Research Article
BibTex RIS Cite

Bazı Virginia Pazar Tipi Yer Fıstığı Çeşitlerinin Makro ve Mikro Element İçeriklerinin Belirlenmesi

Year 2025, Volume: 28 Issue: 3, 874 - 885
https://doi.org/10.18016/ksutarimdoga.vi.1602929

Abstract

Bu çalışmada, Kahramanmaraş koşullarında 10 farklı Virginia Pazar tipi yerfıstığı çeşitlerinin makro ve mikro besin element içerikleri 2 yıl süreyle araştırılmıştır. Çukurova Üniversitesi tarafından tescil edilen Arıoğlu 2003, Halisbey, Osmaniye 2005 ve Sultan çeşitleri, Batı Akdeniz Tarımsal Araştırma Enstitüsü tarafından tescil edilen Batem 5025, Batem Cihangir, Brantley, NC-7 ve Wilson çeşitleri, ABD orijinli Brantley, NC-7 ve Wilson çeşitleri ve son olarak Çin orijinli Flower-22 çeşidi materyal olarak kullanılmıştır. Araştırma, Kahramanmaraş Sütçü İmam Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü Uygulama ve Araştırma Merkezinde ana ürün koşullarında iki yıl (2018-2019) süreyle yürütülmüştür. Çeşitlerin makro ve mikro besin element içerikleri bakımından önemli derecede farklı olduğu ve çeşit-yıl interaksiyonlarının önemli olduğu görülmüştür. İki yıllık ortalama sonuçlar, en yüksek N, P, Fe, Ni ve Cu içeriklerinin Flower-22 çeşidinden, en yüksek K ve Ca içeriklerinin Batem Cihangir çeşidinden, en yüksek Zn içeriklerinin ise Sultan ve Osmaniye-2005 çeşitlerinden elde edildiğini göstermiştir. Çalışılan özellikler arasındaki ilişkilerin %52,7'si temel bileşen biplot analizi (PCA) ile açıklanmıştır. Çalışma sonucunda, P değerinin Fe, Zn, Mo ve Cu içerikleriyle, Ca içeriğinin Fe, Mn, Ni ve Cu içerikleriyle, K değerlerinin ise Fe, Mn ve Ni ile negatif ve önemli ilişkilere sahip olduğu görülmüştür.

Project Number

2020/6-11 D.

References

  • Abd EL-Kader, M. G. (2013). Effect of sulfur application and foliar spraying with zinc and boron on yield, yield components, and seed quality of peanut (Arachis hypogaea L.). J. of Agric. and Biological Sci, 9 (4), 127-135.
  • Akdeniz, V., Kınık, Ö., Yerlikaya, O., & Akan, E. (2016). The importance of zinc in terms of human health and nutritional physiology. Academic Food, 14 (3), 301-313.
  • Arıoğlu, H. (2014). Oil Crops Cultivation and Breeding. Cukurova University, Faculty of Agriculture Textbook No:220, A-70, Adana
  • Arya, S.S., Salve, A.R., & Chauhan, S. (2016). Peanuts as functional food: a review. J. Food Sci. Technol. 53, 31–41.
  • Asibuo, J.Y, Akromah, R, Safo-Kantanka, O.O sei,AduDapaah, Hanskofi, O.S & Agyeman, A. (2008). Chemical Composition of Groundnut, Arachis hypogaea (L.) landraces. African Journal of Biotechnology, 7 (13), 2203-2208.
  • Aşık, F. F., & Aşık, B. B. (2023). Macro and Micro Element Composition of Some Peanut (Arachis hypogaea L.) Varieties in Turkey. Journal of Agricultural Sciences, 29 (1), 38-46.
  • Aşık, F.F. (2023a). Determination of macro and microelements in stem and leaf parts after harvest of some peanut varieties. Journal of Plant Nutrition, 46 (18), 4454-4461.
  • Aşik, F.F. (2023b). Effects of nitrogen treatments and bacterial inoculation on macro and microelement contents of the Halisbey peanut variety. Italian Journal of Agronomy, 18 (3), 1-9.
  • Ayoola, P.B, Adeyeye, A., & Onawumi, O.O. (2012). Chemical evaluation of food value of groundnut (Arachis hypogaea) seeds. Am. J. Food and Nutr. 2, 55-57.
  • Bakal, H., & Arıoğlu, H. (2021). Determination of some agronomic and quality traits of peanut varieties with different pod characteristics at different harvesting times in main crop growing season. Turkish Journal of Field Crops, 26(1), 79–87
  • Branch, W.D., & Gaines, T.P. (1983). Seed mineral composition of diverse peanut germplasm. Peanut Science, 10, 5-8.
  • Chakravorty, A., Ghosh, P.D. & Sahu, P.K. (2013). Multivariate analysis of phenotypic diversity of landraces of rice of West Bengal. American Journal of Experimental Agriculture, 3 (1), 110-123.
  • Chen, L., Ding, M., Li, Z., Li, X., & Deng, L. (2022). Determination of macro, micro and toxic element concentrations in peanuts from main peanut producing areas of China by ICP-MS: a pilot study on the geographical characterization. RSC Adv., 12, 16790.
  • Cox, F. R., Adams, J. F., & Tucker, B. B. (1982). Liming, fertilization and mineral nutrition. In Peanut Science & Technology, edited by H. E. Pettee and C. T. Young, 139–63. Yoakum, TX: American Peanut Research and Education Society Inc.
  • Davis, J.P., & Dean, L.L. (2016). Peanut Composition, Flavor and Nutrition. Peanuts 289–345.
  • Derise, N. L., Lau, H. A., Ritchey, S. J. & Murphy, E. W. (1974). Yield, proximate composition and mineral element content of three cultivars of raw and roasted peanuts. J. Food Sci. 39(2), 264–266.
  • Fageria, N. K. (2009). The use of nutrients in crop plants. CRC Press.
  • Farooq, M., Wahid, A., Siddique, K. H. M. (2012). Micronutrient application through seed treatments—a review. Journal of Soil Science and Plant Nutrition, 12 (1), 125–142.
  • Feitosa, C. T., Nogueira, S. S. S., Gerin, M. A. N., & Rodrigues Filho, F. S. O. (1993). Evaluation of growth and nutrient utilization by peanuts. Scientia Agricola, 50(3), 427-437.
  • Fletcher, S.M., & Shi, Z., (2016). Chapter 10 – An Overview of World Peanut Markets, in: Peanuts. pp. 267–287.
  • Gaines, T.P., & Hammons, R.O. (1981). Mineral composition of peanut seed as influenced by cultivar and location. Peanut Science, 8, 16-20.
  • Gascho, G.J., & Davis, G. (1994). The Groundnut Crop: A scientific basis for improvement, pp 214-254. Edited by 1. Smartt. Published by Chapman & Hall, London.
  • Grosso, N.R., & Guzman, C.A., (1995). Chemical Composition of Aboriginal Peanut (Arachis hypogaea L.) Seeds from Peru. J. Agric. Food Chem. 43, 102–105.
  • Guo, C., Xie, Y.-J., Zhu, M.-T., Xiong, Q., Chen, Y., Yu, Q., & Xie, J.-H. (2020). Influence of different cooking methods on the nutritional and potentially harmful components of peanuts. Food Chemistry, 316 (2020), 1-9.
  • Hallock, D.L., Martens, D.C., & Alexander, M.W. (1971). Distribution of P, K, Ca, Mg, B, Cu, Mn, and Zn in Peanut Lines Near Maturity. Agronomy Journal, 63 (2): 251-256.
  • Hambidge, M. (2000). Zinc and health: Current status and future directions. The Journal of Nutrition, 130 (5), 1344-1349.
  • Iezzoni, A. F., & Pritts, M. P. (1991). Applications of principal components analysis to horticultural research. : HortScience, 26(4), 334-338.
  • İnce, C., & Çağındı, Ö. (2020). Iron mineral: functions, effects of food processing on bioavailability and interactions with bioactive components. Çukurova J. Agric. Food Sci., 35 (2), 151-164.
  • JMP®, Version 15.1. SAS Institute Inc., Cary, NC, 1989-2020.
  • Kacar B & İnal A (2014). Plant Analysis, Nobel Publishing Distribution, Ankara.
  • Kholief, T.S., (1987). Chemical composition and protein properties of peanuts. Z. Ernahrungswiss. 26, 56–61.
  • Kınık, Ö., Uysal, H., & Akbulut, N. (2001). Trace Elements in Milk and Milk Products, IDF Publication No: 278, E.Ü. Faculty of Agriculture Publication No: 549.
  • Mattil, K. F., Norris, F. A., & Swern, D. (1964). Extraction of fats and oil. In D. Swern (Ed.), Bailey’s industrial oil and fat products (pp. 637–717). Wiley.
  • Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop science, 43(4), 1235-1248.
  • Oerise, N. L., Lau, H. A., Ritchey, S. J., & Murphy, E. W. (1974). Yield, proximate composition and mineral element content of three cultivars of raw and roasted peanuts. Journal of Food Science, 39(2), 264-266.
  • Settaluri, V. S., Kandala, C. V. K., Puppala, N. & Sundaram, J. (2012). Peanuts and their nutritional aspects-a review. Food Nutr. Sci. 3 (12), 1644–1650.
  • Singh, A. L. (1999). Mineral nutrition of groundnut. Jodhpur: Scientific Publishers (India), pp. 161–200.
  • Singh, B, & Singh, U., (1991). Peanut as a source of protein for human foods. Plant Foods Hum. Nutr. 41, 165–77.
  • Steer, B. T., & Hocking, P.J. (1984). Nitrogen nutrition of sunflower (Helianthus annuus L.) acquisition and partitioning of dry matter and nitrogen by vegetative organs and their relationship on seed yield. Field Crops Research, 9 (2), 237-251.
  • Suchoszek-Lukaniuk, K., Jaromin, A., Korycińska, M., & Kozubek, A. (2011). Nuts and seeds in health and disease prevention. Elsevier
  • Taiz, L., & Zeiger, E. (2013). Plant physiology. California: The Benjamin/Cummigs Publishing, p. 559.
  • Tasso, J. L. C., Marques, M. O. & Nogueira, G. A. A. (2004). Cultura do amendoim. 1st ed. Jaboticabal, SP: UNESP. p. 220.
  • Tekdal, S., Kılıç, H. & Çam, B. (2018). Comparison of cultivars, lines and local genotypes in terms of yield and quality characteristics in durum wheat. International Journal of Agricultural and Natural Sciences, 1(3), 194-200.
  • Uçak, A. B., Çil, A., Tüysüz, M. D., Şahin, H., & Şarlı, E. (2017). Identification of Water Stress Tolerant Peanut (Arachis hypogaea) Lines. KSU Journal of Natural Sciences, 20, 246-251.
  • Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55(396), 353–364.
  • White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84.
  • Woodroof J.G. (1983). Historical background in Peanuts: production, processing, products, AVI Westport CT 181.
  • Zhang, D., Li, X., Cao, Y., Wang, C., & Xue, Y. (2020). Effect of roasting on the chemical components of peanut oil. LWT – Food Science and Technology, 125, 109249.

Determination of Macro and Microelement Content of Some Virginia Market Type Peanut Varieties

Year 2025, Volume: 28 Issue: 3, 874 - 885
https://doi.org/10.18016/ksutarimdoga.vi.1602929

Abstract

This study was designed to investigate the macro and micronutrient contents of 10 different Virginia market peanut cultivars under Kahramanmaras conditions for 2 years. Arıoğlu 2003, Halisbey, Osmaniye 2005, and Sultan varieties registered by Çukurova University, Batem 5025, Batem Cihangir, Brantley, NC-7, and Wilson varieties registered by Western Mediterranean Agricultural Research Institute, Brantley, NC-7, and Wilson varieties originating from the USA, and lastly Flower-22 variety originating from China were used as material. The research was conducted for two years (2018-2019) under main crop conditions in the experimental fields of Kahramanmaraş Sütçü İmam University, Faculty of Agriculture, Department of Field Crops, Application and Research Centre. It was observed that the cultivars were considerably different in terms of macro and micronutrient contents, and the variety-year interactions were significant. The two-year average results showed that the highest N, P, Fe, Ni, and Cu contents were obtained from the Flower-22 variety, the highest K and Ca contents were obtained from the Batem Cihangir variety, and the highest Zn contents were obtained from Sultan and Osmaniye-2005 varieties. Principal component biplot analyses (PCA) accounted for 52.7% of the relationships between the studied traits. As a consequence of the study, it was observed that P value had positive and important relationships with Fe, Zn, Mo and Cu contents, Ca content had positive and important relationships with Fe, Mn, Ni, and Cu, and K values had negative and important relationships with Fe, Mn and Ni.

Ethical Statement

Etik Kurul İznine Gerek Yoktur.

Supporting Institution

Kahramanmaras Sutcu Imam University Scientific Research Projects Unit

Project Number

2020/6-11 D.

Thanks

Bu çalışmayı destekleyen Kahramanmaraş Sütçü İmam Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine teşekkür ederiz.

References

  • Abd EL-Kader, M. G. (2013). Effect of sulfur application and foliar spraying with zinc and boron on yield, yield components, and seed quality of peanut (Arachis hypogaea L.). J. of Agric. and Biological Sci, 9 (4), 127-135.
  • Akdeniz, V., Kınık, Ö., Yerlikaya, O., & Akan, E. (2016). The importance of zinc in terms of human health and nutritional physiology. Academic Food, 14 (3), 301-313.
  • Arıoğlu, H. (2014). Oil Crops Cultivation and Breeding. Cukurova University, Faculty of Agriculture Textbook No:220, A-70, Adana
  • Arya, S.S., Salve, A.R., & Chauhan, S. (2016). Peanuts as functional food: a review. J. Food Sci. Technol. 53, 31–41.
  • Asibuo, J.Y, Akromah, R, Safo-Kantanka, O.O sei,AduDapaah, Hanskofi, O.S & Agyeman, A. (2008). Chemical Composition of Groundnut, Arachis hypogaea (L.) landraces. African Journal of Biotechnology, 7 (13), 2203-2208.
  • Aşık, F. F., & Aşık, B. B. (2023). Macro and Micro Element Composition of Some Peanut (Arachis hypogaea L.) Varieties in Turkey. Journal of Agricultural Sciences, 29 (1), 38-46.
  • Aşık, F.F. (2023a). Determination of macro and microelements in stem and leaf parts after harvest of some peanut varieties. Journal of Plant Nutrition, 46 (18), 4454-4461.
  • Aşik, F.F. (2023b). Effects of nitrogen treatments and bacterial inoculation on macro and microelement contents of the Halisbey peanut variety. Italian Journal of Agronomy, 18 (3), 1-9.
  • Ayoola, P.B, Adeyeye, A., & Onawumi, O.O. (2012). Chemical evaluation of food value of groundnut (Arachis hypogaea) seeds. Am. J. Food and Nutr. 2, 55-57.
  • Bakal, H., & Arıoğlu, H. (2021). Determination of some agronomic and quality traits of peanut varieties with different pod characteristics at different harvesting times in main crop growing season. Turkish Journal of Field Crops, 26(1), 79–87
  • Branch, W.D., & Gaines, T.P. (1983). Seed mineral composition of diverse peanut germplasm. Peanut Science, 10, 5-8.
  • Chakravorty, A., Ghosh, P.D. & Sahu, P.K. (2013). Multivariate analysis of phenotypic diversity of landraces of rice of West Bengal. American Journal of Experimental Agriculture, 3 (1), 110-123.
  • Chen, L., Ding, M., Li, Z., Li, X., & Deng, L. (2022). Determination of macro, micro and toxic element concentrations in peanuts from main peanut producing areas of China by ICP-MS: a pilot study on the geographical characterization. RSC Adv., 12, 16790.
  • Cox, F. R., Adams, J. F., & Tucker, B. B. (1982). Liming, fertilization and mineral nutrition. In Peanut Science & Technology, edited by H. E. Pettee and C. T. Young, 139–63. Yoakum, TX: American Peanut Research and Education Society Inc.
  • Davis, J.P., & Dean, L.L. (2016). Peanut Composition, Flavor and Nutrition. Peanuts 289–345.
  • Derise, N. L., Lau, H. A., Ritchey, S. J. & Murphy, E. W. (1974). Yield, proximate composition and mineral element content of three cultivars of raw and roasted peanuts. J. Food Sci. 39(2), 264–266.
  • Fageria, N. K. (2009). The use of nutrients in crop plants. CRC Press.
  • Farooq, M., Wahid, A., Siddique, K. H. M. (2012). Micronutrient application through seed treatments—a review. Journal of Soil Science and Plant Nutrition, 12 (1), 125–142.
  • Feitosa, C. T., Nogueira, S. S. S., Gerin, M. A. N., & Rodrigues Filho, F. S. O. (1993). Evaluation of growth and nutrient utilization by peanuts. Scientia Agricola, 50(3), 427-437.
  • Fletcher, S.M., & Shi, Z., (2016). Chapter 10 – An Overview of World Peanut Markets, in: Peanuts. pp. 267–287.
  • Gaines, T.P., & Hammons, R.O. (1981). Mineral composition of peanut seed as influenced by cultivar and location. Peanut Science, 8, 16-20.
  • Gascho, G.J., & Davis, G. (1994). The Groundnut Crop: A scientific basis for improvement, pp 214-254. Edited by 1. Smartt. Published by Chapman & Hall, London.
  • Grosso, N.R., & Guzman, C.A., (1995). Chemical Composition of Aboriginal Peanut (Arachis hypogaea L.) Seeds from Peru. J. Agric. Food Chem. 43, 102–105.
  • Guo, C., Xie, Y.-J., Zhu, M.-T., Xiong, Q., Chen, Y., Yu, Q., & Xie, J.-H. (2020). Influence of different cooking methods on the nutritional and potentially harmful components of peanuts. Food Chemistry, 316 (2020), 1-9.
  • Hallock, D.L., Martens, D.C., & Alexander, M.W. (1971). Distribution of P, K, Ca, Mg, B, Cu, Mn, and Zn in Peanut Lines Near Maturity. Agronomy Journal, 63 (2): 251-256.
  • Hambidge, M. (2000). Zinc and health: Current status and future directions. The Journal of Nutrition, 130 (5), 1344-1349.
  • Iezzoni, A. F., & Pritts, M. P. (1991). Applications of principal components analysis to horticultural research. : HortScience, 26(4), 334-338.
  • İnce, C., & Çağındı, Ö. (2020). Iron mineral: functions, effects of food processing on bioavailability and interactions with bioactive components. Çukurova J. Agric. Food Sci., 35 (2), 151-164.
  • JMP®, Version 15.1. SAS Institute Inc., Cary, NC, 1989-2020.
  • Kacar B & İnal A (2014). Plant Analysis, Nobel Publishing Distribution, Ankara.
  • Kholief, T.S., (1987). Chemical composition and protein properties of peanuts. Z. Ernahrungswiss. 26, 56–61.
  • Kınık, Ö., Uysal, H., & Akbulut, N. (2001). Trace Elements in Milk and Milk Products, IDF Publication No: 278, E.Ü. Faculty of Agriculture Publication No: 549.
  • Mattil, K. F., Norris, F. A., & Swern, D. (1964). Extraction of fats and oil. In D. Swern (Ed.), Bailey’s industrial oil and fat products (pp. 637–717). Wiley.
  • Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop science, 43(4), 1235-1248.
  • Oerise, N. L., Lau, H. A., Ritchey, S. J., & Murphy, E. W. (1974). Yield, proximate composition and mineral element content of three cultivars of raw and roasted peanuts. Journal of Food Science, 39(2), 264-266.
  • Settaluri, V. S., Kandala, C. V. K., Puppala, N. & Sundaram, J. (2012). Peanuts and their nutritional aspects-a review. Food Nutr. Sci. 3 (12), 1644–1650.
  • Singh, A. L. (1999). Mineral nutrition of groundnut. Jodhpur: Scientific Publishers (India), pp. 161–200.
  • Singh, B, & Singh, U., (1991). Peanut as a source of protein for human foods. Plant Foods Hum. Nutr. 41, 165–77.
  • Steer, B. T., & Hocking, P.J. (1984). Nitrogen nutrition of sunflower (Helianthus annuus L.) acquisition and partitioning of dry matter and nitrogen by vegetative organs and their relationship on seed yield. Field Crops Research, 9 (2), 237-251.
  • Suchoszek-Lukaniuk, K., Jaromin, A., Korycińska, M., & Kozubek, A. (2011). Nuts and seeds in health and disease prevention. Elsevier
  • Taiz, L., & Zeiger, E. (2013). Plant physiology. California: The Benjamin/Cummigs Publishing, p. 559.
  • Tasso, J. L. C., Marques, M. O. & Nogueira, G. A. A. (2004). Cultura do amendoim. 1st ed. Jaboticabal, SP: UNESP. p. 220.
  • Tekdal, S., Kılıç, H. & Çam, B. (2018). Comparison of cultivars, lines and local genotypes in terms of yield and quality characteristics in durum wheat. International Journal of Agricultural and Natural Sciences, 1(3), 194-200.
  • Uçak, A. B., Çil, A., Tüysüz, M. D., Şahin, H., & Şarlı, E. (2017). Identification of Water Stress Tolerant Peanut (Arachis hypogaea) Lines. KSU Journal of Natural Sciences, 20, 246-251.
  • Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55(396), 353–364.
  • White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84.
  • Woodroof J.G. (1983). Historical background in Peanuts: production, processing, products, AVI Westport CT 181.
  • Zhang, D., Li, X., Cao, Y., Wang, C., & Xue, Y. (2020). Effect of roasting on the chemical components of peanut oil. LWT – Food Science and Technology, 125, 109249.
There are 48 citations in total.

Details

Primary Language English
Subjects Industrial Crops
Journal Section RESEARCH ARTICLE
Authors

Tahsin Beycioğlu 0000-0001-5338-8836

Fatih Kıllı 0000-0001-8480-0416

Project Number 2020/6-11 D.
Early Pub Date May 1, 2025
Publication Date
Submission Date December 17, 2024
Acceptance Date April 30, 2025
Published in Issue Year 2025Volume: 28 Issue: 3

Cite

APA Beycioğlu, T., & Kıllı, F. (2025). Determination of Macro and Microelement Content of Some Virginia Market Type Peanut Varieties. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(3), 874-885. https://doi.org/10.18016/ksutarimdoga.vi.1602929


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149