Research Article
BibTex RIS Cite

Kamışsı Yumak Bitkisinde Tuzluluk Toleransının Fizyolojik ve Biyokimyasal Mekanizması: Tuz Stresine Farklı Hassasiyet Gösteren Çeşitlerin Karşılaştırmalı Analizi

Year 2025, Volume: 28 Issue: 4, 1043 - 1053

Abstract

Bu çalışma, farklı tuzluluk toleransına sahip Festuca arundinacea (kamışsı yumak) çeşitlerinde tuzluluk stresinin fizyolojik ve biyokimyasal düzeydeki etkilerini ortaya koymayı amaçlamıştır. Tuzluluk stresi uygulamaları, farklı tuzluluk stres toleransına (toleranslı, orta-yüksek, orta-düşük ve hassas) sahip dört kamışsı yumak çeşidinde büyüme parametreleri, biyokimyasal profiller ve antioksidan enzimlerin aktivitesinin değerlendirilmesi yoluyla değerlendirilmiştir. Sonuçlar, ‘Titan RX’ adlı tolerant çeşidin tuzluluk stresi koşullarında kök büyümesini artırdığını ve fizyolojik durumunu koruduğunu ortaya koymuştur. Bu durum, serbest prolin biyosentezinin ve antioksidan mekanizmaların (toplam fenolik ve flavonoid içerikleri, DPPH aktivitesi, CAT ve GR enzimleri) aktivasyonu ile ilişkilendirilmiştir. Diğer çeşitler bu parametrelerde tolerant çeşide kıyasla daha düşük değerlere sahip olmuş ve sonuçlar bu çeşitlerde tuzluluk toleransı kapasitelerinin daha sınırlı olduğunu göstermiştir. Elde edilen bulgular, ‘Titan RX’ çeşidinin, tuzluluk stresine dayanıklı kamışsı yumak bitkileri geliştirmek için potansiyel bir kaynak olarak kullanılabileceğini göstermektedir.

References

  • Al Hinai, M.S., Ullah, A., Al-Rajhi, R.S., & Farooq, M. (2022). Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin. Environmental and Experimental Botany, 193 (2022)104687, 1-9. https://doi.org/10.1016/j.envexpbot.2021.104687
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  • Bates, L.S., Waldren, R.P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Begum, N., Hasanuzzaman, M., Li, Y., Akhtar, K., Zhang, C., & Zhao, T. (2022). Seed germination behavior, growth, physiology and antioxidant metabolism of four contrasting cultivars under combined drought and salinity in soybean. Antioxidants, 11(498), 1-23. https://doi.org/10.3390/antiox11030498
  • Bektaş, E., Kaltalıoğlu, K., Şahin, H., Türkmen, Z., & Kandemir, A. (2018). Analysis of phenolic compounds, antioxidant and antimicrobial properties of some endemic medicinal plants. International Journal of Secondary Metabolite, 5(2), 75-86. https://doi.org/10.21448/ijsm.392354
  • Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M.R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135(2019), 311-320. https://doi.org/10.1016/j.indcrop.2019.04.055
  • Bushman, B.S., Robbins, M.D., Robins, J.G., Thorsted, K., Harris, P., & Johnson, P.G. (2020). Response to salt stress imposed on cultivars of three turfgrass species: Poa pratensis, Lolium perenne, and Puccinellia distans. Crop Science, 60(3),1648-1659. https://doi.org/10.1002/csc2.20014
  • Chance, B., & Maehly, A. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775.
  • Chen, Y., Xiang, Y., Hu, Z., Gao, Y., Zhang, Y., Chen, M., Khaldun, A., Yan, X., & Fan, J. (2022). Transcriptomic profiling revealed the role of 24-epibrassinolide in alleviating salt stress damage in tall fescue (Festuca arundinacea). Frontiers in Plant Science, 13(976341), 1-15. https://doi.org/10.3389/fpls.2022.976341
  • Demirci-Cekic, S., Özkan, G., Avan, AN., Uzunboy, S., Çapanoğlu, E., & Apak, R. (2022). Biomarkers of oxidative stress and antioxidant defense. Journal of pharmaceutical and biomedical analysis, 209, 114477. https://doi.org/10.1016/j.jpba.2021.114477
  • Demirkol, G. (2020). The role of BADH gene in oxidative, salt, and drought stress tolerances of white clover. Turkish Journal of Botany, 44(3), 214-221. https://doi.org/10.3906/bot-2002-28
  • Demirkol, G. (2021). PopW enhances drought stress tolerance of alfalfa via activating antioxidative enzymes, endogenous hormones, drought related genes and inhibiting senescence genes. Plant Physiology and Biochemistry, 166, 540-548. https://doi.org/10.1016/j.plaphy.2021.06.036
  • Demirkol, G., & Yılmaz, N. (2023). Morphologically and genetically diverse forage pea (Pisum sativum var. arvense L.) genotypes under single and combined salt and drought stresses. Plant Physiology and Biochemistry, 196, 880-892. https://doi.org/10.1016/j.plaphy.2023.02.041
  • Demirkol, G., Yılmaz, N., & Önal Aşcı, Ö. (2019). The Effect of Salt Stress on the Germination and Seedling Growth Parameters of a Selected Forage Pea (Pisum sativum ssp. arvense L.) Genotype. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(3), 354-359. https://doi.org/10.18016/ksutarimdoga.vi.455439
  • Demirkol, M., & Tarakci, Z. (2018). Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT, 97,770-777 https://doi.org/10.1016/j.lwt.2018.07.058
  • Dugasa, M.T., Cao, F., Ibrahim, W., & Wu, F. (2019). Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiologia Plantarum, 165(2),134-143. https://doi.org/10.1111/ppl.12743
  • El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M.A., Islam, M.S., Fahad, S., Sytar, O., Çiğ, F., Meena, R.S., & Erman, M. (2020). Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham.
  • Farrant, J.M. (2000). A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecology, 151, 29-39. https://doi.org/10.1023/A:1026534305831
  • Hasanuzzaman, M., Bhuyan, M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(681), 1-52. https://doi.org/10.3390/antiox9080681
  • Hniličková, H., Hniličk, F., Orsák, M., & Hejnák, V. (2019). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil & Environment, 65(2), 90-96.
  • Hussain, Q., Asim, M., Zhang, R., Khan, R., Farooq, S., & Wu, J. (2021). Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules, 11(1159), 1-30. https://doi.org/10.3390/biom11081159
  • Jan, A. U., Hadi, F., Nawaz, M. A., & Rahman, K. (2017). Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 116(2017), 139-149. https://doi.org/10.1016/j.plaphy.2017.05.008
  • Jothimani, K., & Arulbalachandran, D. (2020). Physiological and biochemical studies of black gram (Vigna mungo (L.) Hepper) under polyethylene glycol induced drought stress. Biocatalysis and Agricultural Biotechnology, 29 (101777), 1-9. https://doi.org/10.1016/j.bcab.2020.101777
  • Kainama, H., Fatmawati, S., Santoso, M., Papilaya, P.M., & Ersam, T. (2020). The relationship of free radical scavenging and total phenolic and flavonoid contents of Garcinia lasoar PAM. Pharmaceutical Chemistry Journal, 53(12), 1151-1157. https://doi.org/10.1007/s11094-020-02139-5
  • Kaplan, M., Baser, M., Kale, H., Irık, H.A., Ulger, İ., & Unlukara, A. (2017). Change in yield and chemical composition of tall fescue (Festuca arundinacea schreb.) plants under salt stress. Turkish Journal of Field Crops, 22(2), 204-210.
  • Kaya, C., Ashraf, M., Alyemeni, M.N., & Ahmad, P. (2020). The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiology and Biochemistry, 147(2020), 10-20. https://doi.org/10.1016/j.plaphy.2019.11.040
  • Kim, S.Y., Lim, J.H., Park, M.R., Kim, Y.J., Park, T.I., Seo, Y.W., Choi, K.G., & Yun, S.J (2005). Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Reports, 38(2), 218-224.
  • Liu, Z., Ma, C., Hou, L., Wu, X., Wang, D., Zhang, L., & Liu, P. (2022). Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis. International Journal of Molecular Sciences, 23(6), 3293. https://doi.org/10.3390/ijms23063293
  • Liu, H., Todd, JL., & Luo, H. (2023). Turfgrass Salinity Stress and Tolerance - A Review. Plants ,12(925), 1-25. https://doi.org/10.3390/plants12040925
  • Marcucci, M., Woisky, R., & Salatino, A. (1998). Use of aluminium chloride in the flavonoids quantification of propolis samples. Mensagem Doce, 46, 3-9.
  • Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology and Biotechnology, 8(03), 81-91.
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  • Oral, E., Altuner, F., Tunçtürk, R., & Baran, İ. (2019). Effect of Salt Stress (NaCl) in the Triticale (x Triticosecale Wittmack) Applied Pretreatment of Gibberellic Acid. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(Ek sayı 2), 235-242. https://doi.org/10.18016/ksutarimdoga.vi.553769
  • Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Etminan, A., Moghaddam, M., & Siddique, K.H. (2017). Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiologiae Plantarum, 39(106), 1-16. https://doi.org/10.1007/s11738-017-2403-z
  • Price, L., Han, Y., Angessa, T., & Li, C. (2022). Molecular pathways of WRKY genes in regulating plant salinity tolerance. International Journal of Molecular Sciences, 23(10947), 1-20. https://doi.org/10.3390/ijms231810947
  • Rai, A.C., Singh, M., & Shah, K. (2013). Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry, 85(2013),44-50. https://doi.org/10.1016/j.phytochem.2012.09.007
  • Rajasheker, G., Jawahar, G., Jalaja, N., Kumar, S.A., Kumari, P.H., Punita, D.L., Karumanchi, A.R., Reddy, P.S., Rathnagiri, P., & Sreenivasulu, N. (2019). Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In: Plant Signaling Molecules. Elsevier.
  • Riseh, R. S., Fathi, F., Vatankhah, M., & Kennedy, J.F. (2024). Catalase-associated immune responses in plant-microbe interactions: A review. International Journal of Biological Macromolecules, 280(2), 135859. https://doi.org/10.1016/j.ijbiomac.2024.135859
  • Sato, H. (2022). Development and Future Application of Transgenic Tall Fescue (Festuca arundinacea Schreb.) with Improved Important Forage and Turf Traits. Japan Agricultural Research Quarterly, 56,1-6.
  • Sgherri, C.L.M., Loggini, B., Puliga, S., & Navari-Izzo, F, (1994). Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry, 35(3), 561-565. https://doi.org/10.1016/S0031-9422(00)90561-2
  • Shafi, A., Chauhan, R., Gill, T., Swarnkar, M.K., Sreenivasulu, Y., Kumar, S., Kumar, N., Shankar, R., Ahuja, P.S., & Singh, A. K. (2015). Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Molecular Biology, 2015(87), 615-631. https://doi.org/10.1007/s11103-015-0301-6
  • Simsek Soysal, A. Ö., Demirkol, G., Aşcı, Ö. Ö., Arıcı, Y. K., Acar, Z., & Yılmaz, N. (2021). Tuz stresinin tek yıllık çim (Lolium multiflorum L.)’de çimlenme ve fide gelişim özelliklerine etkisi. Turkish Journal of Agricultural and Natural Sciences, 8(2), 301-307. https://doi.org/10.30910/turkjans.787011
  • Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55. https://doi.org/10.5344/ajev.1977.28.1.4
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  • Wang, S.Y., Jiao, H.J., & Faust, M. (1991). Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron‐induced bud break of apple. Physiologia Plantarum, 82(2), 231-236. https://doi.org/10.1111/j.1399-3054.1991.tb00086.x
  • Yılmaz, V.A. (2019). Investigation of bioactive compounds and antioxidant capacities of various cereal products. Journal of Agricultural Faculty of Gaziosmanpaşa University, 36(1),10-22. https://doi.org/10.13002/jafag4544
  • Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. (2020). Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy, 10(127), 1-15. https://doi.org/10.3390/agronomy10010127
  • Zou, Y., Zhang, Y., & Testerink, C. (2022). Root dynamic growth strategies in response to salinity. Plant, Cell & Environment, 45(3), 695-704. https://doi.org/10.1111/pce.14205
  • Zrig, A., Tounekti, T., Hegab, M.M., Ali, S.O., & Khemira, H. (2016). Essential oils, amino acids and polyphenols changes in salt-stressed Thymus vulgaris exposed to open–field and shade enclosure. Industrial Crops and Products, 91(2016), 223-230. https://doi.org/10.1016/j.indcrop.2016.07.012

Physiological and Biochemical Mechanisms of Salinity Tolerance in Tall Fescue: A Comparative Analysis of Cultivars Differing in Salinity Tolerance

Year 2025, Volume: 28 Issue: 4, 1043 - 1053

Abstract

Salinity stress causes an increasingly pervasive threat to agricultural productivity, including turf and forage grasses. This study aimed to reveal how salinity stress affects the physiological and biochemical levels of Festuca arundinacea (tall fescue) cultivars differing in salinity tolerance. The salinity stress treatments were assessed through the evaluation of growth measures, biochemical profiles, and the activity of antioxidative enzymes in four tall fescue cultivars having different salinity stress tolerance (tolerant, moderate-high, moderate-low, and sensitive). The results revealed that the tolerant cultivar named ‘Titan RX’ (tolerant cv.) showed increased root growth and maintained physiological status under salinity stress conditions. This was attributed to the activation of the biosynthesis for the free proline and the antioxidative status (total phenolic and flavonoid contents, DPPH activity, enzymes of CAT, and GR). The other cultivars exhibited lower values in these parameters compared to the tolerant cv., indicating their lesser capacity for salinity tolerance. The results indicated that the cv. ‘Titan RX’ could potentially be utilized to generate tall fescue crops that can cope with salinity stress conditions.

References

  • Al Hinai, M.S., Ullah, A., Al-Rajhi, R.S., & Farooq, M. (2022). Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin. Environmental and Experimental Botany, 193 (2022)104687, 1-9. https://doi.org/10.1016/j.envexpbot.2021.104687
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  • Bates, L.S., Waldren, R.P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Begum, N., Hasanuzzaman, M., Li, Y., Akhtar, K., Zhang, C., & Zhao, T. (2022). Seed germination behavior, growth, physiology and antioxidant metabolism of four contrasting cultivars under combined drought and salinity in soybean. Antioxidants, 11(498), 1-23. https://doi.org/10.3390/antiox11030498
  • Bektaş, E., Kaltalıoğlu, K., Şahin, H., Türkmen, Z., & Kandemir, A. (2018). Analysis of phenolic compounds, antioxidant and antimicrobial properties of some endemic medicinal plants. International Journal of Secondary Metabolite, 5(2), 75-86. https://doi.org/10.21448/ijsm.392354
  • Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M.R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135(2019), 311-320. https://doi.org/10.1016/j.indcrop.2019.04.055
  • Bushman, B.S., Robbins, M.D., Robins, J.G., Thorsted, K., Harris, P., & Johnson, P.G. (2020). Response to salt stress imposed on cultivars of three turfgrass species: Poa pratensis, Lolium perenne, and Puccinellia distans. Crop Science, 60(3),1648-1659. https://doi.org/10.1002/csc2.20014
  • Chance, B., & Maehly, A. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775.
  • Chen, Y., Xiang, Y., Hu, Z., Gao, Y., Zhang, Y., Chen, M., Khaldun, A., Yan, X., & Fan, J. (2022). Transcriptomic profiling revealed the role of 24-epibrassinolide in alleviating salt stress damage in tall fescue (Festuca arundinacea). Frontiers in Plant Science, 13(976341), 1-15. https://doi.org/10.3389/fpls.2022.976341
  • Demirci-Cekic, S., Özkan, G., Avan, AN., Uzunboy, S., Çapanoğlu, E., & Apak, R. (2022). Biomarkers of oxidative stress and antioxidant defense. Journal of pharmaceutical and biomedical analysis, 209, 114477. https://doi.org/10.1016/j.jpba.2021.114477
  • Demirkol, G. (2020). The role of BADH gene in oxidative, salt, and drought stress tolerances of white clover. Turkish Journal of Botany, 44(3), 214-221. https://doi.org/10.3906/bot-2002-28
  • Demirkol, G. (2021). PopW enhances drought stress tolerance of alfalfa via activating antioxidative enzymes, endogenous hormones, drought related genes and inhibiting senescence genes. Plant Physiology and Biochemistry, 166, 540-548. https://doi.org/10.1016/j.plaphy.2021.06.036
  • Demirkol, G., & Yılmaz, N. (2023). Morphologically and genetically diverse forage pea (Pisum sativum var. arvense L.) genotypes under single and combined salt and drought stresses. Plant Physiology and Biochemistry, 196, 880-892. https://doi.org/10.1016/j.plaphy.2023.02.041
  • Demirkol, G., Yılmaz, N., & Önal Aşcı, Ö. (2019). The Effect of Salt Stress on the Germination and Seedling Growth Parameters of a Selected Forage Pea (Pisum sativum ssp. arvense L.) Genotype. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(3), 354-359. https://doi.org/10.18016/ksutarimdoga.vi.455439
  • Demirkol, M., & Tarakci, Z. (2018). Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT, 97,770-777 https://doi.org/10.1016/j.lwt.2018.07.058
  • Dugasa, M.T., Cao, F., Ibrahim, W., & Wu, F. (2019). Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiologia Plantarum, 165(2),134-143. https://doi.org/10.1111/ppl.12743
  • El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M.A., Islam, M.S., Fahad, S., Sytar, O., Çiğ, F., Meena, R.S., & Erman, M. (2020). Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham.
  • Farrant, J.M. (2000). A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecology, 151, 29-39. https://doi.org/10.1023/A:1026534305831
  • Hasanuzzaman, M., Bhuyan, M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(681), 1-52. https://doi.org/10.3390/antiox9080681
  • Hniličková, H., Hniličk, F., Orsák, M., & Hejnák, V. (2019). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil & Environment, 65(2), 90-96.
  • Hussain, Q., Asim, M., Zhang, R., Khan, R., Farooq, S., & Wu, J. (2021). Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules, 11(1159), 1-30. https://doi.org/10.3390/biom11081159
  • Jan, A. U., Hadi, F., Nawaz, M. A., & Rahman, K. (2017). Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 116(2017), 139-149. https://doi.org/10.1016/j.plaphy.2017.05.008
  • Jothimani, K., & Arulbalachandran, D. (2020). Physiological and biochemical studies of black gram (Vigna mungo (L.) Hepper) under polyethylene glycol induced drought stress. Biocatalysis and Agricultural Biotechnology, 29 (101777), 1-9. https://doi.org/10.1016/j.bcab.2020.101777
  • Kainama, H., Fatmawati, S., Santoso, M., Papilaya, P.M., & Ersam, T. (2020). The relationship of free radical scavenging and total phenolic and flavonoid contents of Garcinia lasoar PAM. Pharmaceutical Chemistry Journal, 53(12), 1151-1157. https://doi.org/10.1007/s11094-020-02139-5
  • Kaplan, M., Baser, M., Kale, H., Irık, H.A., Ulger, İ., & Unlukara, A. (2017). Change in yield and chemical composition of tall fescue (Festuca arundinacea schreb.) plants under salt stress. Turkish Journal of Field Crops, 22(2), 204-210.
  • Kaya, C., Ashraf, M., Alyemeni, M.N., & Ahmad, P. (2020). The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiology and Biochemistry, 147(2020), 10-20. https://doi.org/10.1016/j.plaphy.2019.11.040
  • Kim, S.Y., Lim, J.H., Park, M.R., Kim, Y.J., Park, T.I., Seo, Y.W., Choi, K.G., & Yun, S.J (2005). Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Reports, 38(2), 218-224.
  • Liu, Z., Ma, C., Hou, L., Wu, X., Wang, D., Zhang, L., & Liu, P. (2022). Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis. International Journal of Molecular Sciences, 23(6), 3293. https://doi.org/10.3390/ijms23063293
  • Liu, H., Todd, JL., & Luo, H. (2023). Turfgrass Salinity Stress and Tolerance - A Review. Plants ,12(925), 1-25. https://doi.org/10.3390/plants12040925
  • Marcucci, M., Woisky, R., & Salatino, A. (1998). Use of aluminium chloride in the flavonoids quantification of propolis samples. Mensagem Doce, 46, 3-9.
  • Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology and Biotechnology, 8(03), 81-91.
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  • Oral, E., Altuner, F., Tunçtürk, R., & Baran, İ. (2019). Effect of Salt Stress (NaCl) in the Triticale (x Triticosecale Wittmack) Applied Pretreatment of Gibberellic Acid. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(Ek sayı 2), 235-242. https://doi.org/10.18016/ksutarimdoga.vi.553769
  • Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Etminan, A., Moghaddam, M., & Siddique, K.H. (2017). Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiologiae Plantarum, 39(106), 1-16. https://doi.org/10.1007/s11738-017-2403-z
  • Price, L., Han, Y., Angessa, T., & Li, C. (2022). Molecular pathways of WRKY genes in regulating plant salinity tolerance. International Journal of Molecular Sciences, 23(10947), 1-20. https://doi.org/10.3390/ijms231810947
  • Rai, A.C., Singh, M., & Shah, K. (2013). Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry, 85(2013),44-50. https://doi.org/10.1016/j.phytochem.2012.09.007
  • Rajasheker, G., Jawahar, G., Jalaja, N., Kumar, S.A., Kumari, P.H., Punita, D.L., Karumanchi, A.R., Reddy, P.S., Rathnagiri, P., & Sreenivasulu, N. (2019). Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In: Plant Signaling Molecules. Elsevier.
  • Riseh, R. S., Fathi, F., Vatankhah, M., & Kennedy, J.F. (2024). Catalase-associated immune responses in plant-microbe interactions: A review. International Journal of Biological Macromolecules, 280(2), 135859. https://doi.org/10.1016/j.ijbiomac.2024.135859
  • Sato, H. (2022). Development and Future Application of Transgenic Tall Fescue (Festuca arundinacea Schreb.) with Improved Important Forage and Turf Traits. Japan Agricultural Research Quarterly, 56,1-6.
  • Sgherri, C.L.M., Loggini, B., Puliga, S., & Navari-Izzo, F, (1994). Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry, 35(3), 561-565. https://doi.org/10.1016/S0031-9422(00)90561-2
  • Shafi, A., Chauhan, R., Gill, T., Swarnkar, M.K., Sreenivasulu, Y., Kumar, S., Kumar, N., Shankar, R., Ahuja, P.S., & Singh, A. K. (2015). Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Molecular Biology, 2015(87), 615-631. https://doi.org/10.1007/s11103-015-0301-6
  • Simsek Soysal, A. Ö., Demirkol, G., Aşcı, Ö. Ö., Arıcı, Y. K., Acar, Z., & Yılmaz, N. (2021). Tuz stresinin tek yıllık çim (Lolium multiflorum L.)’de çimlenme ve fide gelişim özelliklerine etkisi. Turkish Journal of Agricultural and Natural Sciences, 8(2), 301-307. https://doi.org/10.30910/turkjans.787011
  • Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55. https://doi.org/10.5344/ajev.1977.28.1.4
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  • Wang, S.Y., Jiao, H.J., & Faust, M. (1991). Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron‐induced bud break of apple. Physiologia Plantarum, 82(2), 231-236. https://doi.org/10.1111/j.1399-3054.1991.tb00086.x
  • Yılmaz, V.A. (2019). Investigation of bioactive compounds and antioxidant capacities of various cereal products. Journal of Agricultural Faculty of Gaziosmanpaşa University, 36(1),10-22. https://doi.org/10.13002/jafag4544
  • Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. (2020). Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy, 10(127), 1-15. https://doi.org/10.3390/agronomy10010127
  • Zou, Y., Zhang, Y., & Testerink, C. (2022). Root dynamic growth strategies in response to salinity. Plant, Cell & Environment, 45(3), 695-704. https://doi.org/10.1111/pce.14205
  • Zrig, A., Tounekti, T., Hegab, M.M., Ali, S.O., & Khemira, H. (2016). Essential oils, amino acids and polyphenols changes in salt-stressed Thymus vulgaris exposed to open–field and shade enclosure. Industrial Crops and Products, 91(2016), 223-230. https://doi.org/10.1016/j.indcrop.2016.07.012
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Crop and Pasture Biochemistry and Physiology
Journal Section RESEARCH ARTICLE
Authors

Shiva Sadıghfard 0000-0003-0617-4856

Gürkan Demirkol 0000-0003-0033-8039

Early Pub Date June 10, 2025
Publication Date
Submission Date January 20, 2025
Acceptance Date May 7, 2025
Published in Issue Year 2025Volume: 28 Issue: 4

Cite

APA Sadıghfard, S., & Demirkol, G. (2025). Kamışsı Yumak Bitkisinde Tuzluluk Toleransının Fizyolojik ve Biyokimyasal Mekanizması: Tuz Stresine Farklı Hassasiyet Gösteren Çeşitlerin Karşılaştırmalı Analizi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(4), 1043-1053.


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149