Research Article
BibTex RIS Cite

Anti-biofilm, Anti-quorum sensing, Anti-swarming, and Antimicrobial Activity of Rubus fruticosus L.

Year 2025, Volume: 28 Issue: 4, 903 - 913
https://doi.org/10.18016/ksutarimdoga.vi.1396393

Abstract

Over the past decade, antibiotic resistance has increased at an unprecedented rate, posing a serious challenge to healthcare systems worldwide. Research indicates that this resistance issue, which is projected to cause significant loss of life by the 2050s, is particularly alarming. Consequently, alternative methods to effective antibiotics are being explored to combat resistance. Rubus fruticosus L., commonly known as blackberry, is a shrub plant famous for its fruit. This fruit holds significant medicinal, cosmetic, and nutritional value. In our study, methanol, ethyl acetate, ethanol, and hexane extracts of Rubus fruticosus fruit from the Rize region were screened for their antimicrobial and quorum-sensing activities. Antimicrobial activity was investigated using the agar diffusion method against various Gram-negative and Gram-positive bacteria, as well as two Candida species. Anti-quorum sensing and antibiofilm activities were evaluated using Chromobacterium violaceum ATCC 12472 and Pseudomonas aeruginosa PAO1. The results showed that the methanol extract of Rubus fruticosus exhibited antimicrobial activity, while the ethanol extract demonstrated antibiofilm and anti-swarming activities. These findings suggest that Rubus fruticosus has the potential to be used as a natural agent in combating antimicrobial resistance.

Project Number

TDK-2018-959

References

  • Abachi, S., Khademi, F., Fatemi, H., & Malekzadeh, F. (2013). Study of antibacterial activity of selected Iranian plant extracts on Helicobacter pylori. Journal of Dental and Medical Sciences, 5(1), 55-59.
  • Abay, G., Batan, N., & Özdemır, T. (2016). Bryophyte checklist of Rize, north-east Turkey. Arctoa, 25(1), 386-392. https://doi.org/10.15298/arctoa.25.31
  • Abdou, R., Shabana, S., & Rateb, M. E. (2018). Terezine E, bioactive prenylated tryptophan analogue from an endophyte of Centaurea stoebe. Natural Product Research, 34(4), 503-510. https://doi.org/10.1080/ 14786419.2018.1489393.
  • Acet, T. (2021). Determining the phenolic components by using HPLC and the biological activity of Centaurea triumfetti. Plant Biosystems, 155(1), 159-164. https://doi.org/10.1080/11263504.2020.1722275.
  • Ahmed, A., Ahmad, A., Li, R., Al‐Ansi, W., Fatima, M., Mushtaq, B. S., … & Bai, Z. (2021). Recent advances in synthetic, industrial and biological applications of violacein and its heterologous production. Journal of Microbiology and Biotechnology, 31(11), 1465-1480. https://doi.org/10.4014/jmb.2107.07045
  • Antimicrobial Resistance Collaborators (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0.
  • Bezuidenhout, M., Dimitrov, D., Staden, A. D. v., Oosthuizen, G. A., & Dicks, L. M. T. (2015). Titanium-based hip stems with drug delivery functionality through additive manufacturing. BioMed Research International, 2015(1), 134093. https://doi.org/10.1155/2015/134093
  • Bru, J., Kasallis, S. J., Zhuo, Q., Høyland-Kroghsbo, N. M., & Siryaporn, A. (2023). Swarming of p. aeruginosa: through the lens of biophysics. Biophysics Reviews, 4(3),031305. https://doi.org/10.1063/5.0128140
  • Bru, J., Rawson, B., Trinh, C., Whiteson, K., Høyland‐Kroghsbo, N. M., & Siryaporn, A. (2019). Pqs produced by the pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics. Journal of Bacteriology, 201(23), 10-1128. https://doi.org/10.1128/jb.00383-19
  • Cavanagh HMA, Hipwel Ml, Wilkinson JM (2003). Antibacterial activity of berry fruits used for culinary purposes. Journal of medicinal food, 6(1), 57-61.
  • Cepas, V., Lopez, Y., Munoz, E., Rolo, D., Ardanuy, C., Marti, S., Xercavins, M., Horcajada, J. P., Bosch, J., & Soto, S. M. (2019). Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microbial Drug Resistance, 25(1), 72-79. https://doi.org/10.1089/mdr.2018.0027.
  • Chu, W., Zhou, S., Jiang, Y., Zhu, W., Zhuang, X., & Fu, J. (2013). Efect of traditional Chinese herbal medicine with antiquorum sensing activity on Pseudomonas aeruginosa. Evidence Based Complementary and Alternative Medicine, 2013(1), 648257. https://doi.org/10.1155/2013/648257.
  • Cieplik, F., Deng, D., Crielaard, W., Buchalla, W., Hellwig, E., Al‐Ahmad, A., … & Maisch, T. (2018). Antimicrobial photodynamic therapy – what we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571-589. https://doi.org/10.1080/1040841x.2018.1467876
  • Dalar, A. (2018). Plant taxa used in the treatment of diabetes in van province, Turkey. International Journal of Secondary Metabolite, 5(3), 171-185. https://doi.org/10.21448/ijsm.430703
  • Denev, P., Kratchanova, M., Ciz, M., Lojek, A., Vasicek, O., Nedelcheva, P., Blazheva, D., Toshkova, R., Gardeva, E., Yossifova, L., Hyrsl, P., & Vojtek, L. (2014). Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chemistry, 15(157), 37-44. doi: 10.1016/j.foodchem.2014.02.022.
  • Durán, N., Justo, G. Z., Ferreira, C. V., Melo, P. S., Cordi, L., & Martins, D. (2007). Violacein: properties and biological activities. Biotechnology and Applied Biochemistry, 48(3), 127-133. https://doi.org/10.1042/ ba20070115
  • Ercan, U. K., Özdemir, G., Özdemir, M. A., & Güren, O. (2023). Plasma medicine: the era of artificial intelligence. Plasma Processes and Polymers, 20(12), https://doi.org/10.1002/ppap.202300066
  • Esertaş, Ü. Z. Ü., & Cora, M. (2024). Biological activities of Elaeagnus umbellata methanol extract. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(6), 1262-1268.
  • Esertaş, Ü. Z. Ü., Durukan, İ., Kılıç, A. O., & Ekşi, S. (2024). Determination of antimicrobial and quorum sensing inhibition potentials of different types of berries from Rize. Kastamonu University Journal of Forestry Faculty, 24(1), 74-80.
  • Fontaine, B. M., Nelson, K., Lyles, J. T., Jariwala, P. B., García-Rodriguez, J. M., Quave, C. L., & Weinert, E. E. (2017). Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-biofilm Activity. Frontiers in Microbiology, 23(8), 496. https://doi.org/10.3389/fmicb.2017.00496.
  • Gür, D. (2016). Antibiyotik Duyarlılık Testleri, EUCAST: Uygulama, Yorum ve Uzman Kurallar. Türk Mikrobiyoloji Cemiyeti Dergisi, 46.
  • Hayer, S. S., Casanova-Higes, A., Paladino, E., Elnekave, E., Nault, A., Johnson, T. J., … & Álvarez, J. (2022). Global distribution of fluoroquinolone and colistin resistance and associated resistance markers in escherichia coli of swine origin – a systematic review and meta-analysis. Frontiers in Microbiology, 13, 834793. https://doi.org/10.3389/fmicb.2022.834793
  • Kanade, Y., Mohan, W., & Patwardhan, R. B. (2022). Violacein: a promising bacterial secondary metabolite. Research Journal of Chemistry and Environment, 26(6), 165-177. https://doi.org/10.25303/2606rjce165177
  • Kiymaci, M. E., Savluk, M., Gumustas, M., Uvey, M., & Unal, N. (2023). Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens. Journal of Research in Pharmacy, 27(2), 508-518. htpp://dx.doi.org/10.29228/jrp.333
  • Koh, K. H., & Tham, F. Y. (2011). Screening of traditional Chinese medicinal plants for quorum-sensing inhibitors activity. Journal of Microbiology Immunology and Infection, 44(2), 144-148. https://doi.org/10.1016/ j.jmii.2009.10.001.
  • Kranjec, C., Angeles, D. M., Mårli, M. T., Fernández, L., Garcı́a, P., Kjos, M., … & Diep, D. B. (2021). Staphylococcal biofilms: challenges and novel therapeutic perspectives. Antibiotics, 10(2), 131. https://doi.org/10.3390/ antibiotics10020131
  • Mahadwar, G., Chauhan, K. R., Bhagavathy, G. V., Murphy, C., Smith, A., & Bhagwat, A. A. (2015). Swarm motility of salmonella enterica serovar typhimurium is inhibited by compounds from fruit peel extracts. Letters in Applied Microbiology, 60(4), 334-340. https://doi.org/10.1111/lam.12364
  • McLean, R. J. C., Pierson, L. S., & Fuqua, C. (2004). A simple screening protocol for the identification of quorum signal antagonist. Journal of Microbiological Methods, 58(3), 351-60. https://doi.org/10.1016/ j.mimet.2004.04.016.
  • Mehta, T., Vercruysse, K., Johnson, T. L., Ejiofor, A. O., Myles, E. L., & Quick, Q. A. (2015). Violacein induces p44/42 mitogen-activated protein kinase-mediated solid tumor cell death and inhibits tumor cell migration. Molecular Medicine Reports, 12(1), 1443-1448. https://doi.org/10.3892/mmr.2015.3525
  • Merghni, A., Haddaji, N., Bouali, N., Alabbosh, K. F., Adnan, M., Snoussi, M., & Noumi, E. (2022). Comparative Study of Antibacterial, Antibiofilm, Antiswarming and Antiquorum Sensing Activities of Origanum vulgare Essential Oil and Terpinene-4-ol against Pathogenic Bacteria. Life, 12(10), 1616. https://doi.org/10.3390/life12101616.
  • Murray, P. R., Baron, E. J., Pfaller, M. A., Jorgensen, J. H., & Yolken, R. H. (2009). Manual of Clinical Microbiology. Birinci Cilt. Dokuzuncu Baskı. ASM Press, Washington, DC. 390- 770.
  • Noumi, E., Merghni, A., Alreshidi, M., Haddad, O., Akmadar, G., De Martino, L., Mastouri, M., Ceylan, O., Snoussi, M., Al-Sieni, A., & De Feo, V. (2018). Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for Evaluating Anti-Quorum Sensing Activity of Melaleuca alternifolia Essential Oil and Its Main Component Terpinen-4-ol. Molecules, 23(10), 2672. https://doi.org/10.3390/molecules23102672.
  • Oliveira, B. D. Á., Rodrigues, A. C., Cardoso, B. M. I., Ramos, A. L. C. C., Bertoldi, M. C., Taylor, J. G., ... & Pinto, U. M. (2016). Antioxidant, antimicrobial and anti-quorum sensing activities of Rubus rosaefolius phenolic extract. Industrial Crops and Products, 84, 59-66.
  • Packiavathy, S. V., Priya, S., Pandian, S. K., & Arumugam V. R. (2014). Inhibition of biofilm development of uropathogens by curcumin-An anti-quorum sensing agent from Curcuma longa. Food Chemistry, 148, 453-460. https://doi.org/10.1016/j.foodchem.2012.08.002.
  • Permatananda, P. A. N. K., Pandit, I. G. S., Cahyawati, P. N., & Aryastuti, A. A. S. A. (2023). Antimicrobial properties of eco enzyme: a literature review. Bioscientia Medicina: Journal of Biomedicine and Translational Research, 7(6), 3370-3376. https://doi.org/10.37275/bsm.v7i6.831
  • Rashid, M. H., & Kornberg, A. (2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedins of the National Academy of Science, 97(9), 4885-4890. https://doi.org/10.1073/pnas.060030097.
  • Saliha, E. K. Ş. İ., Esertaş, Ü. Z. Ü., Kilic, A. O., Ejder, N., & Uzunok, B. (2020). Determination of the antimicrobial and antibiofilm effects and ‘Quorum Sensing’inhibition potentials of Castanea sativa Mill. extracts. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 66-78.
  • Singh, R., Joshi, D. B., & Bhadauria, R. S. (2022). Hydrotropic solvents used for extraction techniques of barleria elegans l. leaves. International Journal of Scientific Research and Management, 10(04), 594-604. https://doi.org/10.18535/ijsrm/v10i04.mp01
  • Solanki, R., & Nagori, B. P. (2012). New method for extracting phytoconstituents from plants. International. Journal of Biomedical and Advance Research, 3(10), 770-774.
  • Terreni, M., Taccani, M., & Pregnolato, M. (2021). New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules, 26(9), 2671. https://doi.org/10.3390/molecules 26092671
  • The European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2022) European committee on antimicrobial susceptibility testing Broth microdilution - EUCAST reading guide v 4.0 (1 January 2022). https://www.eucast.org/
  • Truchado, P., Gil-Izqierdo, A., Tomas-Barberan, F., & Allenda, A. (2009). Inhibition by chenut honey of N-Acyl-L-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica and Aeromonas hydrophila. Journal of agricultural and food chemistry, 57(23), 11186-11193. https://doi.org/10.1021/jf9029139.
  • Tsui, C., Kong, E. F., & Jabra‐Rizk, M. A. (2016). Pathogenesis of candida albicans biofilm. Pathogens and Disease, 74(4), ftw018. https://doi.org/10.1093/femspd/ftw018
  • Uğurlu, A. (2013). Pseudomonas aeroginosa Suşlarında Çevreyi Algılama Sistemine Fenolik Maddelerin Etkisinin Araştırılması (Tez No 336766). [Uzmanlık tezi, Marmara Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Üreyen Esertaş, Ü. Z., Kara, Y., Kiliç, A. O., & Kolayli, S. (2022). A comparative study of antimicrobial, anti-quorum sensing, anti-biofilm, anti-swarming, and antioxidant activities in flower extracts of pecan (Carya illinoinensis) and chestnut (Castanea sativa). Archives of Microbiology, 204(9), 589.
  • Vattem, D. A., Mihalik, K., Crixell, S. H., & McLean, R. J. (2007). Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia, 78(4), 302-310. https://doi.org/10.1016/j.fitote.2007.03.009.
  • Venkatesan, T., Choi, Y., & Kim, Y. (2019). Impact of different extraction solvents on phenolic content and antioxidant potential of pinus densiflora bark extract. BioMed Research International, 2019, 1-14. https://doi.org/10.1155/2019/3520675
  • Weli, A. M., Al-Saadi, H. S., Al-Fudhaili, R. S., Hossain, A., Putit, Z. B., & Jasim, M. K. (2020). Cytotoxic and antimicrobial potential of different leaves extracts of R. fruticosus used traditionally to treat diabetes. Toxicology Reports, 18(7), 183-187. https://doi.org/10.1016/j.toxrep.2020.01.006.
  • Woods, G. L., Brown-Elliott, B. A., Desmond EP, Hall GS, Heifets L, et al (2003). Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; Approved Standard. NCCLS document M24-A, 23 (18), 1-18.
  • Yazıcı, K., Balijagic, J., Göksu, B., Bilgin, Ö. F., & Erċışlı, S. (2023). Comparison of some fruit quality parameters of selected 12 mandarin genotypes from black sea region in Turkey. ACS Omega, 8(22), 19719-19727. https://doi.org/10.1021/acsomega.3c01364
  • Zhou, X. (2023). Antibiotic culture: a history of antibiotic use in the second half of the 20th and early 21st century in the people’s republic of China. Antibiotics, 12(3), 510. https://doi.org/10.3390/antibiotics12030510
  • Zia-Ul-Haq, M., Riaz, M., De Feo, V., Jaafar, Z. E. H., & Moga, M. (2014). Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses. Molecules, 19(8), 10998-11029. https://doi.org/10.3390/ molecules190810998.

Rubus fruticosus L. nin Anti-biyofilm, Anti-quorum sensing, Anti-swarming ve Antimikrobiyal Aktivitesi

Year 2025, Volume: 28 Issue: 4, 903 - 913
https://doi.org/10.18016/ksutarimdoga.vi.1396393

Abstract

Son on yılda dünya çapında benzeri görülmemiş bir oranda artan antibiyotik direnci sağlık sistemleri için ciddi bir zorluk oluşturmaktadır. Araştırmalar, bu direnç sorununun özellikle 2050'li yıllarda büyük can kayıplarına yol açacağını öngörmektedir. Dirençle mücadelede etkili antibiyotiklerin yerini alabilecek alternatif yöntemler araştırılmaktadır. Rubus fruticosus L., böğürtlen adıyla bilinen ve meyvesiyle ünlü bir çalı bitkisidir. Bu meyvenin tıbbi, kozmetik ve besin değeri oldukça yüksektir. Çalışmamızda, Rize iline ait Rubus fruticosus meyvesinin metanol, etil asetat, etanol ve hekzan ekstraktları antimikrobiyal ve antiquorum sensing aktivite açısından incelenmiştir. Çeşitli Gram-negatif ve Gram-pozitif bakterilere ve iki Candida cinsine ait türe karşı antimikrobiyal aktivite, agar difüzyon yöntemi ile araştırılmıştır. Anti-quorum sensing ve antibiofilm aktiviteleri ise Chromobacterium violaceum ATCC 12472 ve Pseudomonas aeruginosa PAO1 kullanılarak değerlendirilmiştir. Sonuçlar, Rubus fruticosus’un metanol ekstraktının antimikrobiyal aktiviteye sahip olduğunu, etanol ekstraktının ise antibiofilm ve antiswarming aktivitelerine sahip olduğunu göstermektedir. Bu bulgular, Rubus fruticosus’un antimikrobiyal dirençle mücadelede potansiyel bir doğal ajan olarak kullanılabileceğini düşündürmektedir.

Supporting Institution

Recep Tayyip Erdoğan Üniversitesi

Project Number

TDK-2018-959

References

  • Abachi, S., Khademi, F., Fatemi, H., & Malekzadeh, F. (2013). Study of antibacterial activity of selected Iranian plant extracts on Helicobacter pylori. Journal of Dental and Medical Sciences, 5(1), 55-59.
  • Abay, G., Batan, N., & Özdemır, T. (2016). Bryophyte checklist of Rize, north-east Turkey. Arctoa, 25(1), 386-392. https://doi.org/10.15298/arctoa.25.31
  • Abdou, R., Shabana, S., & Rateb, M. E. (2018). Terezine E, bioactive prenylated tryptophan analogue from an endophyte of Centaurea stoebe. Natural Product Research, 34(4), 503-510. https://doi.org/10.1080/ 14786419.2018.1489393.
  • Acet, T. (2021). Determining the phenolic components by using HPLC and the biological activity of Centaurea triumfetti. Plant Biosystems, 155(1), 159-164. https://doi.org/10.1080/11263504.2020.1722275.
  • Ahmed, A., Ahmad, A., Li, R., Al‐Ansi, W., Fatima, M., Mushtaq, B. S., … & Bai, Z. (2021). Recent advances in synthetic, industrial and biological applications of violacein and its heterologous production. Journal of Microbiology and Biotechnology, 31(11), 1465-1480. https://doi.org/10.4014/jmb.2107.07045
  • Antimicrobial Resistance Collaborators (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0.
  • Bezuidenhout, M., Dimitrov, D., Staden, A. D. v., Oosthuizen, G. A., & Dicks, L. M. T. (2015). Titanium-based hip stems with drug delivery functionality through additive manufacturing. BioMed Research International, 2015(1), 134093. https://doi.org/10.1155/2015/134093
  • Bru, J., Kasallis, S. J., Zhuo, Q., Høyland-Kroghsbo, N. M., & Siryaporn, A. (2023). Swarming of p. aeruginosa: through the lens of biophysics. Biophysics Reviews, 4(3),031305. https://doi.org/10.1063/5.0128140
  • Bru, J., Rawson, B., Trinh, C., Whiteson, K., Høyland‐Kroghsbo, N. M., & Siryaporn, A. (2019). Pqs produced by the pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics. Journal of Bacteriology, 201(23), 10-1128. https://doi.org/10.1128/jb.00383-19
  • Cavanagh HMA, Hipwel Ml, Wilkinson JM (2003). Antibacterial activity of berry fruits used for culinary purposes. Journal of medicinal food, 6(1), 57-61.
  • Cepas, V., Lopez, Y., Munoz, E., Rolo, D., Ardanuy, C., Marti, S., Xercavins, M., Horcajada, J. P., Bosch, J., & Soto, S. M. (2019). Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microbial Drug Resistance, 25(1), 72-79. https://doi.org/10.1089/mdr.2018.0027.
  • Chu, W., Zhou, S., Jiang, Y., Zhu, W., Zhuang, X., & Fu, J. (2013). Efect of traditional Chinese herbal medicine with antiquorum sensing activity on Pseudomonas aeruginosa. Evidence Based Complementary and Alternative Medicine, 2013(1), 648257. https://doi.org/10.1155/2013/648257.
  • Cieplik, F., Deng, D., Crielaard, W., Buchalla, W., Hellwig, E., Al‐Ahmad, A., … & Maisch, T. (2018). Antimicrobial photodynamic therapy – what we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571-589. https://doi.org/10.1080/1040841x.2018.1467876
  • Dalar, A. (2018). Plant taxa used in the treatment of diabetes in van province, Turkey. International Journal of Secondary Metabolite, 5(3), 171-185. https://doi.org/10.21448/ijsm.430703
  • Denev, P., Kratchanova, M., Ciz, M., Lojek, A., Vasicek, O., Nedelcheva, P., Blazheva, D., Toshkova, R., Gardeva, E., Yossifova, L., Hyrsl, P., & Vojtek, L. (2014). Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chemistry, 15(157), 37-44. doi: 10.1016/j.foodchem.2014.02.022.
  • Durán, N., Justo, G. Z., Ferreira, C. V., Melo, P. S., Cordi, L., & Martins, D. (2007). Violacein: properties and biological activities. Biotechnology and Applied Biochemistry, 48(3), 127-133. https://doi.org/10.1042/ ba20070115
  • Ercan, U. K., Özdemir, G., Özdemir, M. A., & Güren, O. (2023). Plasma medicine: the era of artificial intelligence. Plasma Processes and Polymers, 20(12), https://doi.org/10.1002/ppap.202300066
  • Esertaş, Ü. Z. Ü., & Cora, M. (2024). Biological activities of Elaeagnus umbellata methanol extract. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(6), 1262-1268.
  • Esertaş, Ü. Z. Ü., Durukan, İ., Kılıç, A. O., & Ekşi, S. (2024). Determination of antimicrobial and quorum sensing inhibition potentials of different types of berries from Rize. Kastamonu University Journal of Forestry Faculty, 24(1), 74-80.
  • Fontaine, B. M., Nelson, K., Lyles, J. T., Jariwala, P. B., García-Rodriguez, J. M., Quave, C. L., & Weinert, E. E. (2017). Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-biofilm Activity. Frontiers in Microbiology, 23(8), 496. https://doi.org/10.3389/fmicb.2017.00496.
  • Gür, D. (2016). Antibiyotik Duyarlılık Testleri, EUCAST: Uygulama, Yorum ve Uzman Kurallar. Türk Mikrobiyoloji Cemiyeti Dergisi, 46.
  • Hayer, S. S., Casanova-Higes, A., Paladino, E., Elnekave, E., Nault, A., Johnson, T. J., … & Álvarez, J. (2022). Global distribution of fluoroquinolone and colistin resistance and associated resistance markers in escherichia coli of swine origin – a systematic review and meta-analysis. Frontiers in Microbiology, 13, 834793. https://doi.org/10.3389/fmicb.2022.834793
  • Kanade, Y., Mohan, W., & Patwardhan, R. B. (2022). Violacein: a promising bacterial secondary metabolite. Research Journal of Chemistry and Environment, 26(6), 165-177. https://doi.org/10.25303/2606rjce165177
  • Kiymaci, M. E., Savluk, M., Gumustas, M., Uvey, M., & Unal, N. (2023). Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens. Journal of Research in Pharmacy, 27(2), 508-518. htpp://dx.doi.org/10.29228/jrp.333
  • Koh, K. H., & Tham, F. Y. (2011). Screening of traditional Chinese medicinal plants for quorum-sensing inhibitors activity. Journal of Microbiology Immunology and Infection, 44(2), 144-148. https://doi.org/10.1016/ j.jmii.2009.10.001.
  • Kranjec, C., Angeles, D. M., Mårli, M. T., Fernández, L., Garcı́a, P., Kjos, M., … & Diep, D. B. (2021). Staphylococcal biofilms: challenges and novel therapeutic perspectives. Antibiotics, 10(2), 131. https://doi.org/10.3390/ antibiotics10020131
  • Mahadwar, G., Chauhan, K. R., Bhagavathy, G. V., Murphy, C., Smith, A., & Bhagwat, A. A. (2015). Swarm motility of salmonella enterica serovar typhimurium is inhibited by compounds from fruit peel extracts. Letters in Applied Microbiology, 60(4), 334-340. https://doi.org/10.1111/lam.12364
  • McLean, R. J. C., Pierson, L. S., & Fuqua, C. (2004). A simple screening protocol for the identification of quorum signal antagonist. Journal of Microbiological Methods, 58(3), 351-60. https://doi.org/10.1016/ j.mimet.2004.04.016.
  • Mehta, T., Vercruysse, K., Johnson, T. L., Ejiofor, A. O., Myles, E. L., & Quick, Q. A. (2015). Violacein induces p44/42 mitogen-activated protein kinase-mediated solid tumor cell death and inhibits tumor cell migration. Molecular Medicine Reports, 12(1), 1443-1448. https://doi.org/10.3892/mmr.2015.3525
  • Merghni, A., Haddaji, N., Bouali, N., Alabbosh, K. F., Adnan, M., Snoussi, M., & Noumi, E. (2022). Comparative Study of Antibacterial, Antibiofilm, Antiswarming and Antiquorum Sensing Activities of Origanum vulgare Essential Oil and Terpinene-4-ol against Pathogenic Bacteria. Life, 12(10), 1616. https://doi.org/10.3390/life12101616.
  • Murray, P. R., Baron, E. J., Pfaller, M. A., Jorgensen, J. H., & Yolken, R. H. (2009). Manual of Clinical Microbiology. Birinci Cilt. Dokuzuncu Baskı. ASM Press, Washington, DC. 390- 770.
  • Noumi, E., Merghni, A., Alreshidi, M., Haddad, O., Akmadar, G., De Martino, L., Mastouri, M., Ceylan, O., Snoussi, M., Al-Sieni, A., & De Feo, V. (2018). Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for Evaluating Anti-Quorum Sensing Activity of Melaleuca alternifolia Essential Oil and Its Main Component Terpinen-4-ol. Molecules, 23(10), 2672. https://doi.org/10.3390/molecules23102672.
  • Oliveira, B. D. Á., Rodrigues, A. C., Cardoso, B. M. I., Ramos, A. L. C. C., Bertoldi, M. C., Taylor, J. G., ... & Pinto, U. M. (2016). Antioxidant, antimicrobial and anti-quorum sensing activities of Rubus rosaefolius phenolic extract. Industrial Crops and Products, 84, 59-66.
  • Packiavathy, S. V., Priya, S., Pandian, S. K., & Arumugam V. R. (2014). Inhibition of biofilm development of uropathogens by curcumin-An anti-quorum sensing agent from Curcuma longa. Food Chemistry, 148, 453-460. https://doi.org/10.1016/j.foodchem.2012.08.002.
  • Permatananda, P. A. N. K., Pandit, I. G. S., Cahyawati, P. N., & Aryastuti, A. A. S. A. (2023). Antimicrobial properties of eco enzyme: a literature review. Bioscientia Medicina: Journal of Biomedicine and Translational Research, 7(6), 3370-3376. https://doi.org/10.37275/bsm.v7i6.831
  • Rashid, M. H., & Kornberg, A. (2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedins of the National Academy of Science, 97(9), 4885-4890. https://doi.org/10.1073/pnas.060030097.
  • Saliha, E. K. Ş. İ., Esertaş, Ü. Z. Ü., Kilic, A. O., Ejder, N., & Uzunok, B. (2020). Determination of the antimicrobial and antibiofilm effects and ‘Quorum Sensing’inhibition potentials of Castanea sativa Mill. extracts. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 66-78.
  • Singh, R., Joshi, D. B., & Bhadauria, R. S. (2022). Hydrotropic solvents used for extraction techniques of barleria elegans l. leaves. International Journal of Scientific Research and Management, 10(04), 594-604. https://doi.org/10.18535/ijsrm/v10i04.mp01
  • Solanki, R., & Nagori, B. P. (2012). New method for extracting phytoconstituents from plants. International. Journal of Biomedical and Advance Research, 3(10), 770-774.
  • Terreni, M., Taccani, M., & Pregnolato, M. (2021). New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules, 26(9), 2671. https://doi.org/10.3390/molecules 26092671
  • The European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2022) European committee on antimicrobial susceptibility testing Broth microdilution - EUCAST reading guide v 4.0 (1 January 2022). https://www.eucast.org/
  • Truchado, P., Gil-Izqierdo, A., Tomas-Barberan, F., & Allenda, A. (2009). Inhibition by chenut honey of N-Acyl-L-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica and Aeromonas hydrophila. Journal of agricultural and food chemistry, 57(23), 11186-11193. https://doi.org/10.1021/jf9029139.
  • Tsui, C., Kong, E. F., & Jabra‐Rizk, M. A. (2016). Pathogenesis of candida albicans biofilm. Pathogens and Disease, 74(4), ftw018. https://doi.org/10.1093/femspd/ftw018
  • Uğurlu, A. (2013). Pseudomonas aeroginosa Suşlarında Çevreyi Algılama Sistemine Fenolik Maddelerin Etkisinin Araştırılması (Tez No 336766). [Uzmanlık tezi, Marmara Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji Ana Bilim Dalı]. Yükseköğretim Kurulu Ulusal Tez Merkezi.
  • Üreyen Esertaş, Ü. Z., Kara, Y., Kiliç, A. O., & Kolayli, S. (2022). A comparative study of antimicrobial, anti-quorum sensing, anti-biofilm, anti-swarming, and antioxidant activities in flower extracts of pecan (Carya illinoinensis) and chestnut (Castanea sativa). Archives of Microbiology, 204(9), 589.
  • Vattem, D. A., Mihalik, K., Crixell, S. H., & McLean, R. J. (2007). Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia, 78(4), 302-310. https://doi.org/10.1016/j.fitote.2007.03.009.
  • Venkatesan, T., Choi, Y., & Kim, Y. (2019). Impact of different extraction solvents on phenolic content and antioxidant potential of pinus densiflora bark extract. BioMed Research International, 2019, 1-14. https://doi.org/10.1155/2019/3520675
  • Weli, A. M., Al-Saadi, H. S., Al-Fudhaili, R. S., Hossain, A., Putit, Z. B., & Jasim, M. K. (2020). Cytotoxic and antimicrobial potential of different leaves extracts of R. fruticosus used traditionally to treat diabetes. Toxicology Reports, 18(7), 183-187. https://doi.org/10.1016/j.toxrep.2020.01.006.
  • Woods, G. L., Brown-Elliott, B. A., Desmond EP, Hall GS, Heifets L, et al (2003). Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; Approved Standard. NCCLS document M24-A, 23 (18), 1-18.
  • Yazıcı, K., Balijagic, J., Göksu, B., Bilgin, Ö. F., & Erċışlı, S. (2023). Comparison of some fruit quality parameters of selected 12 mandarin genotypes from black sea region in Turkey. ACS Omega, 8(22), 19719-19727. https://doi.org/10.1021/acsomega.3c01364
  • Zhou, X. (2023). Antibiotic culture: a history of antibiotic use in the second half of the 20th and early 21st century in the people’s republic of China. Antibiotics, 12(3), 510. https://doi.org/10.3390/antibiotics12030510
  • Zia-Ul-Haq, M., Riaz, M., De Feo, V., Jaafar, Z. E. H., & Moga, M. (2014). Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses. Molecules, 19(8), 10998-11029. https://doi.org/10.3390/ molecules190810998.
There are 52 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section RESEARCH ARTICLE
Authors

Ülkü Zeynep Üreyen Esertaş 0000-0001-9897-5313

İnci Durukan 0000-0002-9789-4738

Ali Osman Kılıç 0000-0002-5506-0866

Saliha Ekşi 0000-0002-8818-7855

Project Number TDK-2018-959
Early Pub Date June 10, 2025
Publication Date
Submission Date November 26, 2023
Acceptance Date May 7, 2025
Published in Issue Year 2025Volume: 28 Issue: 4

Cite

APA Üreyen Esertaş, Ü. Z., Durukan, İ., Kılıç, A. O., Ekşi, S. (2025). Anti-biofilm, Anti-quorum sensing, Anti-swarming, and Antimicrobial Activity of Rubus fruticosus L. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(4), 903-913. https://doi.org/10.18016/ksutarimdoga.vi.1396393


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149