798
  • Vilanova, M., Rodríguez, I., Canosa, P., Otero, I., Gamero, E., Moreno, D., Talaverano, M.I. & Valdés, E. (2015). Variability in chemical composition of Vitis vinifera cv. Mencía from different geographic areas and vintages in Ribeira Sacra (NW Spain). Food Chemistry, 169, 187-196. https://doi.org/ 10.1016/j.foodchem.2014.08.015
  • Waterhouse, A.L. (2002), Determination of Total Phenolics. Current Protocols in Food Analytical Chemistry, 6, I1.1.1-I1.1.8. https://doi.org/10.1002/ 0471142913.fai0101s06
  • Zarrouk, O., Francisco, R., Pinto-Marijuan, M., Brossa, R., Santos, R.R., Pinheiro, C., Costa, J.M., Lopes, C. & Chaves, M.M. (2012). Impact of irrigation regime on berry development and flavonoid composition in Aragonez (Syn. Tempranillo) grapevine. Agricultural Water Management, 114, 18-29. https://doi.org/10.1016/ j.agwat.2012.06.018
  • Zerihun, A., McClymont, L., Lanyon, D., Goodwin, I. & Gibberd, M. (2015). Deconvoluting effects of vine and soil properties on grape berry composition. Journal of the Science of Food and Agriculture, 95 (1), 193-203. https://doi.org/10.1002/jsfa.6705
  • Zouid, I., Siret, R., Jourjon, F., Mehinagic, E. & Rolle, L. (2013). Impact of grapes heterogeneity according to sugar level on both physical and mechanical berries properties and their anthocyanins extractability at harvest. Journal of Texture Studies, 44, 95-103. https://doi.org/ 10.1111/ jtxs.12001.

Organik ve Konvansiyonel Bağda Yetiştirilen Vitis vinifera Cabernet-Sauvignon Üzüm Çeşidinde; Farklı Su Stresi Seviyelerinin, Tane Heterojenitesinin ve Konumun Fitokimyasal Özellikler Üzerine Etkileri

Year 2024, Volume: 27 Issue: 5, 1042 - 1054, 17.09.2024
https://doi.org/10.18016/ksutarimdoga.vi.1333996

Abstract

Cabernet-Sauvignon (Vitis vinifera L.) üzüm çeşidinde farklı tarım uygulamalarındaki (organik ve konvansiyonel) toprak yapısına bağlı olarak su stresinin tane heterojenitesi ve bileşimi üzerine etkilerini araştırmak ve şarap sektörüne ham madde kalitesi konusunda öncü bilgi sağlamaktır. Araştırma organik tarım sertifikalı ve konvansiyonel bağcılık yapılan iki bağda yürütülmüştür. Stres düzeylerine göre Bölünmüş Parseller Deneme Desenine göre kurulmuş olan deneme, Organik ve Konvansiyonel olarak iki ana ve ikişer alt parsele ayrılmıştır. Ölçülen şafak öncesi yaprak su potansiyeli sonuçlarına göre -8 MPa’dan düşük olan ve -8 MPa’dan büyük olan omcalar, arazi ve toprak tipine göre Kıraç arazi-yüzlek toprak ve Taban arazi-derin toprak olarak gruplandırılmıştır. Hasat yapılan salkımlardaki taneler çaplarına göre 3 ayrı grupta toplanmıştır (10mm-12mm, 12mm-14mm, 14mm-16mm). Deneme sonucunda 10mm-12mm tane boyut grubunun genel olarak incelenen tüm kriterlerde istenilen özellikleri taşıdığı belirlenmiştir. Toplam antosiyanin miktarı ve toplam tanen miktarı konumdan bağımsız olarak orta stresteki (Stres 1) omcalarda 10mm-12mm arasındaki tanelerde yüksek değerler elde edilmiştir. Kıraç arazi-yüzlek toprakta tanen miktarı daha fazla bulunmuştur. Yüksek stresteki omcalardan düşük antioksidan değerleri kaydedilmiştir. TPI miktarı organik bağda daha yüksek bulunmuştur. Tekirdağ ilinde Cabernet-Sauvignon üzüm çeşidinden yüksek fitokimyasal bileşenler elde edilmesi için ben düşme-olgunluk arası dönemde şafak öncesi yaprak su potansiyelinin -0,8 MPa’a kadar düşebildiği Kıraç arazi-yüzlek toprak koşullarında yetiştiricilik yapılması ve 10mm-12mm arasında çapa sahip tanelerin kullanılmasının uygun olabileceği düşünülmüştür.

References

  • Bahar, E., Korkutal, I. & Kabatas, I.E. (2017). Periodic changes of leaf water potentials (Ψleaf) and cluster thinning applications depending on regulated irrigation ratios affect yield, shoot, and growing characteristics in cv. Sangiovese. Mediterranean Agricultural Sciences, 30 (2), 85-90. https:// dergipark.org.tr/en/pub/ Mediterranean /issue/ 30609/333539
  • Bellvert, J., Mata, M., Vallverdu, Paris, C. & Marsal, J. (2021). Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precision Agriculture, 22, 319-341. https://doi.org/10.1007/s11119-020-09718-2
  • Benmeziane, F. (2017). Hydrogen peroxide scavenging activity of grape (Vitis vinifera) methanolic extract. Food Research, 1 (2), 39-42. http://doi.org/ 10.26656/fr.2017.2.005
  • Blouin, J. & Guimberteau, G. (2000). Maturation et Maturite des Raisins. Editions Feret, Bordeaux, France. ISBN-10:2-902416-49-0. 168p.
  • Buchner, I., Medeiros, N., Lacerda, D., Normann, C., Gemelli, T., Rigon, P., Wannmacher, C., Henriques, J., Dani, C. & Funchal, C. (2014). Hepatoprotective and antioxidant potential of organic and conventional grape juices in rats fed a high-fat diet. Antioxidants, 3, 323-338. https://doi.org/ 10.3390/antiox3020323
  • Bunea, C.I., Pop, N., Babeş, A.C., Matea, C., Dulf, V.F. & Bunea, A. (2012). Carotenoids, total polyphenols, and antioxidant activity of grapes (Vitis vinifera L.) cultivated in organic and conventional systems. Chemistry Central Journal, 6, 66. https://doi.org/10.1186/1752-153X-6-66
  • Calderone, F., Vitale, A., Panebianco, S., Lombardo, M.F. & Cirvilleri, G. (2022). COS-OGA applications in organic vineyards manage major airborne diseases and maintain the postharvest quality of wine grapes. Plants, 11 (13), 1763. https://doi.org/ 10.3390/plants11131763
  • Candar, S., Açıkbaş, B., Korkutal, İ. & Bahar, E. (2021). Trakya Bölgesi şaraplık üzüm çeşitlerinde kısıntılı sulama uygulamalarının yaprak ve stoma morfolojik özelliklerine etkileri. KSU Tarım ve Doğa Dergisi, 24 (4), 766-776. https://doi.org/ 10.18016/ksutarimdoga.vi.738285
  • Carbonneau, A. (1998). Aspects Qualitatifs. 258-276. In: Tiercelin, J.R. (Eds.), Traite d’irrigation. Technique & Doc., Lavosier, Paris, France. p.1011. ISBN-10: 2743002441.
  • Carbonneau, A. & Bahar, E. (2009). Vine and berry response to contrasted water fluxes in ecotron around veraison. manipulation of berry shrivelling and consequences on berry growth, sugar loading, and maturation. 16th International GiESCO Symposium At the University of California, Davis. 12-15 July 2009. pp 145-155
  • Caruso, G., Palai, G., Gucci, R. & D’Onofrio, C. (2023). The effect of regulated deficit irrigation on growth, yield, and berry quality of grapevines (cv. Sangiovese) grafted on rootstocks with different resistance to water deficit. Irrigation Science, 41, 453–467. https://doi.org/10.1007/s00271-022-00773 -3
  • Cemeroğlu, B. (2007). Gıda Analizleri. Gıda Teknolojisi Derneği Yayınları. Ankara. No: 34.
  • Chen, W.K., He, F., Wang, Y.X., Liu, X., Duan, C.Q. & Wang, J. (2018). Influences of berry size on fruit composition and wine quality of Vitis vinifera L. cv. Cabernet Sauvignon grapes. South African Journal for Enology and Viticulture, 39. https://doi.org/ 10.21548/39-1-2439
  • Cheng, G., Yan-Nan, H., Yue, T., Wang, J. & Zhang, Z. (2014). Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules, 19 (9), 13683-13703. https://doi.org/10.3390/molecules190913683
  • Deloire, A. & Rogiers, S. (2014). Monitoring vine water status Part 2: A detailed example using the pressure chamber. Grapevine Management Guide 2014-15. NSW DPI Management Guide. pp. 16-19. The USA.
  • Echeverria, G., Ferrer, M. & Miras-Avalos, J. (2017). Effects of soil type on vineyard performance and berry composition in the Río de la Plata Coast (Uruguay). Oeno ONE, 51. https://doi.org/10.20870/oeno-one.2017.51.2.1829
  • Gil, M., Pascual, O., Gómez-Alonso, S., García-Romero, E., Hermosín-Gutiérrez, I., Zamora, F. & Canals, J.M. (2015). Influence of berry size on red wine colour and composition: Berry size and red wine colour and composition. Australian Journal of Grape and Wine Research, 21, 200-212. https://doi.org/10.1111/ ajgw.12123.
  • Kontoudakis, N,. Esteruelas, M., Fort, F., Canals, J.M., De Freitas, V. & Zamora, F. (2011). Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chemistry, 124 (3), 767-774. https://doi.org/10.1016/j.foodchem.2010.06.093
  • Korkutal, I., Bahar, E. & Uzun, M. (2023). Effect of berry heterogeneity and water deficit in organic and conventional vineyards on grape berry characteristics. Türk Tarım ve Doğa Bilimleri Dergisi, 10 (3), 510-519. https://doi.org/10.30910/ turkjans.1264738
  • Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y. & van Leeuwen, C. (2006). Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. Journal of Agriculture Food Chemistry, 54 (14), 5077-86. https://doi.org/10.1021/jf0605446
  • Kupina, S., Fields, C., Roman, M.C. & Brunelle, S.L. (2017). Determination of total phenolic content using the Folin-C Assay: Single-laboratory validation, First action 2017.13. Journal of AOAC International, 101 (5), 1466-1472. https://doi.org/ 10.5740/jaoacint.18-0031
  • Lafontaine, M., Stoll, M. & Schultz, H.R. (2013). Berry size and maturity affecting phenolic extraction in Pinot Noir wines. Conference: Proceedings 18th International Symposium GiESCO, Ciencia Tecnica Vitivinicola, 28, 396-400.
  • Liu, X., Li, J., Tian, Y., Liao, M. & Zhang, Z. (2016). Influence of berry heterogeneity on phenolics and antioxidant activity of grapes and wines: a primary study of the new winegrape cultivar Meili (Vitis vinifera L.). PLoS ONE, 11, e0151276. https://doi.org/10.1371/journal. pone.0151276
  • Matthews, M.A. & Nuzzo, V. (2007). Berry size and yield paradigms on grapes and wine quality. Acta Horticulturae, 754, 423-436. https://doi.org/ 10.17660/ActaHortic.2007.754.56
  • Martin, K.R. & Rasmussen, K.K. (2011). Comparison of sensory qualities of geographically paired organic and conventional red wines from the southwestern US with differing total polyphenol concentrations: A randomized pilot study. Food Nutrition Science, 2, 1150-1159. https://doi.org/10.4236/fns.2011. 210154
  • Melo, M.S., Schultz, H.R., Volschenk, C. & Hunter, J.J. (2015). Berry size variation of Vitis vinifera L. cv. Syrah: Morphological dimensions, berry composition, and wine quality. South African Journal for Enology and Viticulture, 36, 1-10. https://doi.org/10.21548/36-1-931
  • Mirás-Avalos, J. & Intrigliolo, D. (2017). Grape composition under abiotic constraints: water stress and salinity. Frontiers in Plant Science, 8, 851. https://doi.org/10.3389/fpls.2017.00851
  • Mulero, J., Pardo, F. & Zafrilla, P. (2010). Antioxidant activity and phenolic composition of organic and conventional grapes and wines. Journal of Food Composition and Analysis, 23 (6), 569-574. https://doi.org/10.1016/j.jfca.2010.05.001
  • Munitz, S., Netzer, Y. & Schwartz, A. (2016). Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Australian Journal of Grape and Wine Research, 23, 87-94. https://doi.org/10.1111/ajgw.12241
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A. & Deloire, A. (2002). Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53 (4), 261-267. https://www. ajevonline.org/content/53/4/261.1
  • Öner, H. (2014). Cabernet Sauvignon Üzüm Çeşidinde Farklı Kültürel Işlemlerin Verim ve Kalite Özellikleri Üzerine Etkileri (Tez no 355449). [Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Provost, C. & Pedneault, K. (2016). The organic vineyard as a balanced ecosystem: Improved organic grape management and impacts on wine quality. Scientia Horticulturae, 208, 43-56. https://doi.org/10.1016/j.scienta.2016.04.024
  • Rolle, L., Torchio, F., Giacosa, S. & Segade, S. (2015). Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chemistry, 173, 105-113. https://doi.org/10.1016/ j.foodchem.2014.10.033
  • Romero, P., Fernández-Fernández, J.I. & Martínez-Cutillas, A. (2010). Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. American Journal of Enology and Viticulture, 61, 300-312. https://doi.org/10.5344/ajev.2010.61.3.300
  • Sánchez-Rangel, J.C., Benavides, J., Heredia, J.B., Cisneros-Zevallos L.C. & Jacobo-Velázquez, D.A. (2013). The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods, 5, 5990-5999. http://doi.org/10.1039/C3AY41125G
  • Tardáguila, J., Baluja, J., Arpon, L., Balda, P. & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12 (5), 762-773. https://doi.org/10.1007/s11119-011-9219-4
  • Valdés, M.E., Talaverano, M.I., Moreno, D., Uriarte, D., Mancha, L. & Vilanova, M. (2022). Improving the phenolic content of Tempranillo grapes by sustainable strategies in the vineyard. Plants, 11 (11), 1393. https://doi.org/10.3390/plants11111393
  • van Leeuwen, C., Trégoat, O., Choné, X., Bois, B., Pernet, D. & Gaudillère, J.P. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Journal International des Sciences de la Vigne et du Vin, 43 (3), 121-134. https://doi.org/10.20870/ oeno-one.2009.43.3.798
  • Vilanova, M., Rodríguez, I., Canosa, P., Otero, I., Gamero, E., Moreno, D., Talaverano, M.I. & Valdés, E. (2015). Variability in chemical composition of Vitis vinifera cv. Mencía from different geographic areas and vintages in Ribeira Sacra (NW Spain). Food Chemistry, 169, 187-196. https://doi.org/ 10.1016/j.foodchem.2014.08.015
  • Waterhouse, A.L. (2002), Determination of Total Phenolics. Current Protocols in Food Analytical Chemistry, 6, I1.1.1-I1.1.8. https://doi.org/10.1002/ 0471142913.fai0101s06
  • Zarrouk, O., Francisco, R., Pinto-Marijuan, M., Brossa, R., Santos, R.R., Pinheiro, C., Costa, J.M., Lopes, C. & Chaves, M.M. (2012). Impact of irrigation regime on berry development and flavonoid composition in Aragonez (Syn. Tempranillo) grapevine. Agricultural Water Management, 114, 18-29. https://doi.org/10.1016/ j.agwat.2012.06.018
  • Zerihun, A., McClymont, L., Lanyon, D., Goodwin, I. & Gibberd, M. (2015). Deconvoluting effects of vine and soil properties on grape berry composition. Journal of the Science of Food and Agriculture, 95 (1), 193-203. https://doi.org/10.1002/jsfa.6705
  • Zouid, I., Siret, R., Jourjon, F., Mehinagic, E. & Rolle, L. (2013). Impact of grapes heterogeneity according to sugar level on both physical and mechanical berries properties and their anthocyanins extractability at harvest. Journal of Texture Studies, 44, 95-103. https://doi.org/ 10.1111/ jtxs.12001.
There are 43 citations in total.

Details

Primary Language English
Subjects Oenology and Viticulture
Journal Section RESEARCH ARTICLE
Authors

Elman Bahar 0000-0002-8842-7695

İlknur Korkutal 0000-0002-8016-9804

Müge Uzun 0009-0006-0245-0226

Early Pub Date July 2, 2024
Publication Date September 17, 2024
Submission Date July 28, 2023
Acceptance Date February 4, 2024
Published in Issue Year 2024Volume: 27 Issue: 5

Cite

APA Bahar, E., Korkutal, İ., & Uzun, M. (2024). Effects of Different Water Stress Levels, Heterogeneity, and Location on Berry Phytochemical Properties in an Organic and Conventional Vineyard (Vitis vinifera cv. Cabernet-Sauvignon). Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(5), 1042-1054. https://doi.org/10.18016/ksutarimdoga.vi.1333996


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149