Research Article
BibTex RIS Cite

Bombyx mori Dokularında β-Galaktozit α 2-6 Siyaliltransferaz Geninin İfadesi

Year 2024, Volume: 27 Issue: 5, 1175 - 1182
https://doi.org/10.18016/ksutarimdoga.vi.1430234

Abstract

Bombyx mori genomunun bilinmesi, insanlarla homoloji göstermesi ve kolay yetiştirilmesi açısından en önemli böcek türlerinden biridir. Bazı böceklerde sialilasyona ilişkin raporlar mevcuttur, hatta sialile edilmiş moleküllerin çeşitli yapıları bildirilmiştir ancak böceklerde sialik asit biyosentezi gözlenmemektedir. Sialik asitler, terminal olarak glikoproteinler ve glikolipitler üzerinde bulunan negatif yüklü dokuz karbonlu şekerlerdir. Sialilasyon, enzimler tarafından düzenlenen bir translasyon sonrası modifikasyondur. Prokaryotlar, dueterostomlar ve protostomlarda çalışılmıştır. Sialilasyon için önemli olan enzimlerden biri de sialiltransferazlardır. Bu enzim, sialik asidin glikokonjugatlara bağlanmasında rol oynar. Bu çalışmada ipek böceği Bombyx mori dokularında sialiltransferaz (β-Galaktozit α 2-6 Sialiltransferaz) geninin ifade düzeylerinin belirlenmesidir. Yumurtadan çıkışından itibaren taze dut yaprakları ile beslenen B. mori larvaları, 5. instar (son instar)’da taze dut yaprakları ile beslemeye devam edilen (kontrol grubu) ve sentetik sialik asit solüsyonu uygulanmış dut yaprakları ile beslenilen uygulama grubu olarak ayrıldı. 5. instarın orta bağırsak, yağ doku, hemosit, ovayum ve testis dokuları alınarak Real-Time PZR ile gen ifade düzeyleri incelendi. Ekspresyon düzeyi her doku için ayrı ayrı belirlendi, ancak artış sadece yağ dokuda tespit edildi. Yağ doku böcekler için oldukça önemlidir, bağışıklık, endokrin ve detoksifikasyon süreçlerinde temel rol oynar. Yağ dokuda sialiltransferaz gen ekspresyonunun en fazla olmasının sebebinin yağ doku ve sialik asidin fonksiyonlarındaki benzerliklere ve böceklerdeki rollerine bağlanabilir.

Project Number

FYL-2021-23087

References

  • Altmann, F., Staudacher, E., Wilson, I.B., & Marz, L. (1999). Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate Journal, 16, 109–123.
  • Alves, S.N., Serrão, J.E., & Melo, A.L. (2010). Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron, 41, 592–597.
  • Arrese, E.L., & Soulages, J.L. (2010). Insect fat body: Energy, metabolism, and regulation. Annual Review of Entomology, 55, 207-225.
  • Assis, de W.A., Malta, J., Pimenta, P.F.P., Ramalho-Ortigão, J.M., & Martins, G.F. (2014). The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Arthropod Structure and Development, 43, 501–509.
  • Buschiazzo, A., & Alzari, P.M. (2008). Sialic acid metabolism structural insights into sialic acid enzymology. Current Opinion in Chemical Biology, 12, 565–572.
  • Chapman, R.F. (2013). Chapter 6 – Fat body (Part I. The head, ingestion, utilization and distribution of food). The Insects Structure and Function, fifth ed. Cambridge University Press, New York, 132–144 pp.
  • Cime-Castillo, J., Delannoy, P., Mendoza-Hernández, G., Monroy-Martínez, V., Harduin-Lepers, A., Lanz- Mendoza, H., Hernández-Hernández, Fde L., Zenteno, Cabello-Gutiérrez, C., & Ruiz-Ordaz, B.H. (2014). Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions. Hindawi Publishing Corporation BioMed Research International, 16.
  • Feitosa, F.M., Calvo, E., Merino, E.F., Durham, A.M., James, A.A., Bianchi, A.G., Marinotti, O., & Capurro, M.L. (2006). A transcriptome analysis of the Aedes aegypti vitellogenic fat body. Journal of Insect Science, 6, 1–26.
  • Ghosh, S. (2018). Sialylation and sialyltransferase in insects, Glycoconjugate Journal, 35, 433-441. (Mini-Review)
  • Hsu, T.A., Takahashi, N., Tsukamoto, Y., Kato, K., Shimada, I., Masuda, K., Whiteley, E.M., Fan, J.Q., Lee, Y.C., & Betenbaugh, M.J. (1997). Differential n-glycan patterns of secreted and intracellular igg produced in trichoplusia in cells. Journal of Biological Chemistry, 272, 9062–9070.
  • Kajiura, H., Hamaguchi, Y., Mizushima, H., Misaki, R., & Fujiyama, K. (2015). Sialylation potentials of the silkworm, Bombyx mori, B. mori possesses an active α2, 6-sialyltransferase. Glycobiology, 25(12), 1441-1453.
  • Koles, K., Irvine, K.D., & Panin, V.M. (2004). Functional characterization of Drosophila sialyltransferase, Journal of Biological Chemistry, 6, 4346-4357.
  • Koles, K., Lim, J.M., Aoki, K., Porterfield, M., Tiemeyer, M., Wells, L., & Panin, V. (2007). Identification of n-glycosylated proteins from the central nervous system of Drosophila melanogaster. Glycobiology, 17(12), 1388-1403.
  • Law, J.H., & Wells, M.A. (1989). Insects as biochemical models. Journal of Biological Chemistry, 264, 16335–16338.
  • Lawrence, S.M., Huddleston, K.A., Tomiya, N., Nguyen, N., Lee, Y.C., Vann, W.F., Coleman, T.A., & Betenbaugh, M.J. (2001). Cloning and expression of human sialic acid pathway genes to generate CMP-sialic acids in insect cells. Glycoconjugate Journal, 18, 205-213.
  • Li, Y. & Chen, X. (2012). Sialic acid metabolism and sialyltransferases: Natural functions and applications. Applied Microbiology & Biotechnology, 94(4), 887-905.
  • Malykh, Y.N., Krisch, B., Gerardy-Schahn, R., Lapina, E.B., Shaw, L., & Schauer, R. (1999). The presence of n-acetylneuraminic acid in malpighian tubules of larvae of the Cicada Philaenus spumarius, Glycoconjugate Journal, 16(11), 731-739.
  • Marchal, I., Jarvis, D.L., Cacan, R. & Verbert, A. (2001). Glycoproteins from insect cells: sialylated or not? Biological Chemistry, 382, 151-159.
  • Martins, G.F., Ramalho-Ortigao, J.M. (2012). Oenocytes in Insects. Invertebrate Survival Journal, 9, 139–152.
  • Meng, X., Zhu, F., & Chen, K. (2017). Silkworm: a promising model organism in life science. Journal of Insect Science, 17(5), 97.
  • Miyazaki, T., Miyashita, R., Nakamura, S., Ikegaya, M., Kato, T. & Park, E.Y. (2019). Biochemical characterization and mutational analysis of silkworm Bombyx mori Β-1, 4-N-acetylgalactosaminyltransferase and insight into the substrate specificity of β-1, 4-galactosyltransferase family enzymes. Insect Biochemistry and Molecular Biology, 115, 103254.
  • Nation, J.L. (2016). Insect Physiology and Biochemistry, 3rd ed. CRC Press, USA.
  • Park, M.S., Park, P., & Takeda, M. (2013). Roles of fat body trophocytes, mycetocytes and oocytes in the American cockroach, Periplaneta americana under starvation conditions: an ultrastructural study. The journal Arthropod Structure & Development, 42, 287–295.
  • Petit, D., Teppa, E., Mir, A.M., Vicogne, D., Thisse, C., Thisse, B., Filloux, C., & Harduin-Lepers, A. (2015). An integrative view of α2, 3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Molecular Biology & Evolution, 32(4), 906-927.
  • Repnikova, E., Koles, K., Nakamura, M., Pitts, J., Li, H., Ambavane, A., Zoran, M.J., & Panin, V.M. (2010). Sialyltransferase regulates nervous system function in Drosophila. Journal of Neuroscience, 30, 6466–6476.
  • Resh, V.H., & Cardé, R.T. (Eds.). (2009). Encyclopedia of insects. Academic press. 103-408.
  • Roma, G.C., Bueno, O.C., Camargo-Mathias, M.I. (2010). Morpho-physiological analysis of the insect fat body: A review. Micron, 41(5), 395-401.
  • Schauer, R. (2001). The occurrence and significance of sialic acids in insects. Trends in Glycoscience & Glycotechnology, 13, 507-17.
  • Schauer, R. (2009). Sialic acids as regulators of molecular and cellular interactions. Current Opinion in Structural Biology, 19, 507–514.
  • Shimomura, M., Minami, H., Suetsugu, Y., Ohyanagi, H., Satoh, C., Antonio, B., Nagamura, Y., Kadono-Okuda, K., Kajiwara, H., Sezutsu, H., Nagaraju, J., Goldsmith, M.R., Xia, Q., Yamamoto, K., & Mita, K. (2009). KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genomics, 10(1), 1-8.
  • Teppa, R.E., Petit, D., Plechakova, O., Cogez, V. & Harduin-Lepers, A. (2016). Phylogenetic-derived insights into the evolution of sialylation in eukaryotes: comprehensive analysis of vertebrate β-galactoside α2, 3/6-sialyltransferases (ST3Gal and ST6Gal). International Journal of Molecular Sciences, 17(8), 1286.
  • Turgay-İzzetoğlu, G. & Gülmez, M. (2019). Characterization of fat body cells at different developmental stages of Culex pipiens. Acta Histochemica, 121, 460–471.
  • Tutar, E., Köksalan, E. & Akyol, İ. (2015). Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi. KSÜ Tarım ve Doğa Dergisi. 18(4), 26-39.
  • Varki, A. (2017). Biological roles of glycans. Glycobiology, 27(1), 3-49.
  • Weinstein, J., Lee, E.U., McEntee, K., Lai, P.H. & Paulson, J.C. (1987). Primary structure of beta-galactoside alpha 2, 6-sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. Journal of Biological Chemistry, 262(36), 17735-17743.
  • Yıldırım, F., Özdemir, S. & Yıldız, A. (2018). Koçaş Tarım İşletmesinde Yetiştirilen Siyah Alaca (Holştayn) Sığırlarda Bazı Süt Verimi Özellikleri ve İlişkili Genlerin Ekspresyonu. KSÜ Tarım ve Doğa Dergisi, 21(3), 353-362.
  • Zhang, Y., Xi, Y. (2014). Fat body development and its function in energy storage and nutrient sensing in Drosophila melanogaster. Journal of Tissue Science & Engineering, 6(1), 1–8.

β-Galactoside α 2-6 Sialyltransferase Gene Expression in Bombyx mori Tissues

Year 2024, Volume: 27 Issue: 5, 1175 - 1182
https://doi.org/10.18016/ksutarimdoga.vi.1430234

Abstract

Bombyx mori is an important insect due to its genome, homology to humans, and ease of growth. Sialylation has been reported in some insects, but sialic acid biosynthesis cannot be observed in these insects. Sialic acids are negatively charged nine-carbon sugars located terminally on glycoconjugates. Sialylation, which occurs after translation and is regulated by enzymes, has been studied in prokaryotes, deuterostomes, and protostomes. One of the enzymes that is important for sialylation is sialyltransferases. This enzyme plays a role in linking sialic acid to glycoconjugates. In this study, we investigated sialyltransferase (β-Galactoside α-2,6-Sialyltransferase I) gene expression in tissues of B. mori. B. mori larvae, which were fed with fresh mulberry leaves since hatching, were divided into two groups; the control group, which continued to be fed with fresh mulberry leaves in the 5th instar (last instar) and the treatment group, which was fed with mulberry leaves treated with a sialic acid solution. Midgut, fat body, hemocyte, ovary, and testicular tissues were dissected, and gene expressions were examined with Real-Time PCR. The expression level is observed in every tissue, but an increase is seen in only the fat body. The fat body is a vital tissue for insects and plays a fundamental role in immunity, endocrine, and detoxification processes. The reason for the highest gene expression in the fat body can be attributed to the similarities in the functions of the fat body and sialic acid and their roles in insects.

Supporting Institution

Ege University

Project Number

FYL-2021-23087

Thanks

This work was supported by the Ege University Scientific Research Fund (FYL-2021-23087).

References

  • Altmann, F., Staudacher, E., Wilson, I.B., & Marz, L. (1999). Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate Journal, 16, 109–123.
  • Alves, S.N., Serrão, J.E., & Melo, A.L. (2010). Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron, 41, 592–597.
  • Arrese, E.L., & Soulages, J.L. (2010). Insect fat body: Energy, metabolism, and regulation. Annual Review of Entomology, 55, 207-225.
  • Assis, de W.A., Malta, J., Pimenta, P.F.P., Ramalho-Ortigão, J.M., & Martins, G.F. (2014). The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Arthropod Structure and Development, 43, 501–509.
  • Buschiazzo, A., & Alzari, P.M. (2008). Sialic acid metabolism structural insights into sialic acid enzymology. Current Opinion in Chemical Biology, 12, 565–572.
  • Chapman, R.F. (2013). Chapter 6 – Fat body (Part I. The head, ingestion, utilization and distribution of food). The Insects Structure and Function, fifth ed. Cambridge University Press, New York, 132–144 pp.
  • Cime-Castillo, J., Delannoy, P., Mendoza-Hernández, G., Monroy-Martínez, V., Harduin-Lepers, A., Lanz- Mendoza, H., Hernández-Hernández, Fde L., Zenteno, Cabello-Gutiérrez, C., & Ruiz-Ordaz, B.H. (2014). Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions. Hindawi Publishing Corporation BioMed Research International, 16.
  • Feitosa, F.M., Calvo, E., Merino, E.F., Durham, A.M., James, A.A., Bianchi, A.G., Marinotti, O., & Capurro, M.L. (2006). A transcriptome analysis of the Aedes aegypti vitellogenic fat body. Journal of Insect Science, 6, 1–26.
  • Ghosh, S. (2018). Sialylation and sialyltransferase in insects, Glycoconjugate Journal, 35, 433-441. (Mini-Review)
  • Hsu, T.A., Takahashi, N., Tsukamoto, Y., Kato, K., Shimada, I., Masuda, K., Whiteley, E.M., Fan, J.Q., Lee, Y.C., & Betenbaugh, M.J. (1997). Differential n-glycan patterns of secreted and intracellular igg produced in trichoplusia in cells. Journal of Biological Chemistry, 272, 9062–9070.
  • Kajiura, H., Hamaguchi, Y., Mizushima, H., Misaki, R., & Fujiyama, K. (2015). Sialylation potentials of the silkworm, Bombyx mori, B. mori possesses an active α2, 6-sialyltransferase. Glycobiology, 25(12), 1441-1453.
  • Koles, K., Irvine, K.D., & Panin, V.M. (2004). Functional characterization of Drosophila sialyltransferase, Journal of Biological Chemistry, 6, 4346-4357.
  • Koles, K., Lim, J.M., Aoki, K., Porterfield, M., Tiemeyer, M., Wells, L., & Panin, V. (2007). Identification of n-glycosylated proteins from the central nervous system of Drosophila melanogaster. Glycobiology, 17(12), 1388-1403.
  • Law, J.H., & Wells, M.A. (1989). Insects as biochemical models. Journal of Biological Chemistry, 264, 16335–16338.
  • Lawrence, S.M., Huddleston, K.A., Tomiya, N., Nguyen, N., Lee, Y.C., Vann, W.F., Coleman, T.A., & Betenbaugh, M.J. (2001). Cloning and expression of human sialic acid pathway genes to generate CMP-sialic acids in insect cells. Glycoconjugate Journal, 18, 205-213.
  • Li, Y. & Chen, X. (2012). Sialic acid metabolism and sialyltransferases: Natural functions and applications. Applied Microbiology & Biotechnology, 94(4), 887-905.
  • Malykh, Y.N., Krisch, B., Gerardy-Schahn, R., Lapina, E.B., Shaw, L., & Schauer, R. (1999). The presence of n-acetylneuraminic acid in malpighian tubules of larvae of the Cicada Philaenus spumarius, Glycoconjugate Journal, 16(11), 731-739.
  • Marchal, I., Jarvis, D.L., Cacan, R. & Verbert, A. (2001). Glycoproteins from insect cells: sialylated or not? Biological Chemistry, 382, 151-159.
  • Martins, G.F., Ramalho-Ortigao, J.M. (2012). Oenocytes in Insects. Invertebrate Survival Journal, 9, 139–152.
  • Meng, X., Zhu, F., & Chen, K. (2017). Silkworm: a promising model organism in life science. Journal of Insect Science, 17(5), 97.
  • Miyazaki, T., Miyashita, R., Nakamura, S., Ikegaya, M., Kato, T. & Park, E.Y. (2019). Biochemical characterization and mutational analysis of silkworm Bombyx mori Β-1, 4-N-acetylgalactosaminyltransferase and insight into the substrate specificity of β-1, 4-galactosyltransferase family enzymes. Insect Biochemistry and Molecular Biology, 115, 103254.
  • Nation, J.L. (2016). Insect Physiology and Biochemistry, 3rd ed. CRC Press, USA.
  • Park, M.S., Park, P., & Takeda, M. (2013). Roles of fat body trophocytes, mycetocytes and oocytes in the American cockroach, Periplaneta americana under starvation conditions: an ultrastructural study. The journal Arthropod Structure & Development, 42, 287–295.
  • Petit, D., Teppa, E., Mir, A.M., Vicogne, D., Thisse, C., Thisse, B., Filloux, C., & Harduin-Lepers, A. (2015). An integrative view of α2, 3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Molecular Biology & Evolution, 32(4), 906-927.
  • Repnikova, E., Koles, K., Nakamura, M., Pitts, J., Li, H., Ambavane, A., Zoran, M.J., & Panin, V.M. (2010). Sialyltransferase regulates nervous system function in Drosophila. Journal of Neuroscience, 30, 6466–6476.
  • Resh, V.H., & Cardé, R.T. (Eds.). (2009). Encyclopedia of insects. Academic press. 103-408.
  • Roma, G.C., Bueno, O.C., Camargo-Mathias, M.I. (2010). Morpho-physiological analysis of the insect fat body: A review. Micron, 41(5), 395-401.
  • Schauer, R. (2001). The occurrence and significance of sialic acids in insects. Trends in Glycoscience & Glycotechnology, 13, 507-17.
  • Schauer, R. (2009). Sialic acids as regulators of molecular and cellular interactions. Current Opinion in Structural Biology, 19, 507–514.
  • Shimomura, M., Minami, H., Suetsugu, Y., Ohyanagi, H., Satoh, C., Antonio, B., Nagamura, Y., Kadono-Okuda, K., Kajiwara, H., Sezutsu, H., Nagaraju, J., Goldsmith, M.R., Xia, Q., Yamamoto, K., & Mita, K. (2009). KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genomics, 10(1), 1-8.
  • Teppa, R.E., Petit, D., Plechakova, O., Cogez, V. & Harduin-Lepers, A. (2016). Phylogenetic-derived insights into the evolution of sialylation in eukaryotes: comprehensive analysis of vertebrate β-galactoside α2, 3/6-sialyltransferases (ST3Gal and ST6Gal). International Journal of Molecular Sciences, 17(8), 1286.
  • Turgay-İzzetoğlu, G. & Gülmez, M. (2019). Characterization of fat body cells at different developmental stages of Culex pipiens. Acta Histochemica, 121, 460–471.
  • Tutar, E., Köksalan, E. & Akyol, İ. (2015). Gıdalarda Bulunan Mikrobiyal Patojenlerin Karakterizasyonunda Real Time PCR Teknolojisi. KSÜ Tarım ve Doğa Dergisi. 18(4), 26-39.
  • Varki, A. (2017). Biological roles of glycans. Glycobiology, 27(1), 3-49.
  • Weinstein, J., Lee, E.U., McEntee, K., Lai, P.H. & Paulson, J.C. (1987). Primary structure of beta-galactoside alpha 2, 6-sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. Journal of Biological Chemistry, 262(36), 17735-17743.
  • Yıldırım, F., Özdemir, S. & Yıldız, A. (2018). Koçaş Tarım İşletmesinde Yetiştirilen Siyah Alaca (Holştayn) Sığırlarda Bazı Süt Verimi Özellikleri ve İlişkili Genlerin Ekspresyonu. KSÜ Tarım ve Doğa Dergisi, 21(3), 353-362.
  • Zhang, Y., Xi, Y. (2014). Fat body development and its function in energy storage and nutrient sensing in Drosophila melanogaster. Journal of Tissue Science & Engineering, 6(1), 1–8.
There are 37 citations in total.

Details

Primary Language English
Subjects Entomology, Animal Physiology - Cell, Animal Cell and Molecular Biology
Journal Section RESEARCH ARTICLE
Authors

Ceren Ersoy 0000-0002-6408-2987

Savaş İzzetoğlu 0000-0002-1546-1083

Gamze Turgay İzzetoğlu 0000-0001-9828-2402

Project Number FYL-2021-23087
Early Pub Date July 2, 2024
Publication Date
Submission Date February 1, 2024
Acceptance Date March 29, 2024
Published in Issue Year 2024Volume: 27 Issue: 5

Cite

APA Ersoy, C., İzzetoğlu, S., & Turgay İzzetoğlu, G. (2024). β-Galactoside α 2-6 Sialyltransferase Gene Expression in Bombyx mori Tissues. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(5), 1175-1182. https://doi.org/10.18016/ksutarimdoga.vi.1430234


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149