Research Article
BibTex RIS Cite

Assessment of Genetic Diversity and Relationships among Gypsophila and Silene Species from Türkiye based on SRAP Markers

Year 2025, Volume: 28 Issue: 1, 83 - 95
https://doi.org/10.18016/ksutarimdoga.vi.1398542

Abstract

Gypsophila is a member of the Caryophyllaceae family and its genus consists of approximately 150 species. Several species are grown commercially, including herbal medicine and food. Its most common use is as a cut flower worldwide. Gypsophila species are native and widely distributed in Türkiye, the main genetic resource center. In this study, Gypsophila L. genotypes were first collected from native areas in Türkiye. Secondly, genetic diversity using molecular markers provided valuable information for breeding programs and strategies of germplasm conservation. Sequence-related amplified polymorphism (SRAP) as a molecular marker was used to determine diversity and relationships among 41 Gypsophila (Caryophyllaceae) genotypes including 13 species (G. viscose, G. simonii, G. venusta, G. bicolor, G. simulator, G. bitlisensis, G. germanicopolitana, G. perfoliata, G. acrostic, G. eleganas, G. paniculata and G. aucheri) and two Silene types (S. vulgaris L. and Silene spp.) as outgroups. Results revealed that twenty primer combinations produced 153 scorable fragments, and all markers showed 100% polymorphism for 43 genotypes. The cophenetic correlation (r = 0.80) between the Dice similarity matrix and the corresponding dendrogram obtained by the SRAP marker revealed good compliance. The Gypsophila and Silene species were grouped according to subspecies and by region. Results indicated that SRAP markers were useful for investigating diversity and relationships among Gypsophila L. germplasm. Additionally, this data could be used to develop new Gypsophila L. varieties in the breeding program.

Project Number

104O364

References

  • Akçali Giachino, R.R. (2023). Evaluation of some local and registered safflower (Carthamus tinctorius L.) Varieties based on SRAP markers. KSU Journal of Agriculture and Nature 26 (6), 1325-1336. https://doi.org/10.18016/ksutarimdoga.vi.1168608
  • Al-Faifi, S.A., Migdadi, H.M., Al-doss, A., Ammar, M.H., El-Harty, E.H., Khan, M.A., Javed, M.M., & Alghamdi, S.S. (2013). Morphological and molecular genetic variability analyses of Saudi lucerne (Medicago sativa L.) landraces. Crop and Pasture Science 64,137-46. https://doi.org/10.1071/CP12271
  • Anderson, J.A., Churchill, G.A., Sutrique, J.E., Tanksley, S.D., & Sorrells, M.E. (1993). Optimizing parental selection for genetic linkage maps. Genome 36,181-186. https://doi.org/10.1139/g93-024
  • Anonymous (2018). Cut flower sector report. Republic of Turkey, Prime Ministry Foreign Trade Undersecretariat, Directorate General for Export, Antalya Exporters Union General Secretary, 32p. www.aib.org.tr, www.dtm.gov.tr. (Accessed: 20.10.2022).
  • Ataslar, E., Potoğlu, E., & Tokur, S. (2009). Pollen morphology of some Gypsophila L. (Caryophyllaceae) species and its taxonomic value. Turkish Journal of Botany 3, 335-351. https://doi.org/10.3906/bot-0810-19
  • Barakat, M.N., & El-Sammak, H. (2011) . In vitro culture and plant regeneration from shoot tip and lateral bud explants of Gypsophila paniculata L.. Journal of Medicinal Plants Research 5, 3351-3358. http://www.academicjournals.org/JMPR
  • Bargish, T.A., & Rahmani, F. (2016). SRAP Markers based genetic analysis of Silene species. Journal of Tropical Biology and Conservation 13, 57-70.
  • Barkoudah, Y.I. (1962). A revision of Gypsophila, Bolanthus, Ankyropetalum and Phryna. Wentia 9, 1-203. Bogani, P., Calistri, E., Intrieri, M.C., Buiatti, M., Vettori, L., Schiff, S., et al. (2012). Novel tools for the genetic breeding of Gypsophila. Acta Italus Hortus 4, 58-64.
  • Bolger, M.E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B., & Mayer, K.F.X. (2014). Plant genome sequencing - applications for crop improvement. Current Opinion in Biotechnology 26, 31-37. https://doi.org/10.1016/j.copbio.2013.08.019
  • Botstein, D., White, R.L., Skalnick, M.H., & Davies, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics 32, 314-331.
  • Budak, H., Shearman, R.C., Parmaksiz, I., Gaussoin, R.E., Riordan, T.P., & Dweikat, I. (2004). Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theoretical and Applied Genetics 108, 328-334. https://doi.org/10.1007/s00122-003-1428-4
  • Calistri, E., Buiatti, M., & Bogani, P. (2014). Characterization of Gypsophila species and commercial hybrids with nuclear whole-genome and cytoplasmic molecular markers. Plant Biosystems 1-11. https://doi.org/10.1080/11263504.2014.944609
  • Chesnokov, Yu.V.,& Artemyeva, A.M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology 50, 571-578.
  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology 26, 297-302.
  • Doyle, J.J., & Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.
  • Dudley, J.W. (1994). Comparison of genetic distance estimators using molecular marker data. Joint Plant Breeding Symposia 3-7.
  • Ghislain, M., Zhang, D., Fajardo, D., Huaman, Z., & Hijmans, R. (1999). Marker-assisted samplingof the cultivated andean potato Solanum phureja collection using RAPD markers. Genetic Resources and Crop Evolution 46, 547-555. https://doi.org/10.1023/A:1008724007888
  • Hamrick, J.L., & Godt, M.J.W. (1989). Allozyme diversity in plant species. In: Brown A.H.D., Clegg M.T., Kahler A.L. and Weir B.S. Eds. Plant Population Genetics, Breeding, and Germplasm Resources, 43-63, Sinauer Associates, Sunderland.
  • Intrieri, M,C., Calistri, E., Nieddu, F., Pasqualetto, P., Marcello, B., & Patrizia, B. (2010). Molecular characterization of gypsophila cultivars with ISSR and TRAP markers. Proceedings of the 54th Italian Society of Agricultural Genetics Annual Congress.
  • Jin, C., Liu, B., Ruan, J., Yang, C.,& Li, F. (2022). Development of InDel Markers for Gypsophila paniculata based on genome resequencing. Horticulturae 8, 921. https://doi.org/10.3390/horticulturae8100921
  • Kanayama, Y., Kato, K., & Moriguchi, R. (2007). Genetic and molecular aspects of Gypsophila. Genes, Genomes and Genomics 1(1), 63-65.
  • Karagüzel, O. (2003). Influence of different greenhouse conditions on growth and flowering of Gypsophila paniculata ‘Perfecta’. Mediterranean Agricultural Sciences 16, 51-60. https://dergipark.org.tr/tr/pub/akdenizfderg/issue/1585/19690
  • Karagüzel, O., & Ortaçeşme, V. (2000). The effect of planting frequency on yield, quality and efficient use of lighting energy in Gypsophila cultivation. Turkish Journal of Agriculture and Forestry 24 (6), 691-697. https://journals.tubitak.gov.tr/agriculture/vol24/iss6/8
  • Kaya A.S., Karagüzel Ö., Aydınşakir K., Kazaz S., Özçelik A. 2012. Usage possibilities of some Gypsophila (Gypsophila sp.) species naturally grown in Turkey as ornamental plants. Derim 29, 37-47.
  • Kaya, A.S., Aydinşakir, K., Erdal, Ş., & Kazaz, S. (2019). The effects of different applications on the cut flower performance of the promising Gypsophila genotype (GA 8). Derim 36, 13-23.
  • Kelemen, C.D., Hârta, M., Borsai, O., Szabo, K., Clapa, D., Kokoska, L., & Pamfil, D. (2018). Genetic diversity and relatedness among six Ranunculus species unraveled by SRAP markers. Bulletin UASVM Horticulture 75,169-176. http://dx.doi.org/10.15835/buasvmcn-hort:2018.0032
  • Kołodziej, B., Okoń, S., Nucia, A., Ociepa, T., Luchowska, K., Sugier, D., Gevrenova, R., & Henry, M. (2018). Morphological, chemical, and genetic diversity of Gypsophila L. (Caryophyllaceae) species and their potential use in the pharmaceutical industry. Turkish Journal of Botany 42, 257-270. Doi:10.3906/bot-1707-13
  • Korkmaz M., Özçelik H. 2011a. Systematical and morphological characteristics of annual Gypsophila L. (Caryophyllaceae) taxa of Turkey. Biological Diversity and Conservation (Biodicon) 4:79-98.
  • Korkmaz, M., & Özçelik, H. (2011b). Economic importance and using purposes of Gypsophila L. and Ankyropetalum Fenzl and Saponaria L. (Caryophyllaceae) taxa of Turkey. African Journal of Biotechnology 10, 9533-9541. http://dx.doi.org/10.5897/AJB10.2500
  • Korkmaz, M., & Doğan, N.Y. (2015). Biogeographic pattern of genetic diversity detected by RAPD and ISSR analysis in Gypsophila (Caryophyllaceae) species from Turkey. Genetics and Molecular Research 14,8829-8838. https://doi.org/10.4238/2015.august.3.6
  • Lachmayer, M. (2009). Genetic patterns within and among highly isolated populations of Gypsophila fastigiata subsp. arenaria (Caryophyllaceae) at its distribution margins and evaluation of restoration measures [dissertation]. Department of Systematic and Evolutionary Botany, University of Vienna.
  • Li, G., & Quiros, C.F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics 103, 455-461.
  • Madhani, H., Rabeler, R.K., Heubl, G., Madhani5, N., & Zarre, S. (2023). Dynamics of evolution in Irano-Anatolian and Caucasus biodiversity hotspots: Evolutionary radiation and its drivers in Gypsophila (Caryophyllaceae). bioRxiv 2023.11.24.568494 https://doi.org/10.1101/2023.11.24.568494
  • Mahmood, M.A., Hafiz, I.A., Abbasi, N.A., Faheem, M. (2013). Detection of genetic diversity in Jasminum species through RAPD techniques. International Journal of Agriculture and Biology 15, 505-510. http://www.fspublishers.org
  • Martínez-Nieto, M.I., Segarra-Moragues, J.G., Merlo, E., Martínez-Hernández, F., & Mota, J.F. (2013). Genetic diversity, genetic structure and phylogeography of the Iberian endemic Gypsophila struthium (Caryophyllaceae) as revealed by AFLP and plastid DNA sequences: connecting habitat fragmentation and diversification. Botanical Journal of the Linnean Society, 173(4), 654-675. https://doi.org/10.1111/boj.12105
  • Mantel, N.A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209-220.
  • Mhiret, W.N., & Heslop-Harrison, J.S. (2018). Biodiversity in Ethiopian linseed (Linum usitatissimum L.):molecular characterization of landraces and some wild species. Genetic Resources and Crop Evolution 65, 1603-1614. https://doi.org/10.1007/s10722-018-0636-3
  • Mishra, M.K., & Jayarama, S.N. (2011). Genetic relationship among Indigenous Coffee species from India using RAPD, ISSR, and SRAP marker analysis. Biharean Biologists 5, 17-24. http://biologie-oradea.xhost.ro/BihBiol/index.html
  • Nagaraju, J., Damodar, R.K., Nagaraja, G.M.,& Sethuraman, B.N. (2001). Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity 86, 588-597. doi: 10.1046/j.1365-2540.2001.00861.x.
  • Nagl, N., Taški-Ajduković, K., Popovic, A., Curcic, Z., Danojevic, D., & Kovacev, L. (2011). Estimation of genetic variation among related sugar beet genotypes by using RAPD. Genetika 3, 575-582. http://dx.doi.org/10.2298/GENSR1103575N
  • Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafal-Ski, A. (1996). The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2, 225-238. https://doi.org/10.1007/BF00564200
  • Rady, M.R. (2006). In vitro culture of Gypsophila paniculata L. and random amplified polymorphic DNA analysis of the propagated plants. Biologia Plantarum 50, 507-513. https://doi.org/10.1007/s10535-006-0080-7
  • Rajwade, A.E., Arora, R.S., Kadoo, N.Y., Harsulkar, A.M., Ghorpade, P.B.,& Gupta, V.S. (2010). Relatedness of Indian flax genotypes (Linum usitatissimum L.): An Inter-Simple Sequence Repeat (ISSR) primer assay. Molecular Biotechnology 45, 161-170. https://doi.org/10.1007/s12033-010-9256-7
  • Rohlf, F. J., & Fisher, D.L. (1968). Test for hierarchical structure in random data sets. Systematic Biology, 17, 407-412. https://doi.org/10.1093/sysbio/17.4.407
  • Rohlf, F.J. (2000). NTSYS-pc, numerical taxonomy and multivarite analysis system, version 2.02. New York, Exeter, Setauket.
  • Serrote, C.M.L., Reiniger, L.R.S., Silva, K.B., dos Santos Rabaiolli, S.M., & Stefanel, C.M. (2020). Determining the polymorphism information content of a molecular marker. Gene 726, 144175. https://doi.org/10.1016/j.gene.2019.144175
  • Smith, J.S.C., Chin, E.C.L., Shu, H., Smith, O.S., Wall, S.J., Senior, M.L., Mitchell, S.E., Kresovich, S., & Ziehl,e L. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theoretical and Applied Genetics 95, 163-173. https://doi.org/10.1007/s001220050544
  • Souza, E., & Sorrells, M.E. (1991). Relationships among 70 North American Oat germplasms:I. Cluster analysis using quantitative characters. Crop Sciences 31, 599-605. http://dx.doi.org/10.2135/cropsci1991.0011183X003100030010x
  • Xiao Peng, F., Guo Gui, N., Li Ping, G., & Man Zhu, B. (2008). Genetic diversity of Dianthus accessions as assessed using two molecular markers system (SRAPs and ISSRs) and morphological traits. Scientia Horticulturae 117, 263-270. http://dx.doi.org/10.1016/j.scienta.2008.04.001
  • Xie, W., Zhang, X., Cai, H., Liu, W., & Peng, Y. (2010). Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Biochemical Systematics and Ecology 38, 740-749. https://doi.org/10.1016/j.bse.2010.06.009
  • van Zonneveld, M., Dawson, I., Thomas, E., Scheldeman, X., van Etten, J., Loo, J., et al. (2014). Application of molecular markers in spatial analysis to optimize in situ conservation of plant genetic resources. In:
  • Tuberosa R, Graner A, Frison E, editors. Genomics of plant genetic resources. The Netherlands: Springer 67-91.
  • Zvi, M.M.B., Zuker, A., Ovadis, M., Shklarman, E., Ben-Meir, H., Zenvirt, S., & Vainstein, A. (2008). Agrobacterium- mediated transformation of Gypsophila (Gypsophila paniculata L.). Molecular Breeding 22, 543-553. https://doi.org/10.1007/s11032-008-9197-z

Türkiye'deki Gypsophila ve Silene Türleri Arasındaki Genetik Çeşitlilik ve İlişkilerin SRAP Belirteçleri Kullanılarak Değerlendirilmesi

Year 2025, Volume: 28 Issue: 1, 83 - 95
https://doi.org/10.18016/ksutarimdoga.vi.1398542

Abstract

Cipsofilya, Caryophyllaceae familyasının bir üyesi olup cinsi yaklaşık 150 türden oluşur. Bazı türleri, bitkisel ilaç ve gıda gibi çeşitli kullanımlar için ticari olarak yetiştirilmektedir. Dünya çapında en yaygın kesme çiçek olarak kullanılmaktadır. Gypsophila türleri ana genetik kaynak merkezi olan Türkiye'de yaygın olarak bulunmaktadır. Bu çalışmada, ilk olarak Türkiye'deki yerel bölgelerden Gypsophila L. genotipleri toplandı. İkinci olarak, moleküler belirteçler kullanarak genetik çeşitlilik, ıslah programları ve germplazmayı koruma stratejileri için değerli bilgiler elde edildi. Moleküler belirteç olarak dizi ilişkili çoğaltılmış polimorfizm (SRAP), 13 tür içeren (G. viscosa, G. simonii, G. venusta, G. bicolor, G. simulatrix, G. bitlisensis, G. germanicopolitana, G. perfoliata, G. arrostii, G. eleganas, G. paniculata ve G. aucheri) 41 Gypsophila (Caryophyllaceae) genotip ve iki Silene tipin (S. vulgaris L. ve Silene spp.) genetik farklılık ve akrabalık durumunu belirlemek amacıyla kullanılmıştır. Sonuç olarak, 20 primer kombinasyonundan 153 skorlanabilir fragment üretilmiş ve ayrıca tüm belirteçlerr 43 genotip için %100 polimorfizm göstermiştir. Kofenetik korelasyon r değerleri (r ≥ 0,80) hesaplanarak, SRAP belirteçlerinin oluşturduğu dendrogramların önemi bilgiler sunmuştur. Gypsophila ve Silene türleri alt türlere ve bölgelere göre gruplandırılmıştır. Sonuçlar, SRAP belirteçlerinin Gypsophila L. genotipleri arasındaki çeşitliliği ve ilişkileri araştırmak için yararlı olduğunu göstermiştir. Ayrıca, bu veriler ıslah programında yeni Gypsophila L. çeşitlerinin geliştirilmesinde de kullanılabilir.

Supporting Institution

TÜBİTAK

Project Number

104O364

Thanks

This study is a part of the project numbered 104O364 supported by The Scientific and Technological Research Council of Turkey (TUBITAK). The authors would like to thank TUBITAK for funding. I also thank Prof. Dr. Osman Karagüzel for his assistance in plant material.

References

  • Akçali Giachino, R.R. (2023). Evaluation of some local and registered safflower (Carthamus tinctorius L.) Varieties based on SRAP markers. KSU Journal of Agriculture and Nature 26 (6), 1325-1336. https://doi.org/10.18016/ksutarimdoga.vi.1168608
  • Al-Faifi, S.A., Migdadi, H.M., Al-doss, A., Ammar, M.H., El-Harty, E.H., Khan, M.A., Javed, M.M., & Alghamdi, S.S. (2013). Morphological and molecular genetic variability analyses of Saudi lucerne (Medicago sativa L.) landraces. Crop and Pasture Science 64,137-46. https://doi.org/10.1071/CP12271
  • Anderson, J.A., Churchill, G.A., Sutrique, J.E., Tanksley, S.D., & Sorrells, M.E. (1993). Optimizing parental selection for genetic linkage maps. Genome 36,181-186. https://doi.org/10.1139/g93-024
  • Anonymous (2018). Cut flower sector report. Republic of Turkey, Prime Ministry Foreign Trade Undersecretariat, Directorate General for Export, Antalya Exporters Union General Secretary, 32p. www.aib.org.tr, www.dtm.gov.tr. (Accessed: 20.10.2022).
  • Ataslar, E., Potoğlu, E., & Tokur, S. (2009). Pollen morphology of some Gypsophila L. (Caryophyllaceae) species and its taxonomic value. Turkish Journal of Botany 3, 335-351. https://doi.org/10.3906/bot-0810-19
  • Barakat, M.N., & El-Sammak, H. (2011) . In vitro culture and plant regeneration from shoot tip and lateral bud explants of Gypsophila paniculata L.. Journal of Medicinal Plants Research 5, 3351-3358. http://www.academicjournals.org/JMPR
  • Bargish, T.A., & Rahmani, F. (2016). SRAP Markers based genetic analysis of Silene species. Journal of Tropical Biology and Conservation 13, 57-70.
  • Barkoudah, Y.I. (1962). A revision of Gypsophila, Bolanthus, Ankyropetalum and Phryna. Wentia 9, 1-203. Bogani, P., Calistri, E., Intrieri, M.C., Buiatti, M., Vettori, L., Schiff, S., et al. (2012). Novel tools for the genetic breeding of Gypsophila. Acta Italus Hortus 4, 58-64.
  • Bolger, M.E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B., & Mayer, K.F.X. (2014). Plant genome sequencing - applications for crop improvement. Current Opinion in Biotechnology 26, 31-37. https://doi.org/10.1016/j.copbio.2013.08.019
  • Botstein, D., White, R.L., Skalnick, M.H., & Davies, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics 32, 314-331.
  • Budak, H., Shearman, R.C., Parmaksiz, I., Gaussoin, R.E., Riordan, T.P., & Dweikat, I. (2004). Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theoretical and Applied Genetics 108, 328-334. https://doi.org/10.1007/s00122-003-1428-4
  • Calistri, E., Buiatti, M., & Bogani, P. (2014). Characterization of Gypsophila species and commercial hybrids with nuclear whole-genome and cytoplasmic molecular markers. Plant Biosystems 1-11. https://doi.org/10.1080/11263504.2014.944609
  • Chesnokov, Yu.V.,& Artemyeva, A.M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology 50, 571-578.
  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology 26, 297-302.
  • Doyle, J.J., & Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.
  • Dudley, J.W. (1994). Comparison of genetic distance estimators using molecular marker data. Joint Plant Breeding Symposia 3-7.
  • Ghislain, M., Zhang, D., Fajardo, D., Huaman, Z., & Hijmans, R. (1999). Marker-assisted samplingof the cultivated andean potato Solanum phureja collection using RAPD markers. Genetic Resources and Crop Evolution 46, 547-555. https://doi.org/10.1023/A:1008724007888
  • Hamrick, J.L., & Godt, M.J.W. (1989). Allozyme diversity in plant species. In: Brown A.H.D., Clegg M.T., Kahler A.L. and Weir B.S. Eds. Plant Population Genetics, Breeding, and Germplasm Resources, 43-63, Sinauer Associates, Sunderland.
  • Intrieri, M,C., Calistri, E., Nieddu, F., Pasqualetto, P., Marcello, B., & Patrizia, B. (2010). Molecular characterization of gypsophila cultivars with ISSR and TRAP markers. Proceedings of the 54th Italian Society of Agricultural Genetics Annual Congress.
  • Jin, C., Liu, B., Ruan, J., Yang, C.,& Li, F. (2022). Development of InDel Markers for Gypsophila paniculata based on genome resequencing. Horticulturae 8, 921. https://doi.org/10.3390/horticulturae8100921
  • Kanayama, Y., Kato, K., & Moriguchi, R. (2007). Genetic and molecular aspects of Gypsophila. Genes, Genomes and Genomics 1(1), 63-65.
  • Karagüzel, O. (2003). Influence of different greenhouse conditions on growth and flowering of Gypsophila paniculata ‘Perfecta’. Mediterranean Agricultural Sciences 16, 51-60. https://dergipark.org.tr/tr/pub/akdenizfderg/issue/1585/19690
  • Karagüzel, O., & Ortaçeşme, V. (2000). The effect of planting frequency on yield, quality and efficient use of lighting energy in Gypsophila cultivation. Turkish Journal of Agriculture and Forestry 24 (6), 691-697. https://journals.tubitak.gov.tr/agriculture/vol24/iss6/8
  • Kaya A.S., Karagüzel Ö., Aydınşakir K., Kazaz S., Özçelik A. 2012. Usage possibilities of some Gypsophila (Gypsophila sp.) species naturally grown in Turkey as ornamental plants. Derim 29, 37-47.
  • Kaya, A.S., Aydinşakir, K., Erdal, Ş., & Kazaz, S. (2019). The effects of different applications on the cut flower performance of the promising Gypsophila genotype (GA 8). Derim 36, 13-23.
  • Kelemen, C.D., Hârta, M., Borsai, O., Szabo, K., Clapa, D., Kokoska, L., & Pamfil, D. (2018). Genetic diversity and relatedness among six Ranunculus species unraveled by SRAP markers. Bulletin UASVM Horticulture 75,169-176. http://dx.doi.org/10.15835/buasvmcn-hort:2018.0032
  • Kołodziej, B., Okoń, S., Nucia, A., Ociepa, T., Luchowska, K., Sugier, D., Gevrenova, R., & Henry, M. (2018). Morphological, chemical, and genetic diversity of Gypsophila L. (Caryophyllaceae) species and their potential use in the pharmaceutical industry. Turkish Journal of Botany 42, 257-270. Doi:10.3906/bot-1707-13
  • Korkmaz M., Özçelik H. 2011a. Systematical and morphological characteristics of annual Gypsophila L. (Caryophyllaceae) taxa of Turkey. Biological Diversity and Conservation (Biodicon) 4:79-98.
  • Korkmaz, M., & Özçelik, H. (2011b). Economic importance and using purposes of Gypsophila L. and Ankyropetalum Fenzl and Saponaria L. (Caryophyllaceae) taxa of Turkey. African Journal of Biotechnology 10, 9533-9541. http://dx.doi.org/10.5897/AJB10.2500
  • Korkmaz, M., & Doğan, N.Y. (2015). Biogeographic pattern of genetic diversity detected by RAPD and ISSR analysis in Gypsophila (Caryophyllaceae) species from Turkey. Genetics and Molecular Research 14,8829-8838. https://doi.org/10.4238/2015.august.3.6
  • Lachmayer, M. (2009). Genetic patterns within and among highly isolated populations of Gypsophila fastigiata subsp. arenaria (Caryophyllaceae) at its distribution margins and evaluation of restoration measures [dissertation]. Department of Systematic and Evolutionary Botany, University of Vienna.
  • Li, G., & Quiros, C.F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics 103, 455-461.
  • Madhani, H., Rabeler, R.K., Heubl, G., Madhani5, N., & Zarre, S. (2023). Dynamics of evolution in Irano-Anatolian and Caucasus biodiversity hotspots: Evolutionary radiation and its drivers in Gypsophila (Caryophyllaceae). bioRxiv 2023.11.24.568494 https://doi.org/10.1101/2023.11.24.568494
  • Mahmood, M.A., Hafiz, I.A., Abbasi, N.A., Faheem, M. (2013). Detection of genetic diversity in Jasminum species through RAPD techniques. International Journal of Agriculture and Biology 15, 505-510. http://www.fspublishers.org
  • Martínez-Nieto, M.I., Segarra-Moragues, J.G., Merlo, E., Martínez-Hernández, F., & Mota, J.F. (2013). Genetic diversity, genetic structure and phylogeography of the Iberian endemic Gypsophila struthium (Caryophyllaceae) as revealed by AFLP and plastid DNA sequences: connecting habitat fragmentation and diversification. Botanical Journal of the Linnean Society, 173(4), 654-675. https://doi.org/10.1111/boj.12105
  • Mantel, N.A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209-220.
  • Mhiret, W.N., & Heslop-Harrison, J.S. (2018). Biodiversity in Ethiopian linseed (Linum usitatissimum L.):molecular characterization of landraces and some wild species. Genetic Resources and Crop Evolution 65, 1603-1614. https://doi.org/10.1007/s10722-018-0636-3
  • Mishra, M.K., & Jayarama, S.N. (2011). Genetic relationship among Indigenous Coffee species from India using RAPD, ISSR, and SRAP marker analysis. Biharean Biologists 5, 17-24. http://biologie-oradea.xhost.ro/BihBiol/index.html
  • Nagaraju, J., Damodar, R.K., Nagaraja, G.M.,& Sethuraman, B.N. (2001). Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity 86, 588-597. doi: 10.1046/j.1365-2540.2001.00861.x.
  • Nagl, N., Taški-Ajduković, K., Popovic, A., Curcic, Z., Danojevic, D., & Kovacev, L. (2011). Estimation of genetic variation among related sugar beet genotypes by using RAPD. Genetika 3, 575-582. http://dx.doi.org/10.2298/GENSR1103575N
  • Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafal-Ski, A. (1996). The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2, 225-238. https://doi.org/10.1007/BF00564200
  • Rady, M.R. (2006). In vitro culture of Gypsophila paniculata L. and random amplified polymorphic DNA analysis of the propagated plants. Biologia Plantarum 50, 507-513. https://doi.org/10.1007/s10535-006-0080-7
  • Rajwade, A.E., Arora, R.S., Kadoo, N.Y., Harsulkar, A.M., Ghorpade, P.B.,& Gupta, V.S. (2010). Relatedness of Indian flax genotypes (Linum usitatissimum L.): An Inter-Simple Sequence Repeat (ISSR) primer assay. Molecular Biotechnology 45, 161-170. https://doi.org/10.1007/s12033-010-9256-7
  • Rohlf, F. J., & Fisher, D.L. (1968). Test for hierarchical structure in random data sets. Systematic Biology, 17, 407-412. https://doi.org/10.1093/sysbio/17.4.407
  • Rohlf, F.J. (2000). NTSYS-pc, numerical taxonomy and multivarite analysis system, version 2.02. New York, Exeter, Setauket.
  • Serrote, C.M.L., Reiniger, L.R.S., Silva, K.B., dos Santos Rabaiolli, S.M., & Stefanel, C.M. (2020). Determining the polymorphism information content of a molecular marker. Gene 726, 144175. https://doi.org/10.1016/j.gene.2019.144175
  • Smith, J.S.C., Chin, E.C.L., Shu, H., Smith, O.S., Wall, S.J., Senior, M.L., Mitchell, S.E., Kresovich, S., & Ziehl,e L. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theoretical and Applied Genetics 95, 163-173. https://doi.org/10.1007/s001220050544
  • Souza, E., & Sorrells, M.E. (1991). Relationships among 70 North American Oat germplasms:I. Cluster analysis using quantitative characters. Crop Sciences 31, 599-605. http://dx.doi.org/10.2135/cropsci1991.0011183X003100030010x
  • Xiao Peng, F., Guo Gui, N., Li Ping, G., & Man Zhu, B. (2008). Genetic diversity of Dianthus accessions as assessed using two molecular markers system (SRAPs and ISSRs) and morphological traits. Scientia Horticulturae 117, 263-270. http://dx.doi.org/10.1016/j.scienta.2008.04.001
  • Xie, W., Zhang, X., Cai, H., Liu, W., & Peng, Y. (2010). Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Biochemical Systematics and Ecology 38, 740-749. https://doi.org/10.1016/j.bse.2010.06.009
  • van Zonneveld, M., Dawson, I., Thomas, E., Scheldeman, X., van Etten, J., Loo, J., et al. (2014). Application of molecular markers in spatial analysis to optimize in situ conservation of plant genetic resources. In:
  • Tuberosa R, Graner A, Frison E, editors. Genomics of plant genetic resources. The Netherlands: Springer 67-91.
  • Zvi, M.M.B., Zuker, A., Ovadis, M., Shklarman, E., Ben-Meir, H., Zenvirt, S., & Vainstein, A. (2008). Agrobacterium- mediated transformation of Gypsophila (Gypsophila paniculata L.). Molecular Breeding 22, 543-553. https://doi.org/10.1007/s11032-008-9197-z
There are 53 citations in total.

Details

Primary Language English
Subjects Horticultural Production (Other)
Journal Section RESEARCH ARTICLE
Authors

Münevver Göçmen 0000-0002-8445-2068

Ayşe Serpil Kaya 0000-0001-5236-2562

Köksal Aydinşakir 0000-0003-0225-7646

Adnan Özçelik 0000-0002-5096-775X

İlknur Polat 0000-0001-9841-847X

Project Number 104O364
Early Pub Date January 30, 2025
Publication Date
Submission Date December 6, 2023
Acceptance Date May 6, 2024
Published in Issue Year 2025Volume: 28 Issue: 1

Cite

APA Göçmen, M., Kaya, A. S., Aydinşakir, K., Özçelik, A., et al. (2025). Assessment of Genetic Diversity and Relationships among Gypsophila and Silene Species from Türkiye based on SRAP Markers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(1), 83-95. https://doi.org/10.18016/ksutarimdoga.vi.1398542


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149