Research Article
BibTex RIS Cite

Effects of Zinc Oxide Nanoparticle on Antioxidant System in Bean Leaves

Year 2025, Volume: 28 Issue: 1, 25 - 35
https://doi.org/10.18016/ksutarimdoga.vi.1530864

Abstract

Nanotechnology can be most simply defined as technology at the nanoscale. Heavy metal stress often induces reactive oxygen species (ROS) and causes oxidative stress. Antioxidant enzymes, metabolites, flavonoids, carotenoids, polyols, cytosolic ascorbate, and peroxiredoxin play roles in ROS scavenging. Certain antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and glutathione reductase (GR) defend against metal toxicity. In this study, the effects of zinc nanoparticles on certain biochemical parameters in the leaves of bean (Phaseolus vulgaris L.) were examined. For this purpose, ZnO nanoparticle concentrations of 0.1 mM, 0.01 mM, and 0.001 mM were applied. At the end of 120 hours, malondialdehyde, proline, glutathione, total soluble protein, and the activities of superoxide dismutase and catalase enzymes were determined. As a result, all findings from this study revealed that ZnO nanoparticle applications activated antioxidant defense mechanisms in the leaves of Phaseolus vulgaris L. It was determined that the mentioned ZnO nanoparticle exhibited more pronounced effects, especially at lower doses. Nano-sized metals were found to exert toxic effects on the leaves of Phaseolus vulgaris L."

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3
  • Alkaladi, A. (2019). Vitamins E and C ameliorate the oxidative stresses induced by zinc oxide nanoparticles on liver and gills of Oreochromis niloticus. Saudi Journal of Biological Sciences, 26(2), 357–362. https://doi.org/10.1016/j.sjbs.2018.07.001
  • Cekic, F. O., Ekinci, S., Inal, M. S., & Ozakca, D. (2017). Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turkish Journal of Biology, 41(5), 700-707. https://doi.org/10.3906/biy-1608-36
  • Codex Alimentarius Commission. (2001). Revised standards for honey. Codex Standard 12-1981, Rev 1 (1987), Rev 2 (2001). Rome, FAO.
  • Dai, H., Shan, C., Zhao, H., Li, J., Jia, G., Jiang, H., San-Qiao, W., & Wang, Q. (2015). The difference in antioxidant capacity of four alfalfa cultivars in response to Zn. Ecotoxicology and Environmental Safety, 114, 312–317. https://doi.org/10.1016/j.ecoenv.2014.04.044
  • Fazelian, N., Yousefzadi, M., & Movafeghi, A. (2020). Algal response to metal oxide nanoparticles: Analysis of growth, protein content, and fatty acid composition. BioEnergy Research, 13, 944–954. https://doi.org/10.1007/s12155-020-10099-7
  • González-García, Y., Cárdenas-Álvarez, C., Cadenas-Pliego, G., Benavides-Mendoza, A., Cabrera-de-la-Fuente, M., Sandoval-Rangel, A., Valdés-Reyna, J., & Juárez-Maldonado, A. (2021). Effect of three nanoparticles (Se, Si, and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants, 10(2), 217. https://doi.org/10.3390/plants10020217
  • Hidour, S., Karmous, I., & Kadri, O. (2022). Clue of zinc oxide and copper oxide nanoparticles in the remediation of cadmium toxicity in Phaseolus vulgaris L. via the modulation of antioxidant and redox systems. Environmental Science and Pollution Research, 29, 85271–85285. https://doi.org/10.1007/s11356-022-01889-4
  • Hoagland, D. R., & Arnon, D. I. (1938). The water culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347.
  • Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1-18. https://doi.org/10.1155/2018/1062562
  • Karatas, F., Karatepe, M., & Baysar, A. (2002). Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Analytical Biochemistry, 311(1), 76-79. https://doi.org/10.1016/s0003-2697(02)00387-1
  • Khan, M. A., Yasmin, H., Shah, Z. A., Rinklebe, J., Alyemeni, M. N., & Ahmad, P. (2022). Co-application of biofertilizer and zinc oxide nanoparticles upregulate protective mechanism culminating improved arsenic resistance in maize. Chemosphere, 294, 133796. https://doi.org/10.1016/j.chemosphere.2022.133796
  • Kirecci, O. A. (2018). Enzymatic and non-enzymatic antioxidants in plants. Bitlis Eren University Journal of Science and Technology, 7(2), 473-483.
  • Klejdus, B., Zehnalek, J., Adam, V., Petrek, J., Kizek, R., Vacek, J., Trnková, L., Rozik, R., Havel, L., & Kuban, V. (2004). Sub-picomole high-performance liquid chromatographic/mass spectrometric determination of glutathione in the maize (Zea mays L.) kernels exposed to cadmium. Analytica Chimica Acta, 520(1-2), 117-124. https://doi.org/10.1016/j.aca.2004.02.060
  • Li, M., Ahammed, J. G., Li, C., Bao, X., Yu, J., Huang, C., Yin, H., & Zhou, J. (2016). Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Frontiers in Plant Science, 7, 615. https://doi.org/10.3389/fpls.2016.00615
  • Li, X., Yang, Y., Jia, L., Chen, H., & Wei, X. (2012). Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicology and Environmental Safety, 89, 150–157. https://doi.org/10.1016/j.ecoenv.2012.11.025
  • Liu, L., Nian, H., & Lian, T. (2022). Plants and rhizospheric environment: Affected by zinc oxide nanoparticles (ZnO NPs). Plant Physiology and Biochemistry, 185, 91–100. https://doi.org/10.1016/j.plaphy.2022.05.032
  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry, 193, 265-275.
  • Majumdar, S., Videa, J. R. P., Bandyopadhyay, S., Michel, H. C., Viezcas, J. A. H., Sahi, S. V., & Gardea-Torresdey, J. L. (2014). Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. Journal of Hazardous Materials, 278, 279-287. https://doi.org/10.1016/j.jhazmat.2014.06.009
  • Mehla, N., Sindhi, V., Josula, D., Bisht, P., & Wani, S. H. (2017). An introduction to antioxidants and their roles in plant stress tolerance. In M. Khan & N. Khan (Eds.), Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress (pp. 1-23). Springer. https://doi.org/10.1007/978-981-10-5254-5_1
  • Mehrian, S. K., Heidari, R., & Rahmani, F. (2015). Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian Journal of Plant Physiology, 20(3), 257–263. https://doi.org/10.1007/s40502-015-0171-6
  • Millar, A. H., Mittova, V., Kiddle, G., Heazlewood, J. L., Bartoli, C. G., Theodoulou, F. L., & Foyer, C. H. (2003). Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiology, 133, 443-447. https://doi.org/10.1104/pp.103.028399
  • Mushtaq, A., Khan, Z., Khan, S., Rizwan, S., Jabeen, U., Bashir, F., Ismail, T., Anjum, S., & Masood, A. (2020). Effect of silicon on antioxidant enzymes of wheat (Triticum aestivum L.) grown under salt stress. Silicon, 12, 2783-2788. https://doi.org/10.1007/s12633-020-00524-z
  • Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151. https://doi.org/10.3390/plants8060151
  • Ramsden, J. (2016). Nanotechnology: An introduction (2nd ed.). Elsevier Inc. https://doi.org/10.1016/C2014-0-03912-3
  • Rao, S., & Shekhawat, G. S. (2014). Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue-specific accumulation in Brassica juncea. Journal of Environmental Chemical Engineering, 2(1), 105–114. https://doi.org/10.1016/j.jece.2013.11.029
  • Reddy Pullagurala, V. L., Adisa, I. O., Kim, S., Barrios, B., Medina-Velo, I. O., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Finding the conditions for the beneficial use of ZnO nanoparticles towards plants: A review. Environmental Pollution, 241, 1175-1181. https://doi.org/10.1016/j.envpol.2018.06.036
  • Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to term salinity stress in relation to oxidative stress, antioxidant activity, and osmolyte concentration. Plant Science, 163(5), 1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9
  • Santás-Miguel, V., Arias-Estévez, M., Rodríguez-Seijo, A., & Arenas-Lago, D. (2023). Use of metal nanoparticles in agriculture: A review on the effects on plant germination. Environmental Pollution, 334, 122222. https://doi.org/10.1016/j.envpol.2023.122222
  • Salehi, H., Diego, N. D., Rad, A. C., Benjamin, J. J., Trevisan, M., & Lucini, L. (2021). Exogenous application of ZnO nanoparticles and ZnSO4 distinctly influence the metabolic response in Phaseolus vulgaris L. Science of the Total Environment, 778, 146331. https://doi.org/10.1016/j.scitotenv.2021.146331
  • Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., Jan, S., & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101-207. https://doi.org/10.1016/j.jksus.2020.10.004
  • Singh, N. B., Amist, N., Yadav, K., Singh, D., Pandey, J. K., & Singh, S. C. (2013). Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing, 3(4), 353–364. https://doi.org/10.1166/jnan.2013.1156
  • Srivastav, A., Ganjewala, D., Singhal, R. K., Rajput, V. D., Minkina, T., Voloshina, M., Shrivastava, S., & Shrivastava, M. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 10(12), 2556. https://doi.org/10.3390/plants10122556
  • Tarrahi, R., Abedi, M., Vafaei, F., Khataee, A., Dadpour, M., & Movafeghi, A. (2018). Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents, and antioxidant enzyme activities. Journal of Environmental Science, 64, 130-138. https://doi.org/10.1016/j.jes.2016.12.020
  • Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778. https://doi.org/10.1016/j.plaphy.2016.08.022
  • Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiology and Biochemistry, 110, 59-69. https://doi.org/10.1016/j.plaphy.2016.08.022
  • Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwari, M., Sharma, N., & Sahi, S. V. (2016). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118–127. https://doi.org/10.1016/j.plaphy.2016.09.004
  • Yilmaz, O., Keser, S., Tuzcu, M., Guvenc, M., Cetintas, B., Irtegun, S., Tastan, H., & Sahin, K. (2009). A practical HPLC method to measure reduced (GSH) and oxidized (GSSG) glutathione concentrations in animal tissues. Journal of Animal and Veterinary Advances, 8(2), 343-347.

Çinko Oksit Nanopartikülünün Fasulye Bitkisi Yapraklarinda Antioksidan Sistem Üzerine Etkileri

Year 2025, Volume: 28 Issue: 1, 25 - 35
https://doi.org/10.18016/ksutarimdoga.vi.1530864

Abstract

Nanoteknolojinin en basit tanımı, nanoskalada teknoloji olarak ifade edilebilir. Ağır metal stresi genellikle reaktif oksijen türlerini (ROS) indükler ve oksidatif stres oluşturur. Antioksidan enzimler, metabolitler, flavonoidler, karotenoidler, polioller, sitozolik askorbat ve peroksiredoksin gibi maddeler ROS temizlenmesinde rol oynar. Katalaz (CAT), Askorbat peroksidaz (APX), Süperoksit dismutaz (SOD) ve Glutatyon redüktaz (GR) gibi bazı antioksidan enzimler metal toksisitesine karşı savunma yapar. Bu çalışmada, çinko nanopartikülünün fasulye (Phaseolus vulgaris L.) yapraklarındaki bazı biyokimyasal parametreler üzerindeki etkileri incelendi. Bu amaçla 0.1 mM, 0.01 mM ve 0.001 mM ZnO nanopartikül konsantrasyonları uygulandı. 120 saat sonunda malondialdehit, prolin, glutatyon, toplam çözünür protein ve süperoksit dismutaz ve katalaz enzim aktiviteleri belirlendi. Sonuç olarak, bu çalışmadan elde edilen tüm sonuçlar ZnO Nanopartikül uygulamalarının Phaseolus vulgaris L. yapraklarında antioksidan savunmayı aktive ettiğini ortaya koydu. Bahsi geçen ZnO nanoparçacığın, özellikle düşük doza bağlı olarak daha ciddi etkiler gösterdiği belirlendi. Nano boyuttaki metaller, Phaseolus vulgaris L. yapraklarında toksik bir etki oluşturdu.

Ethical Statement

Yazarlar arasında çıkar çatışması bulunmamaktadır.

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3
  • Alkaladi, A. (2019). Vitamins E and C ameliorate the oxidative stresses induced by zinc oxide nanoparticles on liver and gills of Oreochromis niloticus. Saudi Journal of Biological Sciences, 26(2), 357–362. https://doi.org/10.1016/j.sjbs.2018.07.001
  • Cekic, F. O., Ekinci, S., Inal, M. S., & Ozakca, D. (2017). Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turkish Journal of Biology, 41(5), 700-707. https://doi.org/10.3906/biy-1608-36
  • Codex Alimentarius Commission. (2001). Revised standards for honey. Codex Standard 12-1981, Rev 1 (1987), Rev 2 (2001). Rome, FAO.
  • Dai, H., Shan, C., Zhao, H., Li, J., Jia, G., Jiang, H., San-Qiao, W., & Wang, Q. (2015). The difference in antioxidant capacity of four alfalfa cultivars in response to Zn. Ecotoxicology and Environmental Safety, 114, 312–317. https://doi.org/10.1016/j.ecoenv.2014.04.044
  • Fazelian, N., Yousefzadi, M., & Movafeghi, A. (2020). Algal response to metal oxide nanoparticles: Analysis of growth, protein content, and fatty acid composition. BioEnergy Research, 13, 944–954. https://doi.org/10.1007/s12155-020-10099-7
  • González-García, Y., Cárdenas-Álvarez, C., Cadenas-Pliego, G., Benavides-Mendoza, A., Cabrera-de-la-Fuente, M., Sandoval-Rangel, A., Valdés-Reyna, J., & Juárez-Maldonado, A. (2021). Effect of three nanoparticles (Se, Si, and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants, 10(2), 217. https://doi.org/10.3390/plants10020217
  • Hidour, S., Karmous, I., & Kadri, O. (2022). Clue of zinc oxide and copper oxide nanoparticles in the remediation of cadmium toxicity in Phaseolus vulgaris L. via the modulation of antioxidant and redox systems. Environmental Science and Pollution Research, 29, 85271–85285. https://doi.org/10.1007/s11356-022-01889-4
  • Hoagland, D. R., & Arnon, D. I. (1938). The water culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347.
  • Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1-18. https://doi.org/10.1155/2018/1062562
  • Karatas, F., Karatepe, M., & Baysar, A. (2002). Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Analytical Biochemistry, 311(1), 76-79. https://doi.org/10.1016/s0003-2697(02)00387-1
  • Khan, M. A., Yasmin, H., Shah, Z. A., Rinklebe, J., Alyemeni, M. N., & Ahmad, P. (2022). Co-application of biofertilizer and zinc oxide nanoparticles upregulate protective mechanism culminating improved arsenic resistance in maize. Chemosphere, 294, 133796. https://doi.org/10.1016/j.chemosphere.2022.133796
  • Kirecci, O. A. (2018). Enzymatic and non-enzymatic antioxidants in plants. Bitlis Eren University Journal of Science and Technology, 7(2), 473-483.
  • Klejdus, B., Zehnalek, J., Adam, V., Petrek, J., Kizek, R., Vacek, J., Trnková, L., Rozik, R., Havel, L., & Kuban, V. (2004). Sub-picomole high-performance liquid chromatographic/mass spectrometric determination of glutathione in the maize (Zea mays L.) kernels exposed to cadmium. Analytica Chimica Acta, 520(1-2), 117-124. https://doi.org/10.1016/j.aca.2004.02.060
  • Li, M., Ahammed, J. G., Li, C., Bao, X., Yu, J., Huang, C., Yin, H., & Zhou, J. (2016). Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Frontiers in Plant Science, 7, 615. https://doi.org/10.3389/fpls.2016.00615
  • Li, X., Yang, Y., Jia, L., Chen, H., & Wei, X. (2012). Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicology and Environmental Safety, 89, 150–157. https://doi.org/10.1016/j.ecoenv.2012.11.025
  • Liu, L., Nian, H., & Lian, T. (2022). Plants and rhizospheric environment: Affected by zinc oxide nanoparticles (ZnO NPs). Plant Physiology and Biochemistry, 185, 91–100. https://doi.org/10.1016/j.plaphy.2022.05.032
  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry, 193, 265-275.
  • Majumdar, S., Videa, J. R. P., Bandyopadhyay, S., Michel, H. C., Viezcas, J. A. H., Sahi, S. V., & Gardea-Torresdey, J. L. (2014). Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. Journal of Hazardous Materials, 278, 279-287. https://doi.org/10.1016/j.jhazmat.2014.06.009
  • Mehla, N., Sindhi, V., Josula, D., Bisht, P., & Wani, S. H. (2017). An introduction to antioxidants and their roles in plant stress tolerance. In M. Khan & N. Khan (Eds.), Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress (pp. 1-23). Springer. https://doi.org/10.1007/978-981-10-5254-5_1
  • Mehrian, S. K., Heidari, R., & Rahmani, F. (2015). Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian Journal of Plant Physiology, 20(3), 257–263. https://doi.org/10.1007/s40502-015-0171-6
  • Millar, A. H., Mittova, V., Kiddle, G., Heazlewood, J. L., Bartoli, C. G., Theodoulou, F. L., & Foyer, C. H. (2003). Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiology, 133, 443-447. https://doi.org/10.1104/pp.103.028399
  • Mushtaq, A., Khan, Z., Khan, S., Rizwan, S., Jabeen, U., Bashir, F., Ismail, T., Anjum, S., & Masood, A. (2020). Effect of silicon on antioxidant enzymes of wheat (Triticum aestivum L.) grown under salt stress. Silicon, 12, 2783-2788. https://doi.org/10.1007/s12633-020-00524-z
  • Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151. https://doi.org/10.3390/plants8060151
  • Ramsden, J. (2016). Nanotechnology: An introduction (2nd ed.). Elsevier Inc. https://doi.org/10.1016/C2014-0-03912-3
  • Rao, S., & Shekhawat, G. S. (2014). Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue-specific accumulation in Brassica juncea. Journal of Environmental Chemical Engineering, 2(1), 105–114. https://doi.org/10.1016/j.jece.2013.11.029
  • Reddy Pullagurala, V. L., Adisa, I. O., Kim, S., Barrios, B., Medina-Velo, I. O., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Finding the conditions for the beneficial use of ZnO nanoparticles towards plants: A review. Environmental Pollution, 241, 1175-1181. https://doi.org/10.1016/j.envpol.2018.06.036
  • Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to term salinity stress in relation to oxidative stress, antioxidant activity, and osmolyte concentration. Plant Science, 163(5), 1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9
  • Santás-Miguel, V., Arias-Estévez, M., Rodríguez-Seijo, A., & Arenas-Lago, D. (2023). Use of metal nanoparticles in agriculture: A review on the effects on plant germination. Environmental Pollution, 334, 122222. https://doi.org/10.1016/j.envpol.2023.122222
  • Salehi, H., Diego, N. D., Rad, A. C., Benjamin, J. J., Trevisan, M., & Lucini, L. (2021). Exogenous application of ZnO nanoparticles and ZnSO4 distinctly influence the metabolic response in Phaseolus vulgaris L. Science of the Total Environment, 778, 146331. https://doi.org/10.1016/j.scitotenv.2021.146331
  • Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., Jan, S., & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101-207. https://doi.org/10.1016/j.jksus.2020.10.004
  • Singh, N. B., Amist, N., Yadav, K., Singh, D., Pandey, J. K., & Singh, S. C. (2013). Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing, 3(4), 353–364. https://doi.org/10.1166/jnan.2013.1156
  • Srivastav, A., Ganjewala, D., Singhal, R. K., Rajput, V. D., Minkina, T., Voloshina, M., Shrivastava, S., & Shrivastava, M. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 10(12), 2556. https://doi.org/10.3390/plants10122556
  • Tarrahi, R., Abedi, M., Vafaei, F., Khataee, A., Dadpour, M., & Movafeghi, A. (2018). Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents, and antioxidant enzyme activities. Journal of Environmental Science, 64, 130-138. https://doi.org/10.1016/j.jes.2016.12.020
  • Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778. https://doi.org/10.1016/j.plaphy.2016.08.022
  • Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiology and Biochemistry, 110, 59-69. https://doi.org/10.1016/j.plaphy.2016.08.022
  • Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwari, M., Sharma, N., & Sahi, S. V. (2016). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118–127. https://doi.org/10.1016/j.plaphy.2016.09.004
  • Yilmaz, O., Keser, S., Tuzcu, M., Guvenc, M., Cetintas, B., Irtegun, S., Tastan, H., & Sahin, K. (2009). A practical HPLC method to measure reduced (GSH) and oxidized (GSSG) glutathione concentrations in animal tissues. Journal of Animal and Veterinary Advances, 8(2), 343-347.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Plant Physiology
Journal Section RESEARCH ARTICLE
Authors

Oğuz Ayhan Kireçci 0000-0003-2205-4758

Serdar Üzgen 0009-0002-7878-272X

Tuba Okutan 0000-0001-8745-0343

Prof. Dr. Ökkeş Yılmaz 0000-0002-8276-4498

Early Pub Date January 30, 2025
Publication Date
Submission Date August 9, 2024
Acceptance Date December 20, 2024
Published in Issue Year 2025Volume: 28 Issue: 1

Cite

APA Kireçci, O. A., Üzgen, S., Okutan, T., Yılmaz, P. D. Ö. (2025). Çinko Oksit Nanopartikülünün Fasulye Bitkisi Yapraklarinda Antioksidan Sistem Üzerine Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(1), 25-35. https://doi.org/10.18016/ksutarimdoga.vi.1530864


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149