Research Article
BibTex RIS Cite

Effect of abiotic stresses on primary / secondary metabolites and resveratrol in cv. Cabernet-Sauvignon

Year 2025, Volume: 28 Issue: 1, 70 - 82
https://doi.org/10.18016/ksutarimdoga.vi.1559528

Abstract

The research was located at latitude 41° 01’ 11.15” N and longitude 27° 40’ 18.00” E, at an altitude of 60 m above sea level, with 15-year-old Cabernet-Sauvignon/110R vines over two years. The vineyard has a planting distance of 2.6×0.9 m, and the vines are trellised to double cordon Royat. In the vineyard, 4 abiotic stress applications (Shock Action, Leaf Injury, UV-C) including the Control were applied twice a day (morning and evening) for 5 days during 3 different phenological stages (Veraison, Veraison-Harvest, and Harvest). The Leaf Injury was performed once by striking the leaves with a rod. The Shock Action was carried out using a plastic hammer, and the UV-C was applied twice a day for 1 minute. As a result, it was determined that the abiotic stress did not cause significant differences in primary metabolites such as Total Soluble Solids (23.69°Brix) and Total Acidity (7.32 g L-1) but had an increasing effect on secondary metabolites (total tannin, anthocyanin, TPC, resveratrol). Additionally, it was found that they had an enhancing effect on the TPI. In terms of resveratrol, the effects of UV-C (0.35 mg kg-1) and Leaf Injury (0.27 mg kg-1) were noted to be higher than the other two (Shock Action and Control).

Project Number

Bir proje değildir

References

  • Antalick, G., Šuklje, K., Blackman, J. W., Meeks, C., Deloire, A., & Schmidtke, L. M. (2015). Influence of grape composition on red wine ester profile: Comparison between Cabernet Sauvignon and Shiraz cultivars from Australian warm climate. Journal of Agricultural and Food Chemistry, 63(18), 4664-4672. https://doi.org/10.1021/acs.jafc.5b00966
  • Bahar, E. & Yaşasin, A. S. (2010). The yield and berry quality under different soil tillage and clusters thinning treatments in grape (Vitis vinifera L.) cv. Cabernet-Sauvignon. African Journal of Agricultural Research, 5(21), 2986-2993. https://doi.org/10.5897/AJAR.9000739
  • Bahar, E., Korkutal, İ., & Öner, H. (2018). Effects of different culturel practices on must composition in cv. Cabernet-Sauvignon. Selcuk Journal of Agriculture and Food Sciences, 32(1), 1-7.
  • Bahar, E., Korkutal, İ., & Uzun, M. (2024a). Effects of different water stress levels, heterogeneity, and location on berry phytochemical properties in an organic and conventional vineyard (Vitis vinifera cv. Cabernet-Sauvignon). KSÜ Tarım ve Doğa Dergisi, 27(5), 1042-1054. https://doi.org/10.18016/ksutarimdoga.vi.1333996
  • Bahar, E., Korkutal, İ., & Abay, C. (2024b). Cabernet-Sauvignon çeşidi tane fiziksel özelliklerine bazı abiyotik streslerin etkisi (Vitis vinifera L.). MKÜ Tarım Bilimleri Dergisi, 29(2), 589-605. https://doi.org/10.37908/mkutbd.1465178
  • Bahar, E., Korkutal, İ., Köycü, N. D., Uysal Seçkin, G., & Tok Abay, C. (2024c). The effects of some stressors on primary and secondary metabolites in cv. ‘Cabernet-Sauvignon’ and cv. ‘Merlot’ (Vitis vinifera L.). Applied Fruit Science, 66, 2355-2363. https://doi.org/10.1007/s10341-024-01206-5
  • Ballaré, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A., & Bornman, J. F. (2011). Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochemical & Photobiological Sciences, 10, 226-241. https://doi.org/10.1039/c0pp90035d
  • Baluja, J., Diago, M. P., Goovaerts, P., & Tardaguila, J. (2012). Spatio-temporal dynamics of grape anthocyanin accumulation in a Tempranillo vineyard monitored by proximal sensing. Australian Journal of Grape and Wine Research, 18(2), 173-182. https://doi.org/10.1111/j.1755-0238.2012.00186.x
  • Billet, K., Houillé, B., Besseau, S., Mélin, C., Oudin, A., Papon, N., & Lanoue, A. (2018). Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chemistry, 240, 1022-1027. https://doi.org/10.1016/j.foodchem.2017.07.105
  • Bindon, K., Varela, C., Kennedy, J., Holt, H., & Herderich, M. (2013). Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chemistry, 138(2-3): 1696-1705. https://doi.org/10.1016/j.foodchem.2012.09.146
  • Blouin, J. & Guimberteau, G. (2000). Maturation et maturité des raisins. Éditions Féret. 168 p.
  • Bramley, R. G. V. (2005). Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33-42. https://doi.org/10.1111/j.1755-0238.2005.tb00277.x
  • Candar, S. (2023a). Effect of wounding on the maturity and chemical composition of Cabernet Sauvignon (Vitis vinifera L.) berry. Pakistan Journal of Agricultural Sciences, 60(3), 615-625. https://doi.org/10.21162/PAKJAS/23.64
  • Candar, S. (2023b). How abiotic stress induced by artificial wounding changes maturity levels and berry composition of Merlot (Vitis vinifera L.). European Food Research and Technology, 249, 2611-2623. https://doi.org/10.1007/s00217-023-04318-6
  • Cebrián-Tarancón, C., Sánchez-Gómez, R., Fernández-Roldán, F., Alonso, G. L., & Salinas, M. R. (2024). Evolution in the bottling of Cabernet Sauvignon wines macerated with their own toasted vine-shoots. Journal of Agricultural and Food Chemistry, 72(4), 1864-1877. https://doi.org/10.1021/acs.jafc.2c08978
  • Cemeroğlu, B. (2007). Food Analysis. Gıda Teknolojisi Derneği Yayınları, 34, Ankara, 535p.
  • Chapman, D. M., Roby, G., Ebeler, S. E., Guinard, J.-X., & Matthews, M. A. (2005). Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Australian Journal of Grape and Wine Research, 11, 339-347. https://doi.org/10.1111/j.1755-0238.2005.tb00033.x
  • Coombe, B. G. (1995). Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
  • Çaylak, B. A., Yücel, U., & Çetinkaya, N. (2009). Resveratrol content of Turkish wines produced from grapes of different regions. Gıda, 34(6), 381-386.
  • Del-Castillo-Alonso, M. A., Diago, M. P., Tomás-Las-Heras, R., Monforte, L., Soriano, G., Martínez-Abaigar, J., & Núñez-Olivera, E. (2016). Effects of ambient solar UV radiation on grapevine leaf physiology and berry phenolic composition along one entire season under Mediterranean field conditions. Plant Physiology and Biochemistry, 109, 374-386. https://doi.org/10.1016/j.plaphy.2016.10.018
  • Del‐Castillo‐Alonso, M. Á., Monforte, L., Tomás‐Las‐Heras, R., Ranieri, A., Castagna, A., Martínez‐Abaigar, J., & Núñez‐Olivera, E. (2021). Secondary metabolites and related genes in Vitis vinifera L. cv. Tempranillo grapes asinfluenced by UV radiation and berry development. Physiologia Plantarum, 173(3), 709-724. https://doi.org/10.1111/ppl.13483
  • Ferrandino, A., Pagliarani, C., & Pérez-Alvarez, E. P. (2023). Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. Frontiers in Plant Science, 14, 1124298. https://doi.org/10.3389/fpls.2023.1124298
  • Gindri, R. V., Pauletto, R., Franco, F. W., Fortes, J. P., Treptow, T. C., Rodrigues, E., & Sautter, C. K. (2021). Grape UV-C irradiation in the postharvest period as a tool to improve sensorial quality and anthocyanin profile in ‘Cabernet Sauvignon’ wine. Journal of Food Science and Technology, 59(5), 1801-1811. https://doi.org/10.1007/s13197-021-05191-5
  • Hasan, M. M. & Bae, H. (2017). An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules, 22, 294. https://doi.org/10.3390/molecules22020294
  • Holt, H. E., Birchmore, W., Herderich, M. J., & Iland, P. G. (2010). Berry phenolics in Cabernet Sauvignon (Vitis vinifera L.) during late-stage ripening. American Journal of Enology and Viticulture 61(3), 285-299. https://doi.org/10.5344/ajev.2010.61.3.285
  • Iland, P., Bruer, N., Edwards, G., Weeks, S., & Wilkes, E. (2004). Chemical analysis of grapes and wine: Techniques and concepts. Patrick Iland Wine Promotions: Campbelltown. 110p.
  • INRA (2007). Determination d’anthocyanes en echantillons de raisin. Mode operatiore. Ref: MO-LAB-23. Version: 1, Septembre 2007. UE Pech Rouge. 2p.
  • Jeandet, P., Bessis, R., & Gautheron, B. (1991). The production of resveratrol (3, 5, 4'-trihydroxystilbene) by grape berries in different developmental stages. American Journal of Enology and Viticulture, 42(1): 41-46. https://doi.org/10.5344/ajev.1991.42.1.41
  • Jiang, B., Xi, Z., Luo, M., & Zhang, Z. (2013). Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Research International, 51(2), 482-489. https://doi.org/10.1016/j.foodres.2013.01.001
  • Keller, M. (2010). Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research, 16, 56-69. https://doi.org/10.1111/j.1755-0238.2009.00077.x
  • Kennedy, J. A. (2010). Wine colour. In A.G. Reynolds (Eds.), Managing Wine Quality: Viticulture and Wine Quality. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 73-104. https://doi.org/10.1533/9781845699284.1.73.
  • Korkutal, İ., Bahar, E., & Güvemli-Dündar, D. (2019). Determination of the effects of antitranspirants on the grape juice and yield applied in postveraison period in cv. Cabernet-Sauvignon. Akademik Ziraat Dergisi, 8(2), 173-184. https://doi.org/10.29278/azd.584170
  • Kurt, G., Öztürk Çalı, İ., & Gül, M. (2023). Merzifon Karası üzüm çeşidinin (Vitis vinifera L.) fenolik madde, flavonoid ve antioksidan aktivitesi. KSÜ Tarım ve Doğa Dergisi, 26(1), 90-96. https://doi.org/10.18016/ksutarimdoga.vi.886023
  • Langcake, P. & Pryce, R. J. (1977). The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry, 16(8), 1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9
  • Luzio, A., Bernardo, S., Correia, C., Moutinho-Pereira, J., & Dinis, L. (2021). Phytochemical screening and antioxidant activity on berry, skin, pulp and seed from seven red Mediterranean grapevine varieties (Vitis vinifera L.) treated with kaolin foliar sunscreen. Scientia Horticulturae, 281, 109962. https://doi.org/10.1016/j.scienta.2021.109962
  • Moreno-Olivares, J. D., Giménez-Bañón, M. J., Ruiz-García, L. Gómez-Martínez, J. C., & Gil-Muñoz, R. (2024). New grape varieties descending from Monastrell characterised by their low sugar and high polyphenolic content. European Food Research and Technology, 1438-2385. https://doi.org/10.1007/s00217-024-04611-y
  • Ortega-Regules, A., Romero-Cascales, I., Ros García, J. M., Bautista-Ortín, A. B., López-Roca, J. M., Fernández-Fernández, J. I., & Gómez-Plaza, E. (2008). Anthocyanins and tannins in four grape varieties (Vitis vinifera L.). Evolution of their content and extractability. OENO One, 42(3), 147-156. https://doi.org/10.20870/oeno-one.2008.42.3.818
  • Ramos, M. C., Ibáñez Jara, M. Á., Rosillo, L., & Salinas, M. R. (2024). Effect of temperature and water availability on grape phenolic compounds and their extractability in Merlot grown in a warm area. Scientia Horticulturae, 337, 113475. https://doi.org/10.1016/j.scienta.2024.113475
  • Rienth, M., Vigneron, N., Darriet, P., Sweetman, C., Burbidge, C., Bonghi, C., Walker, R. P., Famiani, F., & Castellarin, S. D. (2021). Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario–A review. Frontiers in Plant Science, 12, 643258. https://doi.org/10.3389/fpls.2021.643258
  • Romero-Pérez, A. I., Ibern-Gómez, M., Lamuela-Raventós, R. M., & de la Torre-Boronat, M. C. (1999). Piceid, the major resveratrol derivative in grape juices. Journal of Agricultural and Food Chemistry, 47(4), 1533-1536. https://doi.org/10.1021/jf981024g
  • Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Within-field temporal stability of some parameters in viticulture: Potential toward a site specific management. Journal International des Sciences de la Vigne et du Vin, 42(1), 27-39. https://doi.org/10.20870/oeno-one.2008.42.1.834
  • Trought, M. C. T. & Bramley, R. G. V. (2011). Vineyard variability in Marlborough, New Zealand: Characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Australian Journal of Grape and Wine Research, 17(1), 79-89. https://doi.org/10.1111/j.1755-0238.2010.00120.x
  • Valletta, A., Iozia, L. M., & Leonelli, F. (2021). Impact of environmental factors on stilbene biosynthesis. Plants, 10(1), 90. https://doi.org/10.3390/plants10010090
  • van Leeuwen, C., Barbe, J. C., Darriet, P., Destrac-Irvine, A., Gowdy, M., Lytra, G., & Thibon, C. (2022). Aromatic maturity is a cornerstone of terroir expression in red wine. OENO One, 56(2), 335-351. https://doi.org/10.20870/oeno-one.2022.56.2.5441
  • Waterhouse, A. L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6(1), I1-1. https://doi.org/10.1002/0471142913.fai0101s06
  • Xavier Machado, T. de O., Portugal, I. B. M., da Silva Padilha, C. V., Padilha, F. F., & dos Santos Lima, M. (2021). New trends in the use of enzymes for the recovery of polyphenols in grape by products. Journal of Food Biochemistry, 45(5), e13712. https://doi.org/10.1111/jfbc.13712

Cabernet-Sauvignon Üzüm Çeşidinde Abiyotik Streslerin Primer / Sekonder Metabolitler ve Resveratrole Etkisi

Year 2025, Volume: 28 Issue: 1, 70 - 82
https://doi.org/10.18016/ksutarimdoga.vi.1559528

Abstract

Araştırma; 41° 01’ 11.15” N enlem ve 27° 40’ 18.00” E boylamda ve denizden 60 m yüksekte ve 15 yaşındaki Cabernet-Sauvignon/110R omcaları kurulmuş ve iki yıl süreyle yürütülmüştür. Bağın dikim aralık ve mesafesi 2.6×0.9 m olup, asmalar çift kollu kordon Royat terbiye şekline sahiptir. Araştırma bağda, 3 farklı fenolojik dönemde (ben düşme, ben düşme-hasat ve hasat) 5 gün süre ile sabah ve akşam olmak üzere, Kontrol dahil 4 abiyotik stres uygulaması (Darbe, Yaprak Yaralama, UV-C) yapılmıştır. Yaprak Yaralama bir kez ve yapraklara çubuk ile vurularak gerçekleştirilmiştir. Darbe uygulaması plastik çekiç kullanılarak, UV-C uygulaması da günde iki kez 1 dakika süreyle yapılmıştır. Sonuçta abiyotik stres uygulamalarının primer metabolitlerden; SÇKM (23.69° Brix) ve TA (7.32 g L-1) açısından önemli farklılık oluşturmadığı; sekonder metabolitlerde (toplam tanen, toplam antosiyanin, toplam fenolik madde, resveratrol) artış yönünde etkisi olduğu belirlenmiştir. Ayrıca toplam polifenol indeksini artırıcı etki gösterdikleri saptanmıştır. Resveratrol açısından, sırasıyla UV-C (0.35 mg kg-1) ve Yaprak Yaralama (0.27 mg kg-1) uygulamalarının etkileri diğerler iki uygulamadan (Darbe ve Kontrol) yüksek olduğu kaydedilmiştir.

Ethical Statement

Etik kurul gerektiren bir çalışma değildir

Supporting Institution

Yoktur

Project Number

Bir proje değildir

Thanks

The authors would like to thank Mr. Barkın Akın, the owner of Barel Vineyard, for allowing us to set up the experiment in his vineyard.

References

  • Antalick, G., Šuklje, K., Blackman, J. W., Meeks, C., Deloire, A., & Schmidtke, L. M. (2015). Influence of grape composition on red wine ester profile: Comparison between Cabernet Sauvignon and Shiraz cultivars from Australian warm climate. Journal of Agricultural and Food Chemistry, 63(18), 4664-4672. https://doi.org/10.1021/acs.jafc.5b00966
  • Bahar, E. & Yaşasin, A. S. (2010). The yield and berry quality under different soil tillage and clusters thinning treatments in grape (Vitis vinifera L.) cv. Cabernet-Sauvignon. African Journal of Agricultural Research, 5(21), 2986-2993. https://doi.org/10.5897/AJAR.9000739
  • Bahar, E., Korkutal, İ., & Öner, H. (2018). Effects of different culturel practices on must composition in cv. Cabernet-Sauvignon. Selcuk Journal of Agriculture and Food Sciences, 32(1), 1-7.
  • Bahar, E., Korkutal, İ., & Uzun, M. (2024a). Effects of different water stress levels, heterogeneity, and location on berry phytochemical properties in an organic and conventional vineyard (Vitis vinifera cv. Cabernet-Sauvignon). KSÜ Tarım ve Doğa Dergisi, 27(5), 1042-1054. https://doi.org/10.18016/ksutarimdoga.vi.1333996
  • Bahar, E., Korkutal, İ., & Abay, C. (2024b). Cabernet-Sauvignon çeşidi tane fiziksel özelliklerine bazı abiyotik streslerin etkisi (Vitis vinifera L.). MKÜ Tarım Bilimleri Dergisi, 29(2), 589-605. https://doi.org/10.37908/mkutbd.1465178
  • Bahar, E., Korkutal, İ., Köycü, N. D., Uysal Seçkin, G., & Tok Abay, C. (2024c). The effects of some stressors on primary and secondary metabolites in cv. ‘Cabernet-Sauvignon’ and cv. ‘Merlot’ (Vitis vinifera L.). Applied Fruit Science, 66, 2355-2363. https://doi.org/10.1007/s10341-024-01206-5
  • Ballaré, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A., & Bornman, J. F. (2011). Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochemical & Photobiological Sciences, 10, 226-241. https://doi.org/10.1039/c0pp90035d
  • Baluja, J., Diago, M. P., Goovaerts, P., & Tardaguila, J. (2012). Spatio-temporal dynamics of grape anthocyanin accumulation in a Tempranillo vineyard monitored by proximal sensing. Australian Journal of Grape and Wine Research, 18(2), 173-182. https://doi.org/10.1111/j.1755-0238.2012.00186.x
  • Billet, K., Houillé, B., Besseau, S., Mélin, C., Oudin, A., Papon, N., & Lanoue, A. (2018). Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chemistry, 240, 1022-1027. https://doi.org/10.1016/j.foodchem.2017.07.105
  • Bindon, K., Varela, C., Kennedy, J., Holt, H., & Herderich, M. (2013). Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chemistry, 138(2-3): 1696-1705. https://doi.org/10.1016/j.foodchem.2012.09.146
  • Blouin, J. & Guimberteau, G. (2000). Maturation et maturité des raisins. Éditions Féret. 168 p.
  • Bramley, R. G. V. (2005). Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33-42. https://doi.org/10.1111/j.1755-0238.2005.tb00277.x
  • Candar, S. (2023a). Effect of wounding on the maturity and chemical composition of Cabernet Sauvignon (Vitis vinifera L.) berry. Pakistan Journal of Agricultural Sciences, 60(3), 615-625. https://doi.org/10.21162/PAKJAS/23.64
  • Candar, S. (2023b). How abiotic stress induced by artificial wounding changes maturity levels and berry composition of Merlot (Vitis vinifera L.). European Food Research and Technology, 249, 2611-2623. https://doi.org/10.1007/s00217-023-04318-6
  • Cebrián-Tarancón, C., Sánchez-Gómez, R., Fernández-Roldán, F., Alonso, G. L., & Salinas, M. R. (2024). Evolution in the bottling of Cabernet Sauvignon wines macerated with their own toasted vine-shoots. Journal of Agricultural and Food Chemistry, 72(4), 1864-1877. https://doi.org/10.1021/acs.jafc.2c08978
  • Cemeroğlu, B. (2007). Food Analysis. Gıda Teknolojisi Derneği Yayınları, 34, Ankara, 535p.
  • Chapman, D. M., Roby, G., Ebeler, S. E., Guinard, J.-X., & Matthews, M. A. (2005). Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Australian Journal of Grape and Wine Research, 11, 339-347. https://doi.org/10.1111/j.1755-0238.2005.tb00033.x
  • Coombe, B. G. (1995). Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
  • Çaylak, B. A., Yücel, U., & Çetinkaya, N. (2009). Resveratrol content of Turkish wines produced from grapes of different regions. Gıda, 34(6), 381-386.
  • Del-Castillo-Alonso, M. A., Diago, M. P., Tomás-Las-Heras, R., Monforte, L., Soriano, G., Martínez-Abaigar, J., & Núñez-Olivera, E. (2016). Effects of ambient solar UV radiation on grapevine leaf physiology and berry phenolic composition along one entire season under Mediterranean field conditions. Plant Physiology and Biochemistry, 109, 374-386. https://doi.org/10.1016/j.plaphy.2016.10.018
  • Del‐Castillo‐Alonso, M. Á., Monforte, L., Tomás‐Las‐Heras, R., Ranieri, A., Castagna, A., Martínez‐Abaigar, J., & Núñez‐Olivera, E. (2021). Secondary metabolites and related genes in Vitis vinifera L. cv. Tempranillo grapes asinfluenced by UV radiation and berry development. Physiologia Plantarum, 173(3), 709-724. https://doi.org/10.1111/ppl.13483
  • Ferrandino, A., Pagliarani, C., & Pérez-Alvarez, E. P. (2023). Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. Frontiers in Plant Science, 14, 1124298. https://doi.org/10.3389/fpls.2023.1124298
  • Gindri, R. V., Pauletto, R., Franco, F. W., Fortes, J. P., Treptow, T. C., Rodrigues, E., & Sautter, C. K. (2021). Grape UV-C irradiation in the postharvest period as a tool to improve sensorial quality and anthocyanin profile in ‘Cabernet Sauvignon’ wine. Journal of Food Science and Technology, 59(5), 1801-1811. https://doi.org/10.1007/s13197-021-05191-5
  • Hasan, M. M. & Bae, H. (2017). An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules, 22, 294. https://doi.org/10.3390/molecules22020294
  • Holt, H. E., Birchmore, W., Herderich, M. J., & Iland, P. G. (2010). Berry phenolics in Cabernet Sauvignon (Vitis vinifera L.) during late-stage ripening. American Journal of Enology and Viticulture 61(3), 285-299. https://doi.org/10.5344/ajev.2010.61.3.285
  • Iland, P., Bruer, N., Edwards, G., Weeks, S., & Wilkes, E. (2004). Chemical analysis of grapes and wine: Techniques and concepts. Patrick Iland Wine Promotions: Campbelltown. 110p.
  • INRA (2007). Determination d’anthocyanes en echantillons de raisin. Mode operatiore. Ref: MO-LAB-23. Version: 1, Septembre 2007. UE Pech Rouge. 2p.
  • Jeandet, P., Bessis, R., & Gautheron, B. (1991). The production of resveratrol (3, 5, 4'-trihydroxystilbene) by grape berries in different developmental stages. American Journal of Enology and Viticulture, 42(1): 41-46. https://doi.org/10.5344/ajev.1991.42.1.41
  • Jiang, B., Xi, Z., Luo, M., & Zhang, Z. (2013). Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Research International, 51(2), 482-489. https://doi.org/10.1016/j.foodres.2013.01.001
  • Keller, M. (2010). Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research, 16, 56-69. https://doi.org/10.1111/j.1755-0238.2009.00077.x
  • Kennedy, J. A. (2010). Wine colour. In A.G. Reynolds (Eds.), Managing Wine Quality: Viticulture and Wine Quality. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 73-104. https://doi.org/10.1533/9781845699284.1.73.
  • Korkutal, İ., Bahar, E., & Güvemli-Dündar, D. (2019). Determination of the effects of antitranspirants on the grape juice and yield applied in postveraison period in cv. Cabernet-Sauvignon. Akademik Ziraat Dergisi, 8(2), 173-184. https://doi.org/10.29278/azd.584170
  • Kurt, G., Öztürk Çalı, İ., & Gül, M. (2023). Merzifon Karası üzüm çeşidinin (Vitis vinifera L.) fenolik madde, flavonoid ve antioksidan aktivitesi. KSÜ Tarım ve Doğa Dergisi, 26(1), 90-96. https://doi.org/10.18016/ksutarimdoga.vi.886023
  • Langcake, P. & Pryce, R. J. (1977). The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry, 16(8), 1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9
  • Luzio, A., Bernardo, S., Correia, C., Moutinho-Pereira, J., & Dinis, L. (2021). Phytochemical screening and antioxidant activity on berry, skin, pulp and seed from seven red Mediterranean grapevine varieties (Vitis vinifera L.) treated with kaolin foliar sunscreen. Scientia Horticulturae, 281, 109962. https://doi.org/10.1016/j.scienta.2021.109962
  • Moreno-Olivares, J. D., Giménez-Bañón, M. J., Ruiz-García, L. Gómez-Martínez, J. C., & Gil-Muñoz, R. (2024). New grape varieties descending from Monastrell characterised by their low sugar and high polyphenolic content. European Food Research and Technology, 1438-2385. https://doi.org/10.1007/s00217-024-04611-y
  • Ortega-Regules, A., Romero-Cascales, I., Ros García, J. M., Bautista-Ortín, A. B., López-Roca, J. M., Fernández-Fernández, J. I., & Gómez-Plaza, E. (2008). Anthocyanins and tannins in four grape varieties (Vitis vinifera L.). Evolution of their content and extractability. OENO One, 42(3), 147-156. https://doi.org/10.20870/oeno-one.2008.42.3.818
  • Ramos, M. C., Ibáñez Jara, M. Á., Rosillo, L., & Salinas, M. R. (2024). Effect of temperature and water availability on grape phenolic compounds and their extractability in Merlot grown in a warm area. Scientia Horticulturae, 337, 113475. https://doi.org/10.1016/j.scienta.2024.113475
  • Rienth, M., Vigneron, N., Darriet, P., Sweetman, C., Burbidge, C., Bonghi, C., Walker, R. P., Famiani, F., & Castellarin, S. D. (2021). Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario–A review. Frontiers in Plant Science, 12, 643258. https://doi.org/10.3389/fpls.2021.643258
  • Romero-Pérez, A. I., Ibern-Gómez, M., Lamuela-Raventós, R. M., & de la Torre-Boronat, M. C. (1999). Piceid, the major resveratrol derivative in grape juices. Journal of Agricultural and Food Chemistry, 47(4), 1533-1536. https://doi.org/10.1021/jf981024g
  • Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Within-field temporal stability of some parameters in viticulture: Potential toward a site specific management. Journal International des Sciences de la Vigne et du Vin, 42(1), 27-39. https://doi.org/10.20870/oeno-one.2008.42.1.834
  • Trought, M. C. T. & Bramley, R. G. V. (2011). Vineyard variability in Marlborough, New Zealand: Characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Australian Journal of Grape and Wine Research, 17(1), 79-89. https://doi.org/10.1111/j.1755-0238.2010.00120.x
  • Valletta, A., Iozia, L. M., & Leonelli, F. (2021). Impact of environmental factors on stilbene biosynthesis. Plants, 10(1), 90. https://doi.org/10.3390/plants10010090
  • van Leeuwen, C., Barbe, J. C., Darriet, P., Destrac-Irvine, A., Gowdy, M., Lytra, G., & Thibon, C. (2022). Aromatic maturity is a cornerstone of terroir expression in red wine. OENO One, 56(2), 335-351. https://doi.org/10.20870/oeno-one.2022.56.2.5441
  • Waterhouse, A. L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6(1), I1-1. https://doi.org/10.1002/0471142913.fai0101s06
  • Xavier Machado, T. de O., Portugal, I. B. M., da Silva Padilha, C. V., Padilha, F. F., & dos Santos Lima, M. (2021). New trends in the use of enzymes for the recovery of polyphenols in grape by products. Journal of Food Biochemistry, 45(5), e13712. https://doi.org/10.1111/jfbc.13712
There are 46 citations in total.

Details

Primary Language English
Subjects Oenology and Viticulture
Journal Section RESEARCH ARTICLE
Authors

Elman Bahar 0000-0002-8842-7695

Ilknur Korkutal 0000-0002-8016-9804

Gamze Uysal Seçkin 0000-0002-2117-075X

Cihan Abay 0000-0002-4528-6431

Project Number Bir proje değildir
Early Pub Date January 30, 2025
Publication Date
Submission Date October 10, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2025Volume: 28 Issue: 1

Cite

APA Bahar, E., Korkutal, I., Uysal Seçkin, G., Abay, C. (2025). Effect of abiotic stresses on primary / secondary metabolites and resveratrol in cv. Cabernet-Sauvignon. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(1), 70-82. https://doi.org/10.18016/ksutarimdoga.vi.1559528


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149